Araştırma Makalesi
BibTex RIS Kaynak Göster

Life cycle assessment of tomato paste production: a case study

Yıl 2024, Cilt: 30 Sayı: 1, 119 - 127, 29.02.2024

Öz

This study involves the cradle-to-gate life cycle assessment of tomato paste production in Turkey. All the data was obtained from a large-scale production company located in north-west Turkey in 2020. CCaLC software with Ecoinvent2 database alongside CML2001 method was used for the analysis and the following impacts were taken into account: acidification potential, carbon footprint, eutrophication potential, human toxicity potential, ozone layer depletion potential, and photochemical smog potential. Functional unit was chosen as 1 kg of tomato paste sold in glass jars. The results show that the biggest contributor to environmental impacts was the raw material supply stage, mainly due to fungicide (for agriculture) and metal (for packaging) use. Energy required for agricultural and production processes were also found to have significant effects of the impacts. The results were found to be in very good consistency with earlier literature. Using photovoltaic panels for meeting 10% of the electricity demand of agricultural and production processes or utilizing tomato harvesting waste to produce biomethane were found to have almost no positive effects as far as impact reduction is concerned. These results show that switching to organic farming seems to be essential if environmental impacts of processed food products such as tomato paste are to be reduced.

Kaynakça

  • [1] Keskin G. "Türkiye’nin domates üretimindeki kayiplari ve rekabet gücü". Eurasian Journal of Agricultural Economics, 12, 18-37, 2021.
  • [2] Anonymous. "İstatistik Veri Portalı". Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (11.05.2022).
  • [3] Anonymous. "Türk Gıda Kodeksi Salça ve Benzeri Ürünler Tebliği”. Tarım ve Orman Bakanlığı, Ankara, Türkiye, 31212, 2020.
  • [4] Duman İ. "Sanayilik domates yetiştiriciliği". Türkiye Tohumcular Birliği Derneği Dergisi, 5, 18-21, 2015.
  • [5] Durgun İS, Arslan M, Kalkışım Ö, Sağır Y. " Preparation of feasibility reports for suitable investments in Gümüşhane". Gümüşhane Chamber of Industry and Commerce, Gümüşhane, Turkey, Industrial Report, 13, 2021.
  • [6] Kont G. "Salça Ürün Grubu Ihracat Pazar Araştırması". İzmir Ticaret Odası, İzmir, Türkiye, 200290 GTIP, 2021.
  • [7] Kin Y, Horvath A. "What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss?". Resources, Conservation & Recycling, 176, 1-9, 2022.
  • [8] Garnett T. "Where are the best oortunities for reducing greenhouse gas emissions in the food". Food Policy, 36, 23-32, 2011.
  • [9] Vermeulen SJ, Campbell BM, Ingram JS. "Climate change and food systems". Annual Review of Environment and Resources, 37, 195-222, 2012.
  • [10] Ahuja D, Tatsutani M. "Sustainable energy for developing countries". Surveys and Perspectives Integrating Environment and Society, 2(1), 1-15, 2009.
  • [11] Pitawala P, Danthurebandara M, Rajapaksha L. "Life cycle assessment of paper and plastic grocery bags used in Sri Lankan supermarkets”. International Journal of Environmental Science and Technology, 19, 11183-11198, 2022.
  • [12] Borghi A, Moreschi L, Gallo M. Life Cycle Assessment in the Food industry. Editor: Galanakis C. The Interaction of Food Industry and Environment, 63-118, Vienna, Austria, Academic Press, 2020.
  • [13] Odabaşı SÜ, Büyükgüngör H. “Life cycle assessment analysis of plastic coupling”. Pamukkale University Journal of Engineering Sciences, 28(3), 434-443, 2022.
  • [14] Martin-Gorriz B, Maestre-Valero J, Gallego-Elvira N, Marin-Membrive P, Terrero P, Martinez-Alvarez V. "Recycling drainage effluents using reverse osmosis powered by photovoltaic solar energy in hydroponic tomato production: Environmental footprint analysis". Journal of Environmental Management, 297, 1-12, 2021.
  • [15] Ntinas G, Neumair M, Tsadilas C, Meyer J. "Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions". Journal of Cleaner Production, 142, 3617-3626, 2017.
  • [16] Neira D, Montiel M, Cabeza M¸ Reigada A. "Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context". Science of The Total Environment, 628-629, 1627-1636, 2018.
  • [17] Ronga D, Gallingani T, Zaccardeli M, Perrone D, Francia E, Milc J, Pecchioni N. "Carbon footprint and energetic analysis of tomato production in the organic vs the conventional croing systems in Southern Italy". Journal of Cleaner Production, 220, 836-845, 2019.
  • [18] Page G, Ridoutt B, Bellotti B. "Carbon and water footprint tradeoffs in fresh tomato production". Journal of Cleaner Production, 32, 219-226, 2012.
  • [19] Clavreul J, Butnar I, Rubio V, King H. "Intra-and inter-year variability of agricultural carbon footprints-a case study on field-grown tomatoes". Journal of Cleaner Production, 158, 156-164, 2017.
  • [20] Payen S, Basset-Mens C, Perret S. "LCA of local and imported tomato: an energy and water trade-off". Journal of Cleaner Production, 87, 139-148, 2015.
  • [21] Torres Pineda I, Lee Y, Kim Y, Lee S, Park K. "Review of inventory data in life cycle assessment alied in production of fresh tomato in greenhouse". Journal of Cleaner Production, 282, 1-18, 2021.
