Araştırma Makalesi
BibTex RIS Kaynak Göster

Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis

Yıl 2024, Cilt: 30 Sayı: 3, 395 - 404, 29.06.2024

Öz

Harvesting energy from the salinity gradient of seawater and river water using pressure retarded osmosis (PRO) has been a major research topic of recent years. However, there is a need for efficient PRO membranes that can generate high power density and are pressure resistant, as the performance of current membranes on the market is poor. In this study, specific energy potential of PRO process using L-DOPA+TiO2 modified BW30-LE membrane was evaluated on synthetic and real water samples. Polyamide BW30-LE RO membrane was modified by L-DOPA, L-DOPA+0.5 wt% TiO2 and L-DOPA+1 wt% TiO2. The effect of hydraulic pressure and temperature on generation of power density were evaluated for 5, 10, and 15 bar pressures, as well as 10 °C, 20 °C, and 30 °C degrees. The incorporation of TiO2 nanoparticles with L-DOPA increased the water flux by increasing the surface hydrophilicity and roughness of the membrane surface. The maximum specific power was observed as 1.6 W/m2 for L-DOPA+1 wt% TiO2 modified BW30-LE membrane at 15 bar pressure. Besides, Mediterranean and Aegean, Black Sea water samples were used as draw solution and Seyhan, Ceyhan, Buyuk Menderes, Gediz, Yesilirmak, and Kizilirmak Rivers were used as feed solution. The highest osmotic power density was obtained by using L-DOPA+1 wt% TiO2 modified BW30-LE membrane with Ceyhan River as feed and Mediterranean Sea water as draw solution, which have the highest differences in salinity. In the mixture of Mediterranean and Ceyhan River, the highest power density was obtained at 10 bar pressure at 30 ± 5°C with 0.70 W/m2.

