Derleme
BibTex RIS Kaynak Göster

A review of oscillating heat pipes: general consideration and latest applications

Yıl 2024, Cilt: 30 Sayı: 4, 436 - 450, 30.08.2024

Öz

Energy consumption has been one of the most important issues that researchers have been concerned about over the last decade. Number of researches about new and renewable energy sources, have been increasing day by day. Researchers are looking on logical ways to use energy in addition to new, renewable energy sources. Especially in thermal systems, most of the energy lost occurs during heat transfer. Heat pipe systems appear as important devices that provide benefits by eliminating these heat and energy losses. Heat pipes systems transfer heat energy between two points with high performance values. Types of heat pipes and their detailed descriptions were investigated in this study. Oscillating heat pipes are relatively new systems that have quickly become the focus of research. They are extremely useful devices due to their ease of construction, simple design, and adaptability to almost every area. The study included a detailed description of oscillating heat pipes, their working mechanisms, theoretical investigations, and current applications.

Kaynakça

  • [1] Guo S, Liu Q, Sun J, Jin H. “A review on the utilization of hybrid renewable energy”. Renewable and Sustainable Energy Reviews, 91,1121-1147, 2018.
  • [2] Shao M, Han Z, Sun J, Xiao C, Zhang S, Zhao Y. “A review of multi-criteria decision making applications for renewable energy site selection”. Renewable Energy, 157, 377-403, 2020.
  • [3] Xu Y, Xue Y, Qi H, Cai W. “Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids". International Journal of Heat and Mass Transfer, 157, 1-12, 2020.
  • [4] Brennan PJ, Kroliczek EJ. Heat Pipe Design Handbook. 1st ed. Maryland, USA, B & K Engineering, 1979.
  • [5] Li H, Sun Y. “Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system”. Energy and Buildings, 158, 861-872, 2018.
  • [6] Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. “Visualization and comparative investigations of pulsating ferro-fluid heat pipe”. Applied Thermal Engineering, 116, 56-65, 2017.
  • [7] Peterson GP. An Introduction to Heat Pipes: Modelling Testing and Applications. 1st ed. New York, USA, John Wiley and Sons, 1994.
  • [8] Zahouri B. Heat Pipe Design and Technology. 2nd ed. California, USA Springer, 2016.
  • [9] Ding T, Chen X, Cao H, He Z, Wang J, Li Z. “Principles of loop thermosyphon and its applications”. Renewable and Sustainable Energy, 150, 1-23, 2021.
  • [10] Anand RS, Jawahar CP, Solomon BA, Bellos E. “A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low temperature applications”. International Journal of Refrigeration, 120, 296-313, 2020.
  • [11] Qu J, Wu H, Cheng P, Wang Q., Sun Q. “Recent advances in mems-based micro heat pipes”. International Journal of Heat and Mass Transfer, 110, 294-313, 2017.
  • [12] Marcus BD. “Theory and Design of Variable Conductance Heat Pipes”. USA, NASA CR-2018, 1972.
  • [13] Guo Y, Liu C, Pan H, Lyu W, Zhang H, Lin G, Miao J. “Experimental investigation and multiparameter analysis of variable conductance heat pipes”. Applied Thermal Engineering, 202, 1-12, 2022.
  • [14] Launay S, Sartre V. Bonjour J., “Parametric analysis of loop heat pipe operation: a literature review”. International Journal of Thermal Sciences, 46, 621-636, 2007.
  • [15] Li SF, Liu Z. “Parametric study of rotating heat pipe performance: a review”. Renewable and Sustainable Energy Reviews, 117, 1-21, 2020.
  • [16] Dave C, Dandale P, Shrivastava K, Dhaygude D, Rahangdale K, More N. “A review on pulsating heat pipes: latest research, applications and future scope”. Journal of Thermal Engineering, 7(3), 387-408, 2021.
  • [17] Xu Y, Xue Y, Qi H, Cai W. “An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes”. Renewable and Sustainable Energy Reviews, 144, 1-34, 2021.
  • [18] Nazaria MA, Ahmadib HM, Ghasempoura R, Shafii MB, Mahiand O, Kalogirouf S, Wongwises S. “A review on pulsating heat pipes: from solar to cryogenic applications”. Applied Energy, 222, 475-484, 2018.
  • [19] Khandekar S, Charoensawan P, Groll M, Terdtoon P. “Closed loop pulsating heat pipes part b: visualization and semi-emprical modelling”. Applied Thermal Engineering, 23, 2021-2033, 2003.
  • [20] Doğan H. “Isı borulu güneş kollektörü ile kurutma”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 1(5), 921-925, 1999.
  • [21] Reay D, Kew, P, McGlen R J. Heat Pipes Theory, Design and Applications. 6th ed. UK, Elsevier, 2014.
  • [22] Im YH, Lee JY, Ahn TI, Youn YJ. “Operational characteristics of oscillating heat pipe charged with R-134a for heat recovery at low temperature”. International Journal of Heat and Mass Transfer, 196, 1-11, 2022.
  • [23] Tingting Hao T, Ma HB, Ma X, “Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluid”. International Journal of Heat and Mass Transfer, 131, 109-120, 2019.
  • [24] Zhu Y, Cui X, Han H, Sun S. “The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water−acetone mixtures”. International Journal of Heat and Mass Transfer, 77, 834-842, 2014.
  • [25] Tokuda D, Inoue T. “Heat transport characteristics of a sodium oscillating heat pipe: thermal performance”. International Journal of Heat and Mass Transfer, 196, 1-11, 2022.
  • [26] Barrak AS, Saleh AAM, Naji ZH. “An experimental study of using water, methanol, and binary fluids in oscillating heat pipe heat exchanger”. Engineering Science and Technology, an International Journal 23, 357-364, 2020.
  • [27] Ji Y, Mengke Wu, Feng Y, Yu C, Chu L, Chang C, Li Y, Xiao X, Ma HB. “An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe”. International Journal of Heat and Mass Transfer 149, 1-8, 2020.
  • [28] Li S, Bu Z, Fang T, Wang Y, Shen Y, Tao X, Jiao B, Gan Z. “Experimental study on the thermo-hydrodynamic characteristics of a nitrogen pulsating heat pipe”. International Communications in Heat and Mass Transfer, 146, 1-15, 2023.
  • [29] Duangthongsuk W, Wongwises S. “An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime”. International Journal of Heat and Mass Transfer, 53(1-3), 334-344, 2010.
  • [30] Ali AR, Salam B. “A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application”. SN Applied Sciences, 2(10), 1-7, 2020.
  • [31] Mehta B, Subhedar D, Panchal H, Said Z. “Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid-a review”. Journal of Molecular Liquids, 364, 1-29, 2022.
  • [32] Kleinstreuer C, Feng Y. “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review”. Nanoscale Research Letters, 6(1), 1-3, 2011.
  • [33] Judran HK, Al-Hasnawi AG, Al-Zubaidi FN, Al-Maliki WA, Alobaid F, Epple B. “A high thermal conductivity of MgO-H2O nanofluid prepared by two-step technique”. Applied Sciences, 12(5), 1-18, 2022.
  • [34] Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. “Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling”. Applied Thermal Engineering ,196, 1-8, 2021.
  • [35] Jin K, Tai Y, Toghraie D, Hekmatifar M. “The effects of nanoparticle percentages and an external variable magnetic field on the atomic and thermal behaviors in an oscillating heat pipe via molecular dynamics simulation”. Journal of Molecular Liquids, 360, 1-10, 2022.
  • [36] Zhou Y, Cui X, Weng J, Shi S, Han H, Chen C. “Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids”. Powder Technology, 332, 371-380, 2018.
  • [37] Eastman JA, Choi SUS, Li A, Yu W, Thompson LJ. “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”. Applied Physics Letters, 78(6), 718-720, 2001.
  • [38] Liu MS, Lin MCC, Tsai CY, Wang CC. “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method”. International Journal of Heat Mass Transfer, 49(17), 3028-3033, 2006.
  • [39] Xuan Y, Li Q. “Heat transfer enhancement of nanofluids”. International Journal of Heat Fluid Flow, 21(1), 58-64, 2000.
  • [40] Hong TK, Yang HS, Choi CJ. “Study of the enhanced thermal conductivity of Fe nanofluids”. Journal of Applied Physics, 97, 1-5, 2005.
  • [41] Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects”. Applied Physics Letters, 83, 2931-2933, 2003.
  • [42] Wei X, Zhu H, Kong T, Wang L. “Synthesis and thermal conductivity of Cu2O nanofluids”. International Journal of Heat and Mass Transfer, 52(19), 4371-4374, 2009.
  • [43] Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG. “Thermal conductivity of nanoparticle suspensions”. Journal of Applied Physics, 99(8), 1-7, 2006.
  • [44] Zhu H, Zhang C, Liu S, Tang Y, Yansheng Y. “Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids”. Applied Physics Letters, 89(2), 1-4, 2006.
  • [45] Murshed SMS, Leong KC, Yang C. “Enhanced thermal conductivity of TiO2-Water based nanofluids”. International Journal of Thermal Sciences, 44(4), 367-373, 2005.
  • [46] Xie H, Wang J, Xi T, Liu Y, Ai F, Qingren W. “Thermal conductivity enhancement of suspensions containing nanosized alumina particles”. Journal of Applied Physics, 91(7), 4568-4572, 2002.
  • [47] Zhang X, Gu H, Fujii M. “Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids”. International Journal of Thermophysics, 2(2), 569-580, 2006.
  • [48] Huaqing X, Jinchang W, Tonggeng X, Yan L. “Study on the thermal conductivity of SiC nanofluids”. Journal of the Chinese Ceramic Society, 29(4), 361-364, 2001.
  • [49] Liu M S, Lin MCC, Huang IT, Wang CC. “Enhancement of thermal conductivity with carbon nanotube for nanofluids”. International Community Heat and Mass Transfer, 32(9), 1202-1210, 2005.
  • [50] Choi SUS, Zhang ZG, YuW, Lockwood FE, Grulke EA. “Anomalous thermal conductivity enhancement in nanotube suspensions”. Applied Physics Letters, 79(14), 2252-2254, 2001.
  • [51] Xie H, Lee H, Youn W, Choi M. “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities”. Journal of Applied Physics, 94(8), 4967-4971, 2003.
  • [52] Yang B, Han, ZH. “Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids”. Applied Physics Letters, 88(26), 1-4, 2006.
  • [53] Qu, J., Wu, H. Y., Cheng, P. “Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids”. International Communications in Heat and Mass Transfer, 37(2), 111-115, 2010.
  • [54] Jia H, Jia L, Tan Z. “An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe”. Journal of Thermal Sciences, 22(5), 484-490, 2013.
  • [55] Goshayeshi H, Goodarzi M, Dahari M. “Effect of magnetic field on the heat transfer rate of Kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe”. Experimental Thermal and Fluid Science, 68, 663-668, 2015.
  • [56] Wilson CA. Experimental Investigation of Nanofluid Oscillating Heat Pipes. Phd Thesis, University of Missouri, Columbia, 2006.
  • [57] Yin D, Wang H, Ma HB, Ji YL. “Operation limitation of an oscillating heat pipe”. International Journal of Heat and Mass Transfer, 94, 366-372, 2016.
  • [58] Spinato G, Borhani N, Thome JR. “Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe”. Energy, 90, 889-99, 2015.
  • [59] Yoon A, Kim SJ. “Experimental and theoretical studies on oscillation frequencies of liquid slugs in micro pulsating heat pipes”. Energy Conversation Management, 181, 48-58, 2019.
  • [60] Wang X, Li B, Yan Y, Gao N, Chen G. “Predicting of thermal resistances of closed vertical meandering pulsating heat pipe using artificial neural network model”. Applied Thermal Engineering, 149, 1134-1141, 2019.
  • [61] Wang X, Yana Y, Meng X, Chen G. “A general method to predict the performance of closed pulsating heat pipe by artificial neural network”. Applied Thermal Engineering, 157, 1-8, 2019.
  • [62] Shafii MB, Arabnejad S, Saboohi Y, Jamshidi H. “Experimental investigation of pulsating heat pipes and a proposed correlation”. Heat Transfer Engineering, 31, 854-861, 2010.
  • [63] Khandekar S, Charoensawan P, Groll M, Terdtoon P. “Closed loop pulsating heat pipes: Part B: Visualization and semi-empirical modeling”. Applied Thermal Engineering, 23, 2021-2033, 2003.
  • [64] Kholi FK, Mucci A, Kallath H, Ha, MY, Chetwynd-Chatwin J, Min JK. “An improved correlation to predict the heat transfer in pulsating heat pipes over increased range of fluid-filling ratios and operating inclinations”. Journal of Mechanical Science and Technology, 34(6), 20637-2646, 2020.
  • [65] Duy-Tan V, Hyoung-Tak K, Junghyuk K, Kwang-Hyun B. “An experimental and three-dimensional numerical simulation of pulsating heat pipes”. International Journal of Heat And Mass Transfer, 150, 1-12, 2020.
  • [66] Rudersha S, Kumar V. “CFD analysis and experimental investigation on thermal performance of closed loop pulsating heat pipe using different nanofluids”. International Journal of Advanced Research, 2(8), 753-760, 2014.
  • [67] Lin Z, Wang S, Shirakashi R, Zhang LW. “Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modelling”. International Journal of Heat and Mass Transfer, 57, 642-656, 2013
  • [68] Nagwase YS, Pachghare RP. “Experimental and CFD Analysis of Closed Loop Pulsating Heat Pipe with DI-Water”. IEEE 2013 International Conferenceon Energy Efficiet Technologies for Sustainibility, Nagercoil, India, 10-12 April 2013.
  • [69] Ashutosh Gupta A, Ajit K, Parwani AK. “CFD modelling for thermal performance of closed loop pulsating heat pipe in bottom heating mode”. Sixth International Conference On Advances in Civil, Structural and Mechanical Engineering-ACSM, Bangkok, Thailand, 26 February 2017.
  • [70] Suresh JV, Bhramar P. “CFD analysis of copper closed loop pulsating heat pipe”. Materials Today: Proceedings, 5, 5487-5495, 2018.
  • [71] Rajendra SD, Deshmukh DA, Pawar RS. “Experimental ınvestigation of closed loop pulsating heat pipe thermal performance and CFD validation”. Journal of Thermal Engineering. 4(1), 33-51, 2019.
  • [72] Katpradit T, Wongratanaphisan T, Terdtoon P, Kamonpet P, Polchai A, Akbarzadeh A. “Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state”. Applied Thermal Engineering, 25, 2138-2151, 2005.
  • [73] Qu J, Wang Q. “Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling”. Applied Energy, 112, 1154-1160, 2013.
  • [74] Rittidech S, Terdtoon P, Murakami M, Kamonpet P, Jompakdee W. “Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition”. Applied Thermal Engineering, 23, 497-510, 2003.
  • [75] Rittidech S, Dangeton W, Soponronnarit S. “Closed ended oscillating heat-pipe (CEOHP) air-preheater for energy thrift in a dryer”. Applied Energy, 81, 198-208, 2005.
  • [76] Charoensawan P, Terdtoon P. “Thermal performance of horizontal closed-loop oscillating heat pipes”. Applied Thermal Engineering, 28, 460-466, 2008.
  • [77] Dehshali ME, Nazari MA, Shafii MB. “Thermal performance of rotating closed-loop pulsating heat pipes: Experimental investigation and semi-empirical correlation”. International Journal of Thermal Sciences, 123, 14-26, 2018.
  • [78] Belfi F. Pulsating Heat Pipe: An Innovative Heat Exchanger for Nonconventional Applications. MSc Thesis, Universit`a di Pisa, Pisa, Italy, 2017.
  • [79] Liang Q, Li Y, Wang Q. “Experimental investigation on the performance of a neon cryogenic oscillating heat pipe”. Cryogenics, 84, 7-12, 2017.
  • [80] Liang Q, Li Y, Wang Q. “Effects of filling ratio and condenser temperature on the thermal performance of a neon cryogenic oscillating heat pipe”. Cryogenics, 89, 102-106, 2018.
  • [81] Im YH, Lee JY, Ahn TI, Youn YJ. “Operational characteristics of oscillating heat pipe at sub-zero temperature for cold energy storage”. International Journal of Heat and Mass Transfer, 201(1), 1-11, 2023.
  • [82] Sagar KR, Desai AB, Naik HB, Mehta BH. “Experimental investigations on two-turn cryogenic pulsating heat pipe with cylindrical shell-type condenser”. Applied Thermal Engineering, 196, 1-10, 2021.
  • [83] Wang Q, Rao Z, Huo Y, Wang S. “Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system”. International Journal of Thermal Sciences, 102, 9-16, 2016.
  • [84] Lv L, Li J, Zhou G. “A robust pulsating heat pipe cooler for integrated high power LED chips”. Heat and Mass Transfer, 53, 3305-3313, 2017.
  • [85] Wang H, Qu J, Peng Y, Sun Q. “Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application”. Energy Conversion Managament, 189, 215-222, 2019.
  • [86] Wang H, Qu J, Sun Q, Kang Z, Han X. “Thermal characteristic comparison of three dimensional oscillating heat pipes with/without sintered copper particles inside flat-plate evaporator for concentrating photovoltaic cooling”. Applied Thermal Engineering, 167, 1-10, 2020.
  • [87] Ling YZ, Zhang XS, Wang F, She XH. “Performance study of phase change materials coupled with three dimensional oscillating heat pipes with different structures for electronic cooling” Renewable Energy, 154, 1-14, 2020.
  • [88] Li C, Li J. “Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs”. Thermal Science and Engineering Progress, 37, 1-13, 2023.
  • [89] Mahajan G, Thompson SM, Cho H. “Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation”. Energy Reports, 3, 46-53, 2017.
  • [90] Wan DY, Li J, Chen YC, Tang Q, Hong J, Wang WW, Zhao FY, Guo JH. “Experimental investigation and semi-empirical correlations for a pulsating heat pipe filling with hybrid nanofluids applied for low-grade energy recovery”. Case Studies in Thermal Engineering, 40, 1-12, 2022.
  • [91] Zhao J, Jiang W, Rao Z. “Thermal performance investigation of an oscillating heat pipe with external expansion structure used for thermal energy recovery and storage”. International Journal of Heat and Mass Transfer, 132, 920-928, 2019.
  • [92] Liu X, Han X, Wang Z, Hao G, Zhang Z, Chen Y. “Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery”. Energy Conversion and Management, 205, 1-15, 2020.
  • [93] Mahajan G, Thompson SM, Cho H. “Experimental characterization of an n-pentane oscillating heat pipe for waste heat recovery in ventilation systems”. Heliyon, 4(11), 1-22, 2018.
  • [94] Kılıç FÇ. “Güneş enerjisi, Türkiye’deki son durumu ve üretim teknolojileri”. Mühendis ve Makina, 56(671), 28-40, 2015.
  • [95] Jin H, Lin G, Zeiny A, Bai L, Cai J, Wen D. “Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids”. International Journal of Heat and Mass Transfer, 139, 789-801, 2019.
  • [96] Xu RJ, Zhang XH, Wang RX, Xu SH, Wang HS. “Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator”. Energy Conversion and Management, 148, 68-77, 2017.
  • [97] Wang WW, Yang HF, Zhang HL, Xu TY, Zhao FY, Wu SJ. “Pulsating heat pipe and thermo-electric generator jointly applied in renewable energy exploitation: Analytical and experimental investigations”. Energy, 263, 1-12, 2023.
  • [98] Aref L, Fallahzadeh R, Shabanian SR, Hosseinzadeh H. “A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector”. Energy, 230, 1-9, 2021.
  • [99] Zhao J, Jiang W, Rao Z. “Operational characteristics of oscillating heat pipe with long heat transport distance for solar energy application”. Experimental Thermal and Fluid Science, 98, 137-145, 2018.
  • [100] Qian N, Fu Y, Chen JJ, Marengo M, Zhang J, Xu J. “Thermal performance analysis of axial-rotating oscillating heat pipe and its prediction model based on grey system theory”. Thermal Science and Engineering Progress, 29, 1-8, 2022.
  • [101] Tseng CY, Wu HM, Wong SC, Yang KS, Wang CC. “A novel thermal module with 3-d configuration pulsating heat pipe for high-flux applications”. Energies, 11, 1-12, 2018.
  • [102] Qu J, Zhao J, Rao Z. “Experimental investigation on thermal performance of multi-layers three-dimensional oscillating heat pipes”. International Journal of Heat and Mass Transfer, 115, 810-819, 2017.
  • [103] Qu J, Li Z, Cui Y, Wang Q. “Design and experimental study on a hybrid flexible oscillating heat pipe”. International Journal of Heat and Mass Transfer, 107, 640-645, 2017.
  • [104] Lyu B, Xu D, Wang W, Xin J, Shi Y, Fang Z, Huang C, Huang R, Li L. “Experimental investigation of a serial-parallel configuration helium pulsating heat pipe”. Cryogenics, 131, 1-18, 2023.
  • [105] Liu X, Xu L, Wang C, Han X. “Experimental study on thermo-hydrodynamic characteristics in a micro oscillating heat pipe”. Experimental Thermal and Fluid Science, 109, 1-14, 2019.
  • [106] Iwata N, Miyazaki Y, Yasuda S, Ogawa H. “Thermal performance and flexibility evaluation of metallic micro oscillating heat pipe for thermal strap”. Applied Thermal Engineering, 197, 1-12, 2021.
  • [107] Yu C, Ji Y, Li Y, Liu Z, Chu L, Kuang H, Wang Z. “A three-dimensional oscillating heat pipe filled with liquid metal and ammonia for high-power and high-heat-flux dissipation”. International Journal of Heat and Mass Transfer, 194, 1-8, 2022.
  • [108] Wu M, Ji Y, Feng Y, Liu H, Yang X. “Experimental study on the effects of filling ratios on heat transfer characteristics of liquid high-temperature oscillating heat pipes”. International Journal of Heat and Mass Transfer, 209, 1-12, 2023.

Titreşimli ısı boruları üzerine bir derleme: genel değerlendirmeler ve güncel uygulamalar

Yıl 2024, Cilt: 30 Sayı: 4, 436 - 450, 30.08.2024

Öz

Son yıllarda enerji tüketimi konusu, araştırmacıların endişe duyduğu en önemli konulardan biri haline gelmiştir. Yeni ve yenilenebilir enerji kaynaklarının araştırılması üzerinde yürütülen çalışmaların sayısı her geçen gün artmaktadır. Bilim insanları yalnızca yeni ve yenilenebilir enerji kaynaklarını araştırmakla kalmayıp enerji kullanımının akılcı yolları üzerinde de çalışmalar yürütmektedirler. Özellikle ısıl sistemlerde enerji kayıplarının büyük bir çoğunluğu ısı transferi işlemi sırasında gerçekleşmektedir. Isı borusu sistemleri bu ısı ve enerji kayıplarının ortadan kaldırılmasında yarar sunan önemli cihazlar olarak karşımıza çıkmaktadırlar. Isı boruları ısıl enerjinin bir noktadan bir diğerine aktarımı işlemini yüksek performans değerleri ile gerçekleştiren sistemlerdir. Bu çalışmada ısı borusu türleri ve detaylı tanımlamaları gerçekleştirilmiştir. Titreşimli ısı boruları görece yakın dönemde ortaya çıkmış ve hızla araştırmaların odak noktası haline gelmiş sistemlerdir. Kolay inşa edilebilirlikleri, basit tasarımları ve hemen her alana adapte edilebilir olmaları açısından oldukça kullanışlı cihazlardır. Çalışmada titreşimli ısı borularının detaylı tanımlaması yapılmış, çalışma mekanizmaları, teorik incelemeleri ve güncel uygulamaları değerlendirilmiştir.

Kaynakça

  • [1] Guo S, Liu Q, Sun J, Jin H. “A review on the utilization of hybrid renewable energy”. Renewable and Sustainable Energy Reviews, 91,1121-1147, 2018.
  • [2] Shao M, Han Z, Sun J, Xiao C, Zhang S, Zhao Y. “A review of multi-criteria decision making applications for renewable energy site selection”. Renewable Energy, 157, 377-403, 2020.
  • [3] Xu Y, Xue Y, Qi H, Cai W. “Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids". International Journal of Heat and Mass Transfer, 157, 1-12, 2020.
  • [4] Brennan PJ, Kroliczek EJ. Heat Pipe Design Handbook. 1st ed. Maryland, USA, B & K Engineering, 1979.
  • [5] Li H, Sun Y. “Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system”. Energy and Buildings, 158, 861-872, 2018.
  • [6] Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. “Visualization and comparative investigations of pulsating ferro-fluid heat pipe”. Applied Thermal Engineering, 116, 56-65, 2017.
  • [7] Peterson GP. An Introduction to Heat Pipes: Modelling Testing and Applications. 1st ed. New York, USA, John Wiley and Sons, 1994.
  • [8] Zahouri B. Heat Pipe Design and Technology. 2nd ed. California, USA Springer, 2016.
  • [9] Ding T, Chen X, Cao H, He Z, Wang J, Li Z. “Principles of loop thermosyphon and its applications”. Renewable and Sustainable Energy, 150, 1-23, 2021.
  • [10] Anand RS, Jawahar CP, Solomon BA, Bellos E. “A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low temperature applications”. International Journal of Refrigeration, 120, 296-313, 2020.
  • [11] Qu J, Wu H, Cheng P, Wang Q., Sun Q. “Recent advances in mems-based micro heat pipes”. International Journal of Heat and Mass Transfer, 110, 294-313, 2017.
  • [12] Marcus BD. “Theory and Design of Variable Conductance Heat Pipes”. USA, NASA CR-2018, 1972.
  • [13] Guo Y, Liu C, Pan H, Lyu W, Zhang H, Lin G, Miao J. “Experimental investigation and multiparameter analysis of variable conductance heat pipes”. Applied Thermal Engineering, 202, 1-12, 2022.
  • [14] Launay S, Sartre V. Bonjour J., “Parametric analysis of loop heat pipe operation: a literature review”. International Journal of Thermal Sciences, 46, 621-636, 2007.
  • [15] Li SF, Liu Z. “Parametric study of rotating heat pipe performance: a review”. Renewable and Sustainable Energy Reviews, 117, 1-21, 2020.
  • [16] Dave C, Dandale P, Shrivastava K, Dhaygude D, Rahangdale K, More N. “A review on pulsating heat pipes: latest research, applications and future scope”. Journal of Thermal Engineering, 7(3), 387-408, 2021.
  • [17] Xu Y, Xue Y, Qi H, Cai W. “An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes”. Renewable and Sustainable Energy Reviews, 144, 1-34, 2021.
  • [18] Nazaria MA, Ahmadib HM, Ghasempoura R, Shafii MB, Mahiand O, Kalogirouf S, Wongwises S. “A review on pulsating heat pipes: from solar to cryogenic applications”. Applied Energy, 222, 475-484, 2018.
  • [19] Khandekar S, Charoensawan P, Groll M, Terdtoon P. “Closed loop pulsating heat pipes part b: visualization and semi-emprical modelling”. Applied Thermal Engineering, 23, 2021-2033, 2003.
  • [20] Doğan H. “Isı borulu güneş kollektörü ile kurutma”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 1(5), 921-925, 1999.
  • [21] Reay D, Kew, P, McGlen R J. Heat Pipes Theory, Design and Applications. 6th ed. UK, Elsevier, 2014.
  • [22] Im YH, Lee JY, Ahn TI, Youn YJ. “Operational characteristics of oscillating heat pipe charged with R-134a for heat recovery at low temperature”. International Journal of Heat and Mass Transfer, 196, 1-11, 2022.
  • [23] Tingting Hao T, Ma HB, Ma X, “Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluid”. International Journal of Heat and Mass Transfer, 131, 109-120, 2019.
  • [24] Zhu Y, Cui X, Han H, Sun S. “The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water−acetone mixtures”. International Journal of Heat and Mass Transfer, 77, 834-842, 2014.
  • [25] Tokuda D, Inoue T. “Heat transport characteristics of a sodium oscillating heat pipe: thermal performance”. International Journal of Heat and Mass Transfer, 196, 1-11, 2022.
  • [26] Barrak AS, Saleh AAM, Naji ZH. “An experimental study of using water, methanol, and binary fluids in oscillating heat pipe heat exchanger”. Engineering Science and Technology, an International Journal 23, 357-364, 2020.
  • [27] Ji Y, Mengke Wu, Feng Y, Yu C, Chu L, Chang C, Li Y, Xiao X, Ma HB. “An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe”. International Journal of Heat and Mass Transfer 149, 1-8, 2020.
  • [28] Li S, Bu Z, Fang T, Wang Y, Shen Y, Tao X, Jiao B, Gan Z. “Experimental study on the thermo-hydrodynamic characteristics of a nitrogen pulsating heat pipe”. International Communications in Heat and Mass Transfer, 146, 1-15, 2023.
  • [29] Duangthongsuk W, Wongwises S. “An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime”. International Journal of Heat and Mass Transfer, 53(1-3), 334-344, 2010.
  • [30] Ali AR, Salam B. “A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application”. SN Applied Sciences, 2(10), 1-7, 2020.
  • [31] Mehta B, Subhedar D, Panchal H, Said Z. “Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid-a review”. Journal of Molecular Liquids, 364, 1-29, 2022.
  • [32] Kleinstreuer C, Feng Y. “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review”. Nanoscale Research Letters, 6(1), 1-3, 2011.
  • [33] Judran HK, Al-Hasnawi AG, Al-Zubaidi FN, Al-Maliki WA, Alobaid F, Epple B. “A high thermal conductivity of MgO-H2O nanofluid prepared by two-step technique”. Applied Sciences, 12(5), 1-18, 2022.
  • [34] Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. “Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling