Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of printing parameters on hardness in the production of Poli lactic acid (PLA)-based samples with a 3D printer

Yıl 2024, Cilt: 30 Sayı: 2, 136 - 144, 30.04.2024

Öz

The fused Deposited Modelling (FDM) technique, one of the additive manufacturing methods, has attracted much attention recently due to its high design flexibility and ability to create complex parts. While a wide variety of parts can be easily manufactured using 3D printers layer by layer according to traditional methods, the printing parameters significantly affect the mechanical properties of the products. This study aims to investigate the effect of printing parameters on the part's hardness. Nozzle diameter, layer height, raster angle, and nozzle temperature were chosen as the printing parameters to be investigated. Three levels were determined for each parameter, and the required high number of experiments was reduced by applying the Taguchi experimental design method. Polylactic acid (PLA) based samples were manufactured and tested according to ASTM standards. Hardness measurements were taken from 5 points on each sample using the Rockwell L method. The highest hardness value was measured as 45 HRL. Although the contribution of nozzle diameter to hardness is 85%, the effect of nozzle temperature is very low and uncertain. The hardness of the manufactured part is directly proportional to the layer thickness and inverse nozzle diameter. Productions made with high-diameter nozzles give better mechanical results and reduce production time. With the increase in the performance of 3D printers and the decrease in costs, the preference rate in manufacturing end-user products is increasing. This study will help to calculate the printing parameters with less uncertainty and variability in determining the surface hardness of the samples.