Kaynakça

  • [1] Achilli A, Childress AE. "Pressure retarded osmosis: From the vision of sidney loeb to the first prototype installation-Review". Desalination, 261(3), 205-211, 2010.
  • [2] Logan BE, Elimelech M. "Membrane-based processes for sustainable power generation using water". Nature, 488(7411), 313-319, 2012.
  • [3] Islam MS, Sultana S, Adhikary S, Rahaman MS. "Highly effective organic draw solutions for renewable power generation by closed-loop pressure retarded osmosis". Energy Conversion and Management, 171, 1226-1236, 2018.
  • [4] Post JW, Hamelers HVM, Buisman CJN. "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system". Environmental Science & Technology, 42(15), 5785-5790, 2008.
  • [5] Dlugolecki P, Gambier A, Nijmeijer K, Wessling M. "Practical potential of reverse electrodialysis as process for sustainable energy generation". Environmental Science & Technology, 43(17), 6888-6894, 2009.
  • [6] Brogioli D. "Extracting renewable energy from a salinity difference using a capacitor". Physical Review Letters, 103(5), 1-4, 2009.
  • [7] Loeb S, Norman RS. "Osmotic Power Plants". Science, 189(4203), 654-655, 1975.
  • [8] Sharma M, Das PP, Chakraborty A, Purkait MK. "Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review". Sustainable Energy Technologies and Assessments, 49, 1-13, 2022.
  • [9] Achilli A, Cath TY, Childress AE. "Power generation with pressure retarded osmosis: An experimental and theoretical investigation". Journal of Membrane Science, 343(1-2), 42-52, 2009.
  • [10] Moon SJ, Lee SM, Kim JH, Park SH, Wang HH, Kim JH, Lee YM. "A highly robust and water permeable thin film composite membranes for pressure retarded osmosis generating 26 w.M(-2) at 21 bar". Desalination, 483, 1-10, 2020.
  • [11] Zoungrana A, Cakmakci M. "From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review". International Journal of Energy Research, 45(3), 3495-3522, 2021.
  • [12] Lee J, Kim S. "Predicting power density of pressure retarded osmosis (PRO) membranes using a new characterization method based on a single pro test". Desalination, 389, 224-234, 2016.
  • [13] Jones AT, Finley W. "Recent developments in salinity gradient power". Oceans 2003 Mts/IEEE: Celebrating the Past-Teaming toward the Future, 2284-2287, 2003.
  • [14] Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T. "Membrane processes in energy supply for an osmotic power plant". Desalination, 224(1-3), 64-70, 2008.
  • [15] Thorsen T, Holt T. "The potential for power production from salinity gradients by pressure retarded osmosis". Journal of Membrane Science, 335(1-2), 103-110, 2009.
  • [16] Straub AP, Yip NY, Elimelech M. "Raising the bar: Increased hydraulic pressure allows unprecedented high power densities in pressure-retarded osmosis". Environmental Science & Technology Letters, 1(1), 55-59, 2014.
  • [17] Li MH. "Systematic analysis and optimization of power generation in pressure retarded osmosis: Effect of multistage design". AICHE Journal, 64(1), 144-152, 2018.
  • [18] Gonzales RR, Abdel-Wahab A, Adham S, Han DS, Phuntsho S, Suwaileh W, Hilal N, Shon HK. "Salinity gradient energy generation by pressure retarded osmosis: A review". Desalination, 500, 1-27, 2021.
  • [19] Wick GL, Schmitt WR. "Prospects for renewable energy from sea". Marine Technology Society Journal, 11(5-6), 16-21, 1977.
  • [20] Yip NY, Elimelech M. "Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis". Environmental Science & Technology, 46(9), 5230-5239, 2012.
  • [21] Wei J, Li Y, Setiawan L, Wang R. "Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes". Journal of Membrane Science, 511, 54-64, 2016.
  • [22] Lee KL, Baker RW, Lonsdale HK. "Membranes for power-generation by pressure-retarded osmosis". Journal of Membrane Science, 8(2), 141-171, 1981.
  • [23] Cath TY, Childress AE, Elimelech M. "Forward osmosis: Principles, applications, and recent developments". Journal of Membrane Science, 281(1-2), 70-87, 2006.
  • [24] McCutcheon JR, Elimelech M. "Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes". Journal of Membrane Science, 318(1-2), 458-466, 2008.
  • [25] Hickenbottom KL, Vanneste J, Elimelech M, Cath TY. "Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis". Desalination, 389, 108-118, 2016.
  • [26] Mehta GD, Loeb S. "Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis". Journal of Membrane Science, 4(2), 261-265, 1978.
  • [27] Kuang W, Liu ZN, Yu HJ, Kang GD, Jie XM, Jin Y, Cao YM. "Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-caco3 particles as sacrificial component". Journal of Membrane Science, 497, 485-493, 2016.
  • [28] Boruah PK, Sharma B, Hussain N, Das MR. "Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect". Chemosphere, 168, 1058-1067, 2017.
  • [29] Lim S, Park MJ, Phuntsho S, Mai-Prochnow A, Murphy AB, Seo D, Shon H. "Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance". Journal of Membrane Science, 564, 382-393, 2018.
  • [30] Gonzales RR, Park MJ, Bae TH, Yang YQ, Abdel-Wahab A, Phuntsho S, Shon HK. "Melamine-based covalent organic framework-incorporated thin film nanocomposite membrane for enhanced osmotic power generation". Desalination, 459, 10-19, 2019.
  • [31] Jegal J, Min SG, Lee KH. "Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes". Journal of Applied Polymer Science, 86(11), 2781-2787, 2002.
  • [32] Ghosh AK, Jeong BH, Huang XF, Hoek EMV. "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties". Journal of Membrane Science, 311(1-2), 34-45, 2008.
  • [33] Cui Y, Liu XY, Chung TS. "Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes". Chemical Engineering Journal, 242, 195-203, 2014.
  • [34] Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR. "Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles". Desalination, 219(1-3), 48-56, 2008.
  • [35] Ma N, Wei J, Liao RH, Tang CYY. "Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis". Journal of Membrane Science, 405, 149-157, 2012.
  • [36] Niksefat N, Jahanshahi M, Rahimpour A. "The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application". Desalination, 343, 140-146, 2014.
  • [37] Zhao HY, Qiu S, Wu LG, Zhang L, Chen HL, Gao CJ. "Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes". Journal of Membrane Science, 450, 249-256, 2014.
  • [38] Shen L, Xiong S, Wang Y. "Graphene oxide incorporated thin-film composite membranes for forward osmosis applications". Chemical Engineering Science, 143, 194-205, 2016.
  • [39] Vatanpour V, Zoqi N. "Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes". Applied Surface Science, 396, 1478-1489, 2017.
  • [40] Kaya A, Onac C. "The transport of cr(vi) from chrome plating water by polymer inclusion membrane-based carbon nanomaterial". Pamukkale University Journal of Engineering Sciences, 24(7), 1348-1354, 2018.
  • [41] Zhang S, Fu FJ, Chung TS. "Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power". Chemical Engineering Science, 87, 40-50, 2013.
  • [42] Azari S, Zou LD, Cornelissen E. "Assessing the effect of surface modification of polyamide RO membrane by L-DOPA on the short range physiochemical interactions with biopolymer fouling on the membrane". Colloids and Surfaces B-Biointerfaces, 120, 222-228, 2014.
  • [43] Saki S, Uzal N. "Surface coating of polyamide reverse osmosis membranes with zwitterionic 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) for forward osmosis". Water and Environment Journal, 34(3), 400-412, 2020.
  • [44] Jiang JH, Zhu LP, Zhang HT, Zhu BK, Xu YY. "Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives". Journal of Membrane Science, 457, 73-81, 2014.
  • [45] Cath TY, Elimelech M, McCutcheon JR, McGinnis RL, Achilli A, Anastasio D, Brady AR, Childress AE, Farr IV, Hancock NT, Lampi J, Nghiem LD, Xie M, Yip NY. "Standard methodology for evaluating membrane performance in osmotically driven membrane processes". Desalination, 312, 31-38, 2013.
  • [46] Zhang RX, Braeken L, Luis P, Wang XL, Van der Bruggen B. "Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine". Journal of Membrane Science, 437, 179-188, 2013.
  • [47] Wu HQ, Liu YJ, Mao L, Jiang CH, Ang JM, Lu XH. "Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection". Journal of Membrane Science, 532, 20-29, 2017.
  • [48] Zhang RX, Braeken L, Liu TY, Luis P, Wang XL, Van der Bruggen B. "Remarkable anti-fouling performance of TiO2- modified TFC membranes with mussel-inspired polydopamine binding". Applied Sciences-Basel, 7(1), 1-15, 2017.
  • [49] Wang Z, Zou Y, Li YW, Cheng YY. "Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics". Small, 16(18), 1-21, 2020.
  • [50] Shabani Z, Mohammadi T, Kasiri N, Sahebi S. "Development of high-performance thin-film composite FO membrane by tailoring co-deposition of dopamine and m-phenylenediamine for the caspian seawater desalination". Desalination, 527, 1-14, 2022.
  • [51] Van Wagner EM, Sagle AC, Sharma MM, La YH, Freeman BD. "Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance". Journal of Membrane Science, 367(1-2), 273-287, 2011.
  • [52] Wang J, Wang YM, Zhu JY, Zhang YT, Liu JD, Van der Bruggen B. "Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance". Journal of Membrane Science, 533, 279-288, 2017.
  • [53] El-Aassar AHMA. "Improvement of reverse osmosis performance of polyamide thin-film composite membranes using TiO2 nanoparticles". Desalination and Water Treatment, 55(11), 2939-2950, 2015.
  • [54] Kwak SY, Jung SG, Kim SH. "Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films". Environmental Science & Technology, 35(21), 4334-4340, 2001.
  • [55] Lind ML, Ghosh AK, Jawor A, Huang XF, Hou W, Yang Y, Hoek EMV. "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes". Langmuir, 25(17), 10139-10145, 2009.
  • [56] Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF. "A novel thin film composite forward osmosis membrane prepared from PSF-TiO2 nanocomposite substrate for water desalination". Chemical Engineering Journal, 237, 70-80, 2014.
  • [57] Shahrim NA, Abounahia NM, El-Sayed AMA, Saleem H, Zaidi SJ. "An overview on the progress in produced water desalination by membrane-based technology". Journal of Water Process Engineering, 51, 1-24, 2023.
  • [58] Li Y, Li S, Zhang KS. "Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes". Journal of Membrane Science, 537, 42-53, 2017.
  • [59] Azad MJ, Pouranfard AR, Emadzadeh D, Lau WJ, Dil EA. "Simulation of forward osmosis and pressure retarded osmosis membrane performance: effect of TiO2 nanoparticles loading on the semi-permeable membrane". Computers & Chemical Engineering, 160, 1-9, 2022.
  • [60] Emadzadeh D, Lau WJ, Rahbari-Sisakht M, Ilbeygi H, Rana D, Matsuura T, Ismail AF. "Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application". Chemical Engineering Journal, 281, 243-251, 2015.
  • [61] Kim CK, Kim JH, Roh IJ, Kim JJ. "The changes of membrane performance with polyamide molecular structure in the reverse osmosis process". Journal of Membrane Science, 165(2), 189-199, 2000.
  • [62] Madsen HT, Hansen TB, Nakao T, Goda S, Sogaard EG. "Combined geothermal heat and pressure retarded osmosis as a new green power system". Energy Conversion and Management, 226, 1-10, 2020.
  • [63] Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ, Nymeijer K, Buisman CJN. "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis". Journal of Membrane Science, 288(1-2), 218-230, 2007.
  • [64] Kim YC, Elimelech M. "Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments". Journal of Membrane Science, 429, 330-337, 2013.
  • [65] Lin SH, Straub AP, Elimelech M. "Thermodynamic limits of extractable energy by pressure retarded osmosis". Energy & Environmental Science, 7(8), 2706-2714, 2014.
  • [66] Fini MN, Madsen HT, Muff J. "The effect of water matrix, feed concentration and recovery on the rejection of pesticides using NF/RO membranes in water treatment". Separation and Purification Technology, 215, 521-527, 2019.
  • [67] Adhikary S, Islam MS, Touati K, Sultana S, Ramamurthy AS, Rahaman MS. "Increased power density with low salt flux using organic draw solutions for pressure-retarded osmosis at elevated temperatures". Desalination, 484, 1-10, 2020.
  • [68] Jiao Y, Song L, Zhao C, An Y, Lu W, He B, Yang C. "Membrane-based indirect power generation technologies for harvesting salinity gradient energy-a review". Desalination, 525, 1-18, 2022.
  • [69] Abdelkader B, Sharqawy MH. "Temperature effects and entropy generation of pressure retarded osmosis process". Entropy, 21(12), 1-14, 2019.
  • [70] Kokkos N, Sylaios G. "Modeling the buoyancy-driven black sea water outflow into the north aegean sea". Oceanologia, 58(2), 103-116, 2016.
  • [71] Gremes-Cordero S. "The use of thermal satellite data in dense water formation studies in the mediterranean sea". Journal of Marine Systems, 20(1-4), 175-186, 1999.
  • [72] Poulos SE, Drakopoulos PG, Collins MB. "Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (eastern mediterranean): An overview". Journal of Marine Systems, 13(1-4), 225-244, 1997.
  • [73] Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. "Deniz Suyu Sıcaklığı". https://cevreselgostergeler.csb.gov.tr/deniz-suyu-sicakligi-i-85730#_edn1 (18.06.2023).
  • [74] Touati K, Tadeo F, Hanel C, Schiestel T. "Effect of the operating temperature on hydrodynamics and membrane parameters in pressure retarded osmosis". Desalination and Water Treatment, 57(23), 10477-10489, 2016.
  • [75] Touati K, Tadeo F, Schiestel T. "Impact of temperature on power recovery in osmotic power production by pressure retarded osmosis". Technologies and Materials for Renewable Energy, Environment and Sustainability (Tmrees14-Eumisd), 50, 960-969, 2014.
  • [76] She QH, Jin X, Tang CYY. "Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion". Journal of Membrane Science, 401, 262-273, 2012.

