Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy

Yıl 2023, Cilt: 29 Sayı: 5, 553 - 559, 31.10.2023

Öz

Nickel and titanium-based alloys are commonly used for engineering or medical applications. NiTi alloys are recycled as additive materials at the end of their lifetime. Separate recovery of metals present in NiTi alloy is possible via hydrometallurgical methods; however, NiTi alloys are highly resistant to corrosion. Various mineral acids (H2SO4, HCl, HNO3, H3PO4) have been investigated, and the effect of H2O2 in the leaching medium has also been explored. Different leaching yields have been observed, and correlations between them according to acid treatment conditions have been established. SEM, XRF, and EDS techniques characterized alloys' microstructure and chemical properties. Among mineral acids, H2SO4 and HCl illustrated the highest extraction efficiencies. However, the addition of hydrogen peroxide decreased this efficiency severely. The kinetics of dissolution was obtained through decreased leaching efficiency with the addition of hydrogen peroxide.

Kaynakça

  • [1] Agcasulu, I, Akcil A. “Metal recovery from bottom ash of an inciner-ation plant: laboratory reactor tests”. Mineral Processing and Extractive Metallurgy Review, 38(3), 199-206, 2017.
  • [2] Itzhak JB, Solomonov M, Lvovsky A, Shemesh A, Levin A, Grande NM, Plotino G, Ozyurek T, Staffoli S. “Comparison between stainless steel and nickel-titanium rotary preparation time for primary molar teeth by endodontists and pedodontists”. Turkish Endodontic Journal, 3(1), 1-4, 2018.
  • [3] Santos P, Martins RF, Ginjeira A. “On the fatigue resistance of endodontic files subjected to electrochemical polishing and an autoclave’s sterilisation cycle”. International Journal of Structural Integrity, 12(1), 3-16, 2020.
  • [4] Kramkowski TR, Bahcall J. “An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT series X rotary nickel-titanium files”. Journal of Endodontics, 35(3), 404-407, 2009.
  • [5] Kim HC, Kwak SW, Cheung GSP, Ko DH, Chung SM, Lee W. “Cyclic fatigue and torsional resistance of two new nickeltitanium instruments used in reciprocation motion: Reciproc versus waveone”. Journal of endodontics, 38(4), 541-544, 2012.
  • [6] Reinoehl M, Bradley D, Bouthot R, Proft J. “The influence of melt practice on final fatigue properties of superelastic niti wires. In: SMST-2000”. Proceedings of the International Conference on Shape Memory and Superelastic Technologies. Pacific Grove, CA: International Organization on SMST, Pacific Grove, California, USA, 30 April-4 May 2000.
  • [7] Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. “Manufacturing and processing of niti implants: A review”. Progress in materials science, 57(5), 911-946, 2012.
  • [8] Ozgun MI, Terlemez A, Acma M, Eker Y, Batıbay A. “Recover-ing of disposed nickel-titanium rotary endodontic files via sulphuric acid leaching treatments”. El-Cezeri, 8(1), 1-10, 2021.
  • [9] Bertuol DA, Amado FD, Veit H, Ferreira JZ, Bernardes AM. “Recovery of nickel and cobalt from spent nimh batteries by electrowinning”. Chemical engineering & Technology, 35(12), 2084-2092, 2012.
  • [10] Bernardes AM, Espinosa DCR, Ten´orio J S. “Recycling of batteries: a review of current processes and technologies”. Journal of Power Sources, 130(1-2), 291-298, 2004.
  • [11] Marafi M, Stanislaus A. “Spent catalyst waste management: A review: Part i-developments in hydroprocessing catalyst waste reduction and use”. Resources, Conservation and Recycling, 52(6), 859-873, 2008.
  • [12] Marafi M, Stanislaus A. “Spent hydroprocessing catalyst management: A review: Part ii. advances in metal recovery and safe disposal methods”. Resources, Conservation and Recycling, 53(1-2), 1-26, 2008.
  • [13] Rodriguez MH, Rosales GD, Pinna EG, Tunez FM, Toro N. “Extraction of titanium from low-grade ore with different leaching agents in autoclave”. Metals, 10(497), 1-11, 2020.
  • [14] Valeev D, Lainer YA, Pak V. “Autoclave leaching of boehmite-kaolinite bauxites by hydrochloric acid. Inorganic Materials”. Applied Research, 7(2), 272-277, 2016.
  • [15] Karimov K, Rogozhnikov D, Naboichenko S, Karimova L, Zakhar’yan S. “Autoclave ammonia leaching of silver from low-grade copper concentrates”. Metallurgist, 62(7), 783-789, 2018.
  • [16] Sun PP, Lee MS. “Recovery of platinum from chloride leaching solution of spent catalysts by solvent extraction”. Materials Transactions, 54(1), 74-80, 2013.
  • [17] Boyrazı M. “Kbi curuflarının h2o2 ortamında h2so4 ile lic kinetiginin incelenmesi”. Dicle Universitesi Muhendislik Fakultesi Muhendislik Dergisi, 8(4), 853-864, 2017.
  • [18] Wang F, Sun R, Xu J, Chen Z, Kang M. “Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction”. Royal Society of Chemistry Advances, 6(88), 85303-85311, 2016.
  • [19] Begum N, Maisyarah A, Bari F, Ahmad K R, Hidayah N. “Leaching behaviour of langkawi black sand for the recovery of titanium”. APCBEE Procedia, 3, 1-5, 2012.
  • [20] Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A. “Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests”. Waste Management, 49, 455-461, 2016.
  • [21] Petrucci RH, Harwood WS, Maduro JD, Herring FG. General Chemistry: Principles and Modern Applications. 10th ed. Canada, Pearson Prentice Hall, 2010.
  • [22] Van der Hagen M, J¨arnberg J. 140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids. Editors: Toren K, Albin M, Wigaeus E. The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, 1-122, Sweden, University of Guthenburg, 2009.
  • [23] Garcia JL, de Castro ML. Acceleration and Automation of Solid Sample Treatment. 1st ed. The Netherlands, Elsevier, 2002.
  • [24] Chen X, Luo C, Zhang J, Kong J and Zhou T. “Sustainable recovery of metals from spent lithium-ion batteries: a green process”. American Chemical Society Sustainable. Chemical Engineering, 3(12), 3104-3113, 2015.
  • [25] Perry R, Green D, Maloney J. Perry's Chemical Engineers' Handbook. 6th ed. USA, McGraw-Hill Book Company, 1984.
  • [26] Lide D. CRC Handbook of Chemistry and Physics. 81st ed. Boca Raton, FL, USA, CRC Press, 2000.
  • [27] Niazi S, Nygard HS, Reis B and Moritz B. “Consistent thermodynamic modeling of H2O–HCl–KOH–KCl between 200K and 1,000K”. Chemical Engineering Science, 264, 1-8, 2022.