  • [22] Bosona T, Gebresenbet G. "Life cycle analysis of organic tomato production and suly in Sweden". Journal of Cleaner Production, 196, 635-643, 2018.
  • [23] Ingrao C, Faccilongo N, Valenti F, De Pascale G, Di Gioia L, Messine A, Arcidiacono C. "Tomato puree in the Mediterranean region: An environmental Life Cycle Assessment, based upon data surveyed at the suly chain level". Journal of Cleaner Production, 233, 292-313, 2019.
  • [24] Manfredi M, Vignali G. "Life cycle assessment of a packaged tomato puree: a comparison of environmental impacts produced by different life cycle phases". Journal of Cleaner Production, 73, 275-284, 2014.
  • [25] Farahani S, Soheilifard F, Raini M, Kokei D. "Comparison of different tomato puree production phases from an environmental point of view". The International Journal of Life Cycle Assessment, 24, 1817-1827, 2019.
  • [26] Branthome F. "Prefer Project: The Environmental Impact of Tomato Products". http://www.tomatonews.com/en/prefer-project-the-environmental-impact-of-tomato-products_2_225.html (10.5.2022).
  • [27] Behzadian M, López-Avilés A, Cottee J, Veldhuis A, Farmani R, Butler D, Leach M, Yang A, Ingram J. "The water, energy and carbon footprints of locally produced tomato paste in the UK". 4th Annual Water Efficiency Conference, Coventry, UK, 7-9 September 2016.
  • [28] Parajuli R, Matlock M, Thoma G. "Cradle to grave environmental impact evaluation of the consumption of potato and tomato products". Science of The Total Environment, 758, 1-17, 2021.
  • [29] Winans K, Brodt S, Kendall A. "Life cycle assessment of California processing tomato: an evaluation of the effects of evolving practices and technologies over a 10-year 2005-2015 timeframe". The International Journal of Life Cycle Assessment, 25, 538-547, 2020.
  • [30] Karakaya A, Özilgen M. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled diced, and juiced tomato production processes". Energy, 36, 5101-5110, 2011.
  • [31] Palma G, Padilla M, Saheb M, Tatar Y, Tugulay A, Kellou I. "LCA of Tomato Sauce Made in France with French and with Turkish Tomato Paste". 13th International Symposium on Processing Tomato, Sirmione, Italy, 30 April 2015.
  • [32] Ramos S, Larrinaga L, Albinarrate U, Jungbluth N, Ingolfsdottir GM, Yngvadottir E. "SENSE tool: easy-to-use web-based tool to calculate food product environmental". The International Journal of Life Cycle Assessment, 21(5), 710-721, 2015.
  • [33] International Standards Organization. "Environmental Management-Life Cycle Assessment: Principles and Framework". International Standards Organisation. ISO 14044:2006. https://www.iso.org/standard/37456.html (06.07.2022).
  • [34] International Standards Organization. "Environmental Management-Life Cycle Assessment-Requirements and Guidelines". International Standards Organisation. ISO 14044:2006. https://www.iso.org/standard/38498.html (22.07.2022).
  • [35] International Reference Life Cycle Data System. "General Guide for Life Cycle Assessment: Detailed Guidance". Publications Office of the European Union, European Commission, Joint Research Centre, Luxembourg, 16, 2010.
  • [36] Arcand Y, Maxime D, Zareifard MR. Life Cycle Assessment of Processed Food. Editors: Boye JI, Arcand Y. Green Technologies in Food Production and Processing, 115-148 Saint Hyacinthe, Canada, Springer, 2012.
  • [37] Andersson K. "LCA of food products and production systems". The International Journal of Life Cycle Assessment, 5, 239-248, 2000.
  • [38] Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T. "A review of life cycle assessment LCA on some food products". Journal of Food Engineering, 90, 1-10, 2008.
  • [39] Bare J, Hofstetter P, Pennington D, Udo de Haes H. "Life cycle impact assessment workshop summary: midpoints versus endpoints: the sacrifices and benefits". International Journal of Life Cycle Assessment, 5(6), 319-326, 2000.
  • [40] Atılgan B, Azapagic A. "An integrated life cycle sustainability assessment of electricity generation in Turkey". Energy Policy, 93, 168-186, 2016.
  • [41] Gül H, Üçtuğ FG, Güngörmüşler M. "Environmental life cycle assessment of industrially produced pickled and roasted vegetables". International Journal of Environmental Science and Technology, 19, 8752-8768, 2021.
  • [42] Turkish Ministry of Environment, Urbanization and Climate Change. "Primary Energy Generation in Turkish". 2018. https://cevreselgostergeler.csb.gov.tr/en (04.06.2022).
  • [43] Üçtuğ FG, Azapagic A. "Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries". Science of the Total Environment, 643, 1579-1589, 2018.
  • [44] Kılıç FÇ. “Solar Energy: Latest Status and Generation Technologies in Turkey (in Turkish)”. 2015. https://www.mmo.org.tr/sites/default/files/09677e0899d72e8_ek%281%29.pdf (15.01.2023).
  • [45] Adsal K, Üçtuğ FG, Arıkan O. "Environmental life cycle assessment of utilizing stem waste for banana production in greenhouses in Turkey". Sustainable Production and Consumption, 22, 110-125, 2020.
  • [46] Calabro PS, Greco R, Evangelou A, Komilis D. “Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment”. Journal of Environmental Management, 163, 49-52, 2015.