L-DOPA+TiO2 modifiye ters ozmoz membranının basınç gecikmeli osmoz ile tuzluluk gradyanı enerji üretimi üzerindeki verimliliği

Yıl 2024, Cilt: 30 Sayı: 3, 395 - 404, 29.06.2024

Öz

Basınç geciktirmeli osmoz (PRO) kullanarak deniz suyu ve nehir suyunun tuzluluk gradyanından enerji elde etmek son yıllarda önemli bir araştırma konusu olmuştur. Ancak, piyasadaki mevcut membranların performansı düşük olduğundan, yüksek güç yoğunluğu üretebilecek ve basınca dayanıklı etkili PRO membranlarına ihtiyaç duyulmaktadır. Bu çalışmada, sentetik ve gerçek su numuneleri kullanılarak L-DOPA+TiO2 modifiye BW30-LE membranlar ile PRO prosesinin özgül enerji potansiyeli değerlendirilmiştir. Polyamid BW30-LE RO membranı, L-DOPA, L-DOPA+ %0.5 ağ. Ti02 ve L-DOPA+ %1 ağ. Ti02 ile modifiye edilmiştir. Hidrolik basınç ve sıcaklığın güç yoğunluğu üzerindeki etkisi 5, 10 ve 15 bar basınçları ile 10 °C, 20 °C ve 30 °C dereceleri için değerlendirilmiştir. TiO2 nanoparçacıklarının L-DOPA ile birleştirilmesi, yüzey hidrofilikliğini ve membran yüzeyinin pürüzlülüğünü artırarak su akışını arttırmıştır. L-DOPA+ %1 ağ. TiO2 ile modifiye edilmiş BW30-LE membran için 15 bar basınçta maksimum özgül güç 1,6 W/m2 olarak gözlendi. Ayrıca, çekme çözeltisi olarak Akdeniz ve Ege, Karadeniz su örnekleri, besleme çözeltisi olarak Seyhan, Ceyhan, Büyük Menderes, Gediz, Yeşilırmak ve Kızılırmak nehirleri kullanılmıştır. En yüksek ozmotik güç yoğunluğu, L-DOPA+ %1 ağ. TiO2 modifiye BW30-LE membranı ile tuzluluk farklılıkları en yüksek olan besleme çözeltisi olan Ceyhan Nehri ve çekme çözeltisi olan Akdeniz suyu kullanılarak elde edilmiştir. Akdeniz ve Ceyhan Nehri karışımında en yüksek güç yoğunluğu 10 bar basınçta 30 ± 5 °C'de 0,70 W/m2 ile elde edilmiştir.