NiTi alaşımının hidrotermal liç işlemi sırasında farklı mineral asitlerin etkisi

Yıl 2023, Cilt: 29 Sayı: 5, 553 - 559, 31.10.2023

Öz

Nikel ve titanyum bazlı alaşımlar genellikle mühendislik veya tıbbi uygulamalar için kullanılır. NiTi alaşımları kullanım ömürlerinin sonunda katkı malzemesi olarak geri dönüştürülür. NiTi alaşımında bulunan metallerin hidrometalurjik yöntemlerle ayrı olarak geri kazanılması mümkündür; ancak NiTi alaşımları korozyona karşı oldukça dirençlidir. Çeşitli mineral asitler (H2SO4, HCl, HNO3, H3PO4) incelenmiş ve H2O2'nin liç ortamındaki etkisi de araştırılmıştır. Farklı liç verimleri gözlemlenmiş ve asit işleme koşullarına göre bunlar arasında korelasyonlar kurulmuştur. SEM, XRF ve EDS teknikleri alaşımların mikroyapısını ve kimyasal özelliklerini karakterize etmiştir. Mineral asitler arasında H2SO4 ve HCl en yüksek ekstraksiyon verimliliğini göstermiştir. Ancak, hidrojen peroksit ilavesi bu verimi ciddi şekilde düşürmüştür. Çözünme kinetiği, hidrojen peroksit ilavesiyle liç veriminin azalmasıyla elde edilmiştir.

Kaynakça

  • [1] Agcasulu, I, Akcil A. “Metal recovery from bottom ash of an inciner-ation plant: laboratory reactor tests”. Mineral Processing and Extractive Metallurgy Review, 38(3), 199-206, 2017.
  • [2] Itzhak JB, Solomonov M, Lvovsky A, Shemesh A, Levin A, Grande NM, Plotino G, Ozyurek T, Staffoli S. “Comparison between stainless steel and nickel-titanium rotary preparation time for primary molar teeth by endodontists and pedodontists”. Turkish Endodontic Journal, 3(1), 1-4, 2018.
  • [3] Santos P, Martins RF, Ginjeira A. “On the fatigue resistance of endodontic files subjected to electrochemical polishing and an autoclave’s sterilisation cycle”. International Journal of Structural Integrity, 12(1), 3-16, 2020.
  • [4] Kramkowski TR, Bahcall J. “An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT series X rotary nickel-titanium files”. Journal of Endodontics, 35(3), 404-407, 2009.
  • [5] Kim HC, Kwak SW, Cheung GSP, Ko DH, Chung SM, Lee W. “Cyclic fatigue and torsional resistance of two new nickeltitanium instruments used in reciprocation motion: Reciproc versus waveone”. Journal of endodontics, 38(4), 541-544, 2012.
  • [6] Reinoehl M, Bradley D, Bouthot R, Proft J. “The influence of melt practice on final fatigue properties of superelastic niti wires. In: SMST-2000”. Proceedings of the International Conference on Shape Memory and Superelastic Technologies. Pacific Grove, CA: International Organization on SMST, Pacific Grove, California, USA, 30 April-4 May 2000.
  • [7] Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. “Manufacturing and processing of niti implants: A review”. Progress in materials science, 57(5), 911-946, 2012.
  • [8] Ozgun MI, Terlemez A, Acma M, Eker Y, Batıbay A. “Recover-ing of disposed nickel-titanium rotary endodontic files via sulphuric acid leaching treatments”. El-Cezeri, 8(1), 1-10, 2021.
  • [9] Bertuol DA, Amado FD, Veit H, Ferreira JZ, Bernardes AM. “Recovery of nickel and cobalt from spent nimh batteries by electrowinning”. Chemical engineering & Technology, 35(12), 2084-2092, 2012.
  • [10] Bernardes AM, Espinosa DCR, Ten´orio J S. “Recycling of batteries: a review of current processes and technologies”. Journal of Power Sources, 130(1-2), 291-298, 2004.
  • [11] Marafi M, Stanislaus A. “Spent catalyst waste management: A review: Part i-developments in hydroprocessing catalyst waste reduction and use”. Resources, Conservation and Recycling, 52(6), 859-873, 2008.
  • [12] Marafi M, Stanislaus A. “Spent hydroprocessing catalyst management: A review: Part ii. advances in metal recovery and safe disposal methods”. Resources, Conservation and Recycling, 53(1-2), 1-26, 2008.
  • [13] Rodriguez MH, Rosales GD, Pinna EG, Tunez FM, Toro N. “Extraction of titanium from low-grade ore with different leaching agents in autoclave”. Metals, 10(497), 1-11, 2020.
  • [14] Valeev D, Lainer YA, Pak V. “Autoclave leaching of boehmite-kaolinite bauxites by hydrochloric acid. Inorganic Materials”. Applied Research, 7(2), 272-277, 2016.
  • [15] Karimov K, Rogozhnikov D, Naboichenko S, Karimova L, Zakhar’yan S. “Autoclave ammonia leaching of silver from low-grade copper concentrates”. Metallurgist, 62(7), 783-789, 2018.
  • [16] Sun PP, Lee MS. “Recovery of platinum from chloride leaching solution of spent catalysts by solvent extraction”. Materials Transactions, 54(1), 74-80, 2013.
  • [17] Boyrazı M. “Kbi curuflarının h2o2 ortamında h2so4 ile lic kinetiginin incelenmesi”. Dicle Universitesi Muhendislik Fakultesi Muhendislik Dergisi, 8(4), 853-864, 2017.
  • [18] Wang F, Sun R, Xu J, Chen Z, Kang M. “Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction”. Royal Society of Chemistry Advances, 6(88), 85303-85311, 2016.
  • [19] Begum N, Maisyarah A, Bari F, Ahmad K R, Hidayah N. “Leaching behaviour of langkawi black sand for the recovery of titanium”. APCBEE Procedia, 3, 1-5, 2012.
  • [20] Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A. “Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests”. Waste Management, 49, 455-461, 2016.
  • [21] Petrucci RH, Harwood WS, Maduro JD, Herring FG. General Chemistry: Principles and Modern Applications. 10th ed. Canada, Pearson Prentice Hall, 2010.
  • [22] Van der Hagen M, J¨arnberg J. 140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids. Editors: Toren K, Albin M, Wigaeus E. The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, 1-122, Sweden, University of Guthenburg, 2009.
  • [23] Garcia JL, de Castro ML. Acceleration and Automation of Solid Sample Treatment. 1st ed. The Netherlands, Elsevier, 2002.
  • [24] Chen X, Luo C, Zhang J, Kong J and Zhou T. “Sustainable recovery of metals from spent lithium-ion batteries: a green process”. American Chemical Society Sustainable. Chemical Engineering, 3(12), 3104-3113, 2015.
  • [25] Perry R, Green D, Maloney J. Perry's Chemical Engineers' Handbook. 6th ed. USA, McGraw-Hill Book Company, 1984.
  • [26] Lide D. CRC Handbook of Chemistry and Physics. 81st ed. Boca Raton, FL, USA, CRC Press, 2000.
  • [27] Niazi S, Nygard HS, Reis B and Moritz B. “Consistent thermodynamic modeling of H2O–HCl–KOH–KCl between 200K and 1,000K”. Chemical Engineering Science, 264, 1-8, 2022.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Muhammed İhsan Özgün Bu kişi benim

Ahmet Burçin Batıbay

Bayram Ünal

Yasin Ramazan Eker Bu kişi benim

Arslan Terlemez

Yayımlanma Tarihi 31 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 29 Sayı: 5

Kaynak Göster

APA Özgün, M. İ., Batıbay, A. B., Ünal, B., Eker, Y. R., vd. (2023). Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(5), 553-559.
AMA Özgün Mİ, Batıbay AB, Ünal B, Eker YR, Terlemez A. Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2023;29(5):553-559.
Chicago Özgün, Muhammed İhsan, Ahmet Burçin Batıbay, Bayram Ünal, Yasin Ramazan Eker, ve Arslan Terlemez. “Effect of Various Mineral Acids During the Hydrothermal Leaching Process of NiTi Alloy”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 5 (Ekim 2023): 553-59.
EndNote Özgün Mİ, Batıbay AB, Ünal B, Eker YR, Terlemez A (01 Ekim 2023) Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 5 553–559.
IEEE M. İ. Özgün, A. B. Batıbay, B. Ünal, Y. R. Eker, ve A. Terlemez, “Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 5, ss. 553–559, 2023.
ISNAD Özgün, Muhammed İhsan vd. “Effect of Various Mineral Acids During the Hydrothermal Leaching Process of NiTi Alloy”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/5 (Ekim 2023), 553-559.
JAMA Özgün Mİ, Batıbay AB, Ünal B, Eker YR, Terlemez A. Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:553–559.
MLA Özgün, Muhammed İhsan vd. “Effect of Various Mineral Acids During the Hydrothermal Leaching Process of NiTi Alloy”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 5, 2023, ss. 553-9.
Vancouver Özgün Mİ, Batıbay AB, Ünal B, Eker YR, Terlemez A. Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(5):553-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.