Kaynakça

  • [1] Rouf S, Raina A, Irfan Ul Haq M, Naveed N, Jeganmohan S, Farzana Kichloo A. “3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications”. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158, 2022.
  • [2] Stern A, Rosenthal Y, Dresler N, Ashkenazi D. “Additive manufacturing: An education strategy for engineering students”. Additive Manufacturing, 27, 503-514, 2019.
  • [3] Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”. Composites Part B: Engineering, 143, 172-196, 2018.
  • [4] Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH. “Additive manufacturing: Challenges, trends, and applications”. Advances in Mechanical Engineering, 11(2), 1-27, 2019.
  • [5] Shahrubudin N, Lee TC, Ramlan R. “An overview on 3D printing technology: Technological, materials, and applications”. Procedia Manufacturing, 35, 1286-1296, 2019.
  • [6] Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. “Additive manufacturing: scientific and technological challenges, market uptake and opportunities”. Materials Today, 21(1), 22-37, 2018.
  • [7] Önçağ AÇ, Tekcan Ç, Özden H. “Mekanik parçaların tersine mühendislik ile modellenmesinin değerlendirilmesi ve bir uygulama”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 43-49, 2018.
  • [8] Atakok G, Kam M, Koc HB. “Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation”. Journal of Materials Research and Technology, 18, 1542-1554, 2022.
  • [9] Lokesh N, Praveena BA, Sudheer Reddy J, Vasu VK, Vijaykumar S. “Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature”. Materials Today: Proceedings, 52, 1288-1293, 2022.
  • [10] Hikmat M, Rostam S, Ahmed YM. “Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology”. Results in Engineering, 11, 1-10, 2021.
  • [11] Torres J, Cole M, Owji A, DeMastry Z, Gordon AP. “An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments”. Rapid Prototyping Journal, 22(2), 387-404, 2016.
  • [12] Taşar B, Gülten A, Yakut O. “Design and manufacturing of 15 DOF myoelectric controlled prosthetic hand”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 884-892, 2020.
  • [13] Gunasekaran KN, Aravinth V, Kumaran CBM, Madhankumar K, Kumar SP. “Investigation of mechanical properties of PLA printed materials under varying infill density”. Materials Today: Proceedings, 45, 1849-1856, 2021.
  • [14] Turan SR, Ulkir O, Kuncan M, Buldu A. “Stereolithografi eklemeli imalat yöntemiyle farklı doluluk oranlarında üretilen numunelerin mekanik özelliklerinin incelenmesi”. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 399-407, 2022.
  • [15] Ergene B, Bolat C. “An experimental investigation on the effect of test speed on the tensile properties of The PETG produced by additive manufacturing”. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 250-260, 2022.
  • [16] Khosravani MR, Zolfagharian A, Jennings M, Reinicke T. “Structural performance of 3D-printed composites under various loads and environmental conditions”. Polymer Testing, 91, 1-9, 2020.
  • [17] Böğrekci İ, Demircioğlu P, Sucuoğlu HS, Turhanlar O. “The effect of the infill type and density on the hardness of 3D printed parts”. International Journal of 3D Printing Technologies and Digital Industry, 3, 212-219, 2019.
  • [18] Hanon MM, Dobos J, Zsidai L. “The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness”. Procedia Manufacturing, 54, 244-249, 2020.
  • [19] Mayén J, Del Carmen Gallegos-Melgar A, Pereyra I, Poblano-Salas CA, Hernández-Hernández M, Betancourt-Cantera JA, Mercado-Lemus VH, Del Angel Monroy M. “Descriptive and inferential study of hardness, fatigue life, and crack propagation on PLA 3D-printed parts”. Materials Today Communications, 32, 1-18, 2022.
  • [20] Ansari AA, Kamil M. “Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment”. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383, 2022.
  • [21] Dey A, Yodo N. “A systematic survey of FDM process parameter optimization and their influence on part characteristics”. Journal of Manufacturing and Materials Processing, 3(3), 1-30, 2019.
  • [22] American Society for Testing and Materials International. “Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials”. USA, D785-08, 2015.
  • [23] Demir S, Yüksel C. “Evaluation of effect and optimizing of process parameters for fused deposition modeling parts on tensile properties via Taguchi method”. Rapid Prototyping Journal, 29(4), 720-730, 2022.
  • [24] Khosravani MR, Reinicke T. “Effects of raster layup and printing speed on strength of 3D-printed structural components”. Procedia Structural Integrity, 28, 720-725, 2020.
  • [25] Bürenhaus F, Moritzer E, Hirsch A. “Adhesive bonding of FDM-manufactured parts made of ULTEM 9085 considering surface treatment, surface structure, and joint design”. Welding in the World, 63(6), 1819-1832, 2019.
  • [26] Vicente CMS, Martins TS, Leite M, Ribeiro A, Reis L. “Influence of fused deposition modeling parameters on the mechanical properties of ABS parts”. Polymers for Advanced Technologies, 31(3), 501-507, 2020.
  • [27] Roy RK. Design Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. 1st ed. India, Wiley, 2013.
  • [28] Türkan B, Etemoğlu AB. “Taguchi metodu kullanılarak gıda kurutulmasına etki eden parametrelerin optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 654-665, 2020.
  • [29] Hill N, Haghi M. “Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate”. Rapid Prototyping Journal, 20(3), 221-227, 2014.