Salça üretiminin yaşam döngüsü değerlendirmesine dair bir vaka analizi

Yıl 2024, Cilt: 30 Sayı: 1, 119 - 127, 29.02.2024

Öz

Bu çalışma, Türkiye'de salça üretiminin beşikten kapıya yaşam döngüsü değerlendirmesini içermektedir. Tüm veriler 2020 yılında Türkiye'nin kuzeybatısında bulunan büyük ölçekli bir üretim şirketinden elde edilmiştir. Analiz için CML2001 yönteminin yanı sıra Ecoinvent2 veri tabanına sahip CCaLC yazılımı kullanılmış ve şu etkiler göz önüne alınmıştır: asidifikasyon potansiyeli, karbon ayak izi, ötrofikasyon potansiyeli, insan toksisite potansiyeli, ozon tabakasını inceltme potansiyeli ve fotokimyasal sis potansiyeli. Fonksiyonel birim cam kavanozda satılan 1 kg salça olarak seçilmiştir. Sonuçlar, çevresel etkilere en büyük katkının, esas olarak mantar ilacı (tarım için) ve metal (ambalaj için) kullanımı nedeniyle hammadde tedarik aşamasından geldiğini göstermektedir. Tarım ve üretim süreçleri için gerekli olan enerjinin de çevresel etkilerde önemli bir payı olduğu tespit edilmiştir. Sonuçların literatürdeki diğer yayınlarla tutarlılığının yüksek olduğu görülmüştür. Tarım ve üretim süreçlerinin elektrik talebinin %10'unu karşılamak için fotovoltaik panellerin kullanılması veya biyometan üretmek için domates hasat atığının kullanılmasının etki azaltma söz konusu olduğunda hemen hemen hiçbir olumlu etkiye sahip olmadığı saptanmıştır. Bu sonuçlar, salça gibi işlenmiş gıda ürünlerinin çevresel etkilerinin azaltılması için organik tarıma geçişin gerekli olduğunu göstermektedir.

Kaynakça

  • [1] Keskin G. "Türkiye’nin domates üretimindeki kayiplari ve rekabet gücü". Eurasian Journal of Agricultural Economics, 12, 18-37, 2021.
  • [2] Anonymous. "İstatistik Veri Portalı". Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (11.05.2022).
  • [3] Anonymous. "Türk Gıda Kodeksi Salça ve Benzeri Ürünler Tebliği”. Tarım ve Orman Bakanlığı, Ankara, Türkiye, 31212, 2020.
  • [4] Duman İ. "Sanayilik domates yetiştiriciliği". Türkiye Tohumcular Birliği Derneği Dergisi, 5, 18-21, 2015.
  • [5] Durgun İS, Arslan M, Kalkışım Ö, Sağır Y. " Preparation of feasibility reports for suitable investments in Gümüşhane". Gümüşhane Chamber of Industry and Commerce, Gümüşhane, Turkey, Industrial Report, 13, 2021.
  • [6] Kont G. "Salça Ürün Grubu Ihracat Pazar Araştırması". İzmir Ticaret Odası, İzmir, Türkiye, 200290 GTIP, 2021.
  • [7] Kin Y, Horvath A. "What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss?". Resources, Conservation & Recycling, 176, 1-9, 2022.
  • [8] Garnett T. "Where are the best oortunities for reducing greenhouse gas emissions in the food". Food Policy, 36, 23-32, 2011.
  • [9] Vermeulen SJ, Campbell BM, Ingram JS. "Climate change and food systems". Annual Review of Environment and Resources, 37, 195-222, 2012.
  • [10] Ahuja D, Tatsutani M. "Sustainable energy for developing countries". Surveys and Perspectives Integrating Environment and Society, 2(1), 1-15, 2009.
  • [11] Pitawala P, Danthurebandara M, Rajapaksha L. "Life cycle assessment of paper and plastic grocery bags used in Sri Lankan supermarkets”. International Journal of Environmental Science and Technology, 19, 11183-11198, 2022.
  • [12] Borghi A, Moreschi L, Gallo M. Life Cycle Assessment in the Food industry. Editor: Galanakis C. The Interaction of Food Industry and Environment, 63-118, Vienna, Austria, Academic Press, 2020.
  • [13] Odabaşı SÜ, Büyükgüngör H. “Life cycle assessment analysis of plastic coupling”. Pamukkale University Journal of Engineering Sciences, 28(3), 434-443, 2022.
  • [14] Martin-Gorriz B, Maestre-Valero J, Gallego-Elvira N, Marin-Membrive P, Terrero P, Martinez-Alvarez V. "Recycling drainage effluents using reverse osmosis powered by photovoltaic solar energy in hydroponic tomato production: Environmental footprint analysis". Journal of Environmental Management, 297, 1-12, 2021.
  • [15] Ntinas G, Neumair M, Tsadilas C, Meyer J. "Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions". Journal of Cleaner Production, 142, 3617-3626, 2017.
  • [16] Neira D, Montiel M, Cabeza M¸ Reigada A. "Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context". Science of The Total Environment, 628-629, 1627-1636, 2018.
  • [17] Ronga D, Gallingani T, Zaccardeli M, Perrone D, Francia E, Milc J, Pecchioni N. "Carbon footprint and energetic analysis of tomato production in the organic vs the conventional croing systems in Southern Italy". Journal of Cleaner Production, 220, 836-845, 2019.
  • [18] Page G, Ridoutt B, Bellotti B. "Carbon and water footprint tradeoffs in fresh tomato production". Journal of Cleaner Production, 32, 219-226, 2012.
  • [19] Clavreul J, Butnar I, Rubio V, King H. "Intra-and inter-year variability of agricultural carbon footprints-a case study on field-grown tomatoes". Journal of Cleaner Production, 158, 156-164, 2017.
  • [20] Payen S, Basset-Mens C, Perret S. "LCA of local and imported tomato: an energy and water trade-off". Journal of Cleaner Production, 87, 139-148, 2015.
  • [21] Torres Pineda I, Lee Y, Kim Y, Lee S, Park K. "Review of inventory data in life cycle assessment alied in production of fresh tomato in greenhouse". Journal of Cleaner Production, 282, 1-18, 2021.
  • [22] Bosona T, Gebresenbet G. "Life cycle analysis of organic tomato production and suly in Sweden". Journal of Cleaner Production, 196, 635-643, 2018.
  • [23] Ingrao C, Faccilongo N, Valenti F, De Pascale G, Di Gioia L, Messine A, Arcidiacono C. "Tomato puree in the Mediterranean region: An environmental Life Cycle Assessment, based upon data surveyed at the suly chain level". Journal of Cleaner Production, 233, 292-313, 2019.
  • [24] Manfredi M, Vignali G. "Life cycle assessment of a packaged tomato puree: a comparison of environmental impacts produced by different life cycle phases". Journal of Cleaner Production, 73, 275-284, 2014.
  • [25] Farahani S, Soheilifard F, Raini M, Kokei D. "Comparison of different tomato puree production phases from an environmental point of view". The International Journal of Life Cycle Assessment, 24, 1817-1827, 2019.