Kaynakça

  • [1] Achilli A, Childress AE. "Pressure retarded osmosis: From the vision of sidney loeb to the first prototype installation-Review". Desalination, 261(3), 205-211, 2010.
  • [2] Logan BE, Elimelech M. "Membrane-based processes for sustainable power generation using water". Nature, 488(7411), 313-319, 2012.
  • [3] Islam MS, Sultana S, Adhikary S, Rahaman MS. "Highly effective organic draw solutions for renewable power generation by closed-loop pressure retarded osmosis". Energy Conversion and Management, 171, 1226-1236, 2018.
  • [4] Post JW, Hamelers HVM, Buisman CJN. "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system". Environmental Science & Technology, 42(15), 5785-5790, 2008.
  • [5] Dlugolecki P, Gambier A, Nijmeijer K, Wessling M. "Practical potential of reverse electrodialysis as process for sustainable energy generation". Environmental Science & Technology, 43(17), 6888-6894, 2009.
  • [6] Brogioli D. "Extracting renewable energy from a salinity difference using a capacitor". Physical Review Letters, 103(5), 1-4, 2009.
  • [7] Loeb S, Norman RS. "Osmotic Power Plants". Science, 189(4203), 654-655, 1975.
  • [8] Sharma M, Das PP, Chakraborty A, Purkait MK. "Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review". Sustainable Energy Technologies and Assessments, 49, 1-13, 2022.
  • [9] Achilli A, Cath TY, Childress AE. "Power generation with pressure retarded osmosis: An experimental and theoretical investigation". Journal of Membrane Science, 343(1-2), 42-52, 2009.
  • [10] Moon SJ, Lee SM, Kim JH, Park SH, Wang HH, Kim JH, Lee YM. "A highly robust and water permeable thin film composite membranes for pressure retarded osmosis generating 26 w.M(-2) at 21 bar". Desalination, 483, 1-10, 2020.
  • [11] Zoungrana A, Cakmakci M. "From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review". International Journal of Energy Research, 45(3), 3495-3522, 2021.
  • [12] Lee J, Kim S. "Predicting power density of pressure retarded osmosis (PRO) membranes using a new characterization method based on a single pro test". Desalination, 389, 224-234, 2016.
  • [13] Jones AT, Finley W. "Recent developments in salinity gradient power". Oceans 2003 Mts/IEEE: Celebrating the Past-Teaming toward the Future, 2284-2287, 2003.
  • [14] Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T. "Membrane processes in energy supply for an osmotic power plant". Desalination, 224(1-3), 64-70, 2008.
  • [15] Thorsen T, Holt T. "The potential for power production from salinity gradients by pressure retarded osmosis". Journal of Membrane Science, 335(1-2), 103-110, 2009.
  • [16] Straub AP, Yip NY, Elimelech M. "Raising the bar: Increased hydraulic pressure allows unprecedented high power densities in pressure-retarded osmosis". Environmental Science & Technology Letters, 1(1), 55-59, 2014.
  • [17] Li MH. "Systematic analysis and optimization of power generation in pressure retarded osmosis: Effect of multistage design". AICHE Journal, 64(1), 144-152, 2018.
  • [18] Gonzales RR, Abdel-Wahab A, Adham S, Han DS, Phuntsho S, Suwaileh W, Hilal N, Shon HK. "Salinity gradient energy generation by pressure retarded osmosis: A review". Desalination, 500, 1-27, 2021.
  • [19] Wick GL, Schmitt WR. "Prospects for renewable energy from sea". Marine Technology Society Journal, 11(5-6), 16-21, 1977.
  • [20] Yip NY, Elimelech M. "Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis". Environmental Science & Technology, 46(9), 5230-5239, 2012.
  • [21] Wei J, Li Y, Setiawan L, Wang R. "Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes". Journal of Membrane Science, 511, 54-64, 2016.
  • [22] Lee KL, Baker RW, Lonsdale HK. "Membranes for power-generation by pressure-retarded osmosis". Journal of Membrane Science, 8(2), 141-171, 1981.
  • [23] Cath TY, Childress AE, Elimelech M. "Forward osmosis: Principles, applications, and recent developments". Journal of Membrane Science, 281(1-2), 70-87, 2006.
  • [24] McCutcheon JR, Elimelech M. "Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes". Journal of Membrane Science, 318(1-2), 458-466, 2008.
  • [25] Hickenbottom KL, Vanneste J, Elimelech M, Cath TY. "Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis". Desalination, 389, 108-118, 2016.
  • [26] Mehta GD, Loeb S. "Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis". Journal of Membrane Science, 4(2), 261-265, 1978.
  • [27] Kuang W, Liu ZN, Yu HJ, Kang GD, Jie XM, Jin Y, Cao YM. "Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-caco3 particles as sacrificial component". Journal of Membrane Science, 497, 485-493, 2016.
  • [28] Boruah PK, Sharma B, Hussain N, Das MR. "Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect". Chemosphere, 168, 1058-1067, 2017.
  • [29] Lim S, Park MJ, Phuntsho S, Mai-Prochnow A, Murphy AB, Seo D, Shon H. "Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance". Journal of Membrane Science, 564, 382-393, 2018.
  • [30] Gonzales RR, Park MJ, Bae TH, Yang YQ, Abdel-Wahab A, Phuntsho S, Shon HK. "Melamine-based covalent organic framework-incorporated thin film nanocomposite membrane for enhanced osmotic power generation". Desalination, 459, 10-19, 2019.
  • [31] Jegal J, Min SG, Lee KH. "Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes". Journal of Applied Polymer Science, 86(11), 2781-2787, 2002.
  • [32] Ghosh AK, Jeong BH, Huang XF, Hoek EMV. "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties". Journal of Membrane Science, 311(1-2), 34-45, 2008.
  • [33] Cui Y, Liu XY, Chung TS. "Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes". Chemical Engineering Journal, 242, 195-203, 2014.
  • [34] Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR. "Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles". Desalination, 219(1-3), 48-56, 2008.
  • [35] Ma N, Wei J, Liao RH, Tang CYY. "Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis". Journal of Membrane Science, 405, 149-157, 2012.
  • [36] Niksefat N, Jahanshahi M, Rahimpour A. "The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application". Desalination, 343, 140-146, 2014.
  • [37] Zhao HY, Qiu S, Wu LG, Zhang L, Chen HL, Gao CJ. "Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes". Journal of Membrane Science, 450, 249-256, 2014.
  • [38] Shen L, Xiong S, Wang Y. "Graphene oxide incorporated thin-film composite membranes for forward osmosis applications". Chemical Engineering Science, 143, 194-205, 2016.
  • [39] Vatanpour V, Zoqi N. "Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes". Applied Surface Science, 396, 1478-1489, 2017.
  • [40] Kaya A, Onac C. "The transport of cr(vi) from chrome plating water by polymer inclusion membrane-based carbon nanomaterial". Pamukkale University Journal of Engineering Sciences, 24(7), 1348-1354, 2018.
  • [41] Zhang S, Fu FJ, Chung TS. "Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power". Chemical Engineering Science, 87, 40-50, 2013.
  • [42] Azari S, Zou LD, Cornelissen E. "Assessing the effect of surface modification of polyamide RO membrane by L-DOPA on the short range physiochemical interactions with biopolymer fouling on the membrane". Colloids and Surfaces B-Biointerfaces, 120, 222-228, 2014.
  • [43] Saki S, Uzal N. "Surface coating of polyamide reverse osmosis membranes with zwitterionic 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) for forward osmosis". Water and Environment Journal, 34(3), 400-412, 2020.
  • [44] Jiang JH, Zhu LP, Zhang HT, Zhu BK, Xu YY. "Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives". Journal of Membrane Science, 457, 73-81, 2014.
  • [45] Cath TY, Elimelech M, McCutcheon JR, McGinnis RL, Achilli A, Anastasio D, Brady AR, Childress AE, Farr IV, Hancock NT, Lampi J, Nghiem LD, Xie M, Yip NY. "Standard methodology for evaluating membrane performance in osmotically driven membrane processes". Desalination, 312, 31-38, 2013.
  • [46] Zhang RX, Braeken L, Luis P, Wang XL, Van der Bruggen B. "Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine". Journal of Membrane Science, 437, 179-188, 2013.
  • [47] Wu HQ, Liu YJ, Mao L, Jiang CH, Ang JM, Lu XH. "Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection". Journal of Membrane Science, 532, 20-29, 2017.
  • [48] Zhang RX, Braeken L, Liu TY, Luis P, Wang XL, Van der Bruggen B. "Remarkable anti-fouling performance of TiO2- modified TFC membranes with mussel-inspired polydopamine binding". Applied Sciences-Basel, 7(1), 1-15, 2017.
  • [49] Wang Z, Zou Y, Li YW, Cheng YY. "Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics". Small, 16(18), 1-21, 2020.
  • [50] Shabani Z, Mohammadi T, Kasiri N, Sahebi S. "Development of high-performance thin-film composite FO membrane by tailoring co-deposition of dopamine and m-phenylenediamine for the caspian seawater desalination". Desalination, 527, 1-14, 2022.
  • [51] Van Wagner EM, Sagle AC, Sharma MM, La YH, Freeman BD. "Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance". Journal of Membrane Science, 367(1-2), 273-287, 2011.
  • [52] Wang J, Wang YM, Zhu JY, Zhang YT, Liu JD, Van der Bruggen B. "Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance". Journal of Membrane Science, 533, 279-288, 2017.
  • [53] El-Aassar AHMA. "Improvement of reverse osmosis performance of polyamide thin-film composite membranes using TiO2 nanoparticles". Desalination and Water Treatment, 55(11), 2939-2950, 2015.
  • [54] Kwak SY, Jung SG, Kim SH. "Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films". Environmental Science & Technology, 35(21), 4334-4340, 2001.
  • [55] Lind ML, Ghosh AK, Jawor A, Huang XF, Hou W, Yang Y, Hoek EMV. "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes". Langmuir, 25(17), 10139-10145, 2009.
  • [56] Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF. "A novel thin film composite forward osmosis membrane prepared from PSF-TiO2 nanocomposite substrate for water desalination". Chemical Engineering Journal, 237, 70-80, 2014.
  • [57] Shahrim NA, Abounahia NM, El-Sayed AMA, Saleem H, Zaidi SJ. "An overview on the progress in produced water desalination by membrane-based technology". Journal of Water Process Engineering, 51, 1-24, 2023.
  • [58] Li Y, Li S, Zhang KS. "Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes". Journal of Membrane Science, 537, 42-53, 2017.
  • [59] Azad MJ, Pouranfard AR, Emadzadeh D, Lau WJ, Dil EA. "Simulation of forward osmosis and pressure retarded osmosis membrane performance: effect of TiO2 nanoparticles loading on the semi-permeable membrane". Computers & Chemical Engineering, 160, 1-9, 2022.
  • [60] Emadzadeh D, Lau WJ, Rahbari-Sisakht M, Ilbeygi H, Rana D, Matsuura T, Ismail AF. "Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application". Chemical Engineering Journal, 281, 243-251, 2015.
  • [61] Kim CK, Kim JH, Roh IJ, Kim JJ. "The changes of membrane performance with polyamide molecular structure in the reverse osmosis process". Journal of Membrane Science, 165(2), 189-199, 2000.
  • [62] Madsen HT, Hansen TB, Nakao T, Goda S, Sogaard EG. "Combined geothermal heat and pressure retarded osmosis as a new green power system". Energy Conversion and Management, 226, 1-10, 2020.
  • [63] Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ, Nymeijer K, Buisman CJN. "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis". Journal of Membrane Science, 288(1-2), 218-230, 2007.
  • [64] Kim YC, Elimelech M. "Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments". Journal of Membrane Science, 429, 330-337, 2013.
  • [65] Lin SH, Straub AP, Elimelech M. "Thermodynamic limits of extractable energy by pressure retarded osmosis". Energy & Environmental Science, 7(8), 2706-2714, 2014.
  • [66] Fini MN, Madsen HT, Muff J. "The effect of water matrix, feed concentration and recovery on the rejection of pesticides using NF/RO membranes in water treatment". Separation and Purification Technology, 215, 521-527, 2019.
  • [67] Adhikary S, Islam MS, Touati K, Sultana S, Ramamurthy AS, Rahaman MS. "Increased power density with low salt flux using organic draw solutions for pressure-retarded osmosis at elevated temperatures". Desalination, 484, 1-10, 2020.
  • [68] Jiao Y, Song L, Zhao C, An Y, Lu W, He B, Yang C. "Membrane-based indirect power generation technologies for harvesting salinity gradient energy-a review". Desalination, 525, 1-18, 2022.
  • [69] Abdelkader B, Sharqawy MH. "Temperature effects and entropy generation of pressure retarded osmosis process". Entropy, 21(12), 1-14, 2019.
  • [70] Kokkos N, Sylaios G. "Modeling the buoyancy-driven black sea water outflow into the north aegean sea". Oceanologia, 58(2), 103-116, 2016.
  • [71] Gremes-Cordero S. "The use of thermal satellite data in dense water formation studies in the mediterranean sea". Journal of Marine Systems, 20(1-4), 175-186, 1999.
  • [72] Poulos SE, Drakopoulos PG, Collins MB. "Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (eastern mediterranean): An overview". Journal of Marine Systems, 13(1-4), 225-244, 1997.
  • [73] Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. "Deniz Suyu Sıcaklığı". https://cevreselgostergeler.csb.gov.tr/deniz-suyu-sicakligi-i-85730#_edn1 (18.06.2023).
  • [74] Touati K, Tadeo F, Hanel C, Schiestel T. "Effect of the operating temperature on hydrodynamics and membrane parameters in pressure retarded osmosis". Desalination and Water Treatment, 57(23), 10477-10489, 2016.
  • [75] Touati K, Tadeo F, Schiestel T. "Impact of temperature on power recovery in osmotic power production by pressure retarded osmosis". Technologies and Materials for Renewable Energy, Environment and Sustainability (Tmrees14-Eumisd), 50, 960-969, 2014.
  • [76] She QH, Jin X, Tang CYY. "Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion". Journal of Membrane Science, 401, 262-273, 2012.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Nuray Ateş

Seda Saki Bu kişi benim

Murat Gökçek

Niğmet Uzal

Yayımlanma Tarihi 29 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 3

Kaynak Göster

APA Ateş, N., Saki, S., Gökçek, M., Uzal, N. (2024). Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 395-404.
AMA Ateş N, Saki S, Gökçek M, Uzal N. Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2024;30(3):395-404.
Chicago Ateş, Nuray, Seda Saki, Murat Gökçek, ve Niğmet Uzal. “Efficiency of L-DOPA+TiO2 Modified RO Membrane on Salinity Gradient Energy Generation by Pressure Retarded Osmosis”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 3 (Haziran 2024): 395-404.
EndNote Ateş N, Saki S, Gökçek M, Uzal N (01 Haziran 2024) Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 3 395–404.
IEEE N. Ateş, S. Saki, M. Gökçek, ve N. Uzal, “Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 3, ss. 395–404, 2024.
ISNAD Ateş, Nuray vd. “Efficiency of L-DOPA+TiO2 Modified RO Membrane on Salinity Gradient Energy Generation by Pressure Retarded Osmosis”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/3 (Haziran 2024), 395-404.
JAMA Ateş N, Saki S, Gökçek M, Uzal N. Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:395–404.
MLA Ateş, Nuray vd. “Efficiency of L-DOPA+TiO2 Modified RO Membrane on Salinity Gradient Energy Generation by Pressure Retarded Osmosis”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 3, 2024, ss. 395-04.
Vancouver Ateş N, Saki S, Gökçek M, Uzal N. Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(3):395-404.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.