3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi

Yıl 2024, Cilt: 30 Sayı: 2, 136 - 144, 30.04.2024

Öz

(FDM) tekniği, yüksek tasarım esnekliği ve karmaşık şekiller oluşturabilme yeteneği nedeniyle son yıllarda oldukça ilgi görmektedir. Çok çeşitli parçalar 3 boyutlu (3B) yazıcılar ile katman katman geleneksel yöntemlere göre kolaylıkla imal edilebilirken, baskı işlem parametrelerinin ürünlerin mekanik özelliklerine etkisi çok yüksektir. Bu çalışmada yazıcı parametrelerinin parçanın sertliği üzerine etkisinin araştırılması amaçlanmıştır. Nozül çapı, katman yüksekliği, içörgü açısı ve nozül sıcaklığı araştırılacak yazdırma parametreleri olarak seçilmiştir. Her bir parametre için üç seviye belirlenmiştir ve gerekli olan yüksek deney sayısı Taguchi deney tasarım metodu uygulanarak düşürülmüştür. Poli laktik asit (PLA) esaslı numuneler ASTM standartlarına göre imal ve test edilmiştir. Rockwell L metodu uygulanarak her numunenin üzerinde 5 farklı noktandan sertlik ölçümü alınmıştır. En yüksek sertlik değeri 45 HRL olarak ölçülmüştür. Nozül çapının sertliğe katkısı %85 olmasına rağmen nozül sıcaklığının etkisi çok düşük ve belirsizdir. İmal edilen parçanın sertliği katman kalınlığı ile ters nozül çapı ile doğru orantılıdır. Yüksek çaplı nozül ile yapılan imalatlar daha iyi mekanik sonuç vermesinin yanında, üretim süresini de düşürmektedir. 3B yazıcıların performanslarının artması ve maliyetlerinin düşmesi ile son kullanıcı ürünlerin imalatında da tercih edilme oranı git gide artmaktadır. Bu çalışma yazıcı işlem parametrelerinin numunelerin yüzey sertliğini belirlemede daha az belirsizlik ve değişkenlikle hesaplanmasına yardımcı olacaktır.

Kaynakça

  • [1] Rouf S, Raina A, Irfan Ul Haq M, Naveed N, Jeganmohan S, Farzana Kichloo A. “3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications”. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158, 2022.
  • [2] Stern A, Rosenthal Y, Dresler N, Ashkenazi D. “Additive manufacturing: An education strategy for engineering students”. Additive Manufacturing, 27, 503-514, 2019.
  • [3] Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”. Composites Part B: Engineering, 143, 172-196, 2018.
  • [4] Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH. “Additive manufacturing: Challenges, trends, and applications”. Advances in Mechanical Engineering, 11(2), 1-27, 2019.
  • [5] Shahrubudin N, Lee TC, Ramlan R. “An overview on 3D printing technology: Technological, materials, and applications”. Procedia Manufacturing, 35, 1286-1296, 2019.
  • [6] Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. “Additive manufacturing: scientific and technological challenges, market uptake and opportunities”. Materials Today, 21(1), 22-37, 2018.
  • [7] Önçağ AÇ, Tekcan Ç, Özden H. “Mekanik parçaların tersine mühendislik ile modellenmesinin değerlendirilmesi ve bir uygulama”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 43-49, 2018.
  • [8] Atakok G, Kam M, Koc HB. “Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation”. Journal of Materials Research and Technology, 18, 1542-1554, 2022.
  • [9] Lokesh N, Praveena BA, Sudheer Reddy J, Vasu VK, Vijaykumar S. “Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature”. Materials Today: Proceedings, 52, 1288-1293, 2022.
  • [10] Hikmat M, Rostam S, Ahmed YM. “Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology”. Results in Engineering, 11, 1-10, 2021.
  • [11] Torres J, Cole M, Owji A, DeMastry Z, Gordon AP. “An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments”. Rapid Prototyping Journal, 22(2), 387-404, 2016.
  • [12] Taşar B, Gülten A, Yakut O. “Design and manufacturing of 15 DOF myoelectric controlled prosthetic hand”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 884-892, 2020.
  • [13] Gunasekaran KN, Aravinth V, Kumaran CBM, Madhankumar K, Kumar SP. “Investigation of mechanical properties of PLA printed materials under varying infill density”. Materials Today: Proceedings, 45, 1849-1856, 2021.
  • [14] Turan SR, Ulkir O, Kuncan M, Buldu A. “Stereolithografi eklemeli imalat yöntemiyle farklı doluluk oranlarında üretilen numunelerin mekanik özelliklerinin incelenmesi”. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 399-407, 2022.
  • [15] Ergene B, Bolat C. “An experimental investigation on the effect of test speed on the tensile properties of The PETG produced by additive manufacturing”. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 250-260, 2022.
  • [16] Khosravani MR, Zolfagharian A, Jennings M, Reinicke T. “Structural performance of 3D-printed composites under various loads and environmental conditions”. Polymer Testing, 91, 1-9, 2020.
  • [17] Böğrekci İ, Demircioğlu P, Sucuoğlu HS, Turhanlar O. “The effect of the infill type and density on the hardness of 3D printed parts”. International Journal of 3D Printing Technologies and Digital Industry, 3, 212-219, 2019.
  • [18] Hanon MM, Dobos J, Zsidai L. “The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness”. Procedia Manufacturing, 54, 244-249, 2020.
  • [19] Mayén J, Del Carmen Gallegos-Melgar A, Pereyra I, Poblano-Salas CA, Hernández-Hernández M, Betancourt-Cantera JA, Mercado-Lemus VH, Del Angel Monroy M. “Descriptive and inferential study of hardness, fatigue life, and crack propagation on PLA 3D-printed parts”. Materials Today Communications, 32, 1-18, 2022.
  • [20] Ansari AA, Kamil M. “Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment”. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383, 2022.
  • [21] Dey A, Yodo N. “A systematic survey of FDM process parameter optimization and their influence on part characteristics”. Journal of Manufacturing and Materials Processing, 3(3), 1-30, 2019.
  • [22] American Society for Testing and Materials International. “Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials”. USA, D785-08, 2015.
  • [23] Demir S, Yüksel C. “Evaluation of effect and optimizing of process parameters for fused deposition modeling parts on tensile properties via Taguchi method”. Rapid Prototyping Journal, 29(4), 720-730, 2022.
  • [24] Khosravani MR, Reinicke T. “Effects of raster layup and printing speed on strength of 3D-printed structural components”. Procedia Structural Integrity, 28, 720-725, 2020.
  • [25] Bürenhaus F, Moritzer E, Hirsch A. “Adhesive bonding of FDM-manufactured parts made of ULTEM 9085 considering surface treatment, surface structure, and joint design”. Welding in the World, 63(6), 1819-1832, 2019.
  • [26] Vicente CMS, Martins TS, Leite M, Ribeiro A, Reis L. “Influence of fused deposition modeling parameters on the mechanical properties of ABS parts”. Polymers for Advanced Technologies, 31(3), 501-507, 2020.
  • [27] Roy RK. Design Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. 1st ed. India, Wiley, 2013.
  • [28] Türkan B, Etemoğlu AB. “Taguchi metodu kullanılarak gıda kurutulmasına etki eden parametrelerin optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 654-665, 2020.
  • [29] Hill N, Haghi M. “Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate”. Rapid Prototyping Journal, 20(3), 221-227, 2014.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Sermet Demir

Yayımlanma Tarihi 30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 2

Kaynak Göster

APA Demir, S. (2024). 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 136-144.
AMA Demir S. 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2024;30(2):136-144.
Chicago Demir, Sermet. “3B yazıcı Ile Poli Laktik Asit (PLA) Esaslı Numune üretiminde yazıcı Parametrelerinin Sertlik üzerindeki Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 2 (Nisan 2024): 136-44.
EndNote Demir S (01 Nisan 2024) 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 2 136–144.
IEEE S. Demir, “3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 2, ss. 136–144, 2024.
ISNAD Demir, Sermet. “3B yazıcı Ile Poli Laktik Asit (PLA) Esaslı Numune üretiminde yazıcı Parametrelerinin Sertlik üzerindeki Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (Nisan 2024), 136-144.
JAMA Demir S. 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:136–144.
MLA Demir, Sermet. “3B yazıcı Ile Poli Laktik Asit (PLA) Esaslı Numune üretiminde yazıcı Parametrelerinin Sertlik üzerindeki Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 2, 2024, ss. 136-44.
Vancouver Demir S. 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(2):136-44.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.