  • [26] Branthome F. "Prefer Project: The Environmental Impact of Tomato Products". http://www.tomatonews.com/en/prefer-project-the-environmental-impact-of-tomato-products_2_225.html (10.5.2022).
  • [27] Behzadian M, López-Avilés A, Cottee J, Veldhuis A, Farmani R, Butler D, Leach M, Yang A, Ingram J. "The water, energy and carbon footprints of locally produced tomato paste in the UK". 4th Annual Water Efficiency Conference, Coventry, UK, 7-9 September 2016.
  • [28] Parajuli R, Matlock M, Thoma G. "Cradle to grave environmental impact evaluation of the consumption of potato and tomato products". Science of The Total Environment, 758, 1-17, 2021.
  • [29] Winans K, Brodt S, Kendall A. "Life cycle assessment of California processing tomato: an evaluation of the effects of evolving practices and technologies over a 10-year 2005-2015 timeframe". The International Journal of Life Cycle Assessment, 25, 538-547, 2020.
  • [30] Karakaya A, Özilgen M. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled diced, and juiced tomato production processes". Energy, 36, 5101-5110, 2011.
  • [31] Palma G, Padilla M, Saheb M, Tatar Y, Tugulay A, Kellou I. "LCA of Tomato Sauce Made in France with French and with Turkish Tomato Paste". 13th International Symposium on Processing Tomato, Sirmione, Italy, 30 April 2015.
  • [32] Ramos S, Larrinaga L, Albinarrate U, Jungbluth N, Ingolfsdottir GM, Yngvadottir E. "SENSE tool: easy-to-use web-based tool to calculate food product environmental". The International Journal of Life Cycle Assessment, 21(5), 710-721, 2015.
  • [33] International Standards Organization. "Environmental Management-Life Cycle Assessment: Principles and Framework". International Standards Organisation. ISO 14044:2006. https://www.iso.org/standard/37456.html (06.07.2022).
  • [34] International Standards Organization. "Environmental Management-Life Cycle Assessment-Requirements and Guidelines". International Standards Organisation. ISO 14044:2006. https://www.iso.org/standard/38498.html (22.07.2022).
  • [35] International Reference Life Cycle Data System. "General Guide for Life Cycle Assessment: Detailed Guidance". Publications Office of the European Union, European Commission, Joint Research Centre, Luxembourg, 16, 2010.
  • [36] Arcand Y, Maxime D, Zareifard MR. Life Cycle Assessment of Processed Food. Editors: Boye JI, Arcand Y. Green Technologies in Food Production and Processing, 115-148 Saint Hyacinthe, Canada, Springer, 2012.
  • [37] Andersson K. "LCA of food products and production systems". The International Journal of Life Cycle Assessment, 5, 239-248, 2000.
  • [38] Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T. "A review of life cycle assessment LCA on some food products". Journal of Food Engineering, 90, 1-10, 2008.
  • [39] Bare J, Hofstetter P, Pennington D, Udo de Haes H. "Life cycle impact assessment workshop summary: midpoints versus endpoints: the sacrifices and benefits". International Journal of Life Cycle Assessment, 5(6), 319-326, 2000.
  • [40] Atılgan B, Azapagic A. "An integrated life cycle sustainability assessment of electricity generation in Turkey". Energy Policy, 93, 168-186, 2016.
  • [41] Gül H, Üçtuğ FG, Güngörmüşler M. "Environmental life cycle assessment of industrially produced pickled and roasted vegetables". International Journal of Environmental Science and Technology, 19, 8752-8768, 2021.
  • [42] Turkish Ministry of Environment, Urbanization and Climate Change. "Primary Energy Generation in Turkish". 2018. https://cevreselgostergeler.csb.gov.tr/en (04.06.2022).
  • [43] Üçtuğ FG, Azapagic A. "Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries". Science of the Total Environment, 643, 1579-1589, 2018.
  • [44] Kılıç FÇ. “Solar Energy: Latest Status and Generation Technologies in Turkey (in Turkish)”. 2015. https://www.mmo.org.tr/sites/default/files/09677e0899d72e8_ek%281%29.pdf (15.01.2023).
  • [45] Adsal K, Üçtuğ FG, Arıkan O. "Environmental life cycle assessment of utilizing stem waste for banana production in greenhouses in Turkey". Sustainable Production and Consumption, 22, 110-125, 2020.
  • [46] Calabro PS, Greco R, Evangelou A, Komilis D. “Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment”. Journal of Environmental Management, 163, 49-52, 2015.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makale
Yazarlar

Fehmi Görkem Üçtuğ

Zehranur Tekin

Zeynep Dayıoğlugil

Ercan Ulusoy

Şule Keyik Oktaylar

Yayımlanma Tarihi 29 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 1

Kaynak Göster

APA Üçtuğ, F. G., Tekin, Z., Dayıoğlugil, Z., Ulusoy, E., vd. (2024). Life cycle assessment of tomato paste production: a case study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 119-127.
AMA Üçtuğ FG, Tekin Z, Dayıoğlugil Z, Ulusoy E, Keyik Oktaylar Ş. Life cycle assessment of tomato paste production: a case study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2024;30(1):119-127.
Chicago Üçtuğ, Fehmi Görkem, Zehranur Tekin, Zeynep Dayıoğlugil, Ercan Ulusoy, ve Şule Keyik Oktaylar. “Life Cycle Assessment of Tomato Paste Production: A Case Study”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 1 (Şubat 2024): 119-27.
EndNote Üçtuğ FG, Tekin Z, Dayıoğlugil Z, Ulusoy E, Keyik Oktaylar Ş (01 Şubat 2024) Life cycle assessment of tomato paste production: a case study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 1 119–127.
IEEE F. G. Üçtuğ, Z. Tekin, Z. Dayıoğlugil, E. Ulusoy, ve Ş. Keyik Oktaylar, “Life cycle assessment of tomato paste production: a case study”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 1, ss. 119–127, 2024.
ISNAD Üçtuğ, Fehmi Görkem vd. “Life Cycle Assessment of Tomato Paste Production: A Case Study”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/1 (Şubat 2024), 119-127.
JAMA Üçtuğ FG, Tekin Z, Dayıoğlugil Z, Ulusoy E, Keyik Oktaylar Ş. Life cycle assessment of tomato paste production: a case study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:119–127.
MLA Üçtuğ, Fehmi Görkem vd. “Life Cycle Assessment of Tomato Paste Production: A Case Study”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 1, 2024, ss. 119-27.
Vancouver Üçtuğ FG, Tekin Z, Dayıoğlugil Z, Ulusoy E, Keyik Oktaylar Ş. Life cycle assessment of tomato paste production: a case study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(1):119-27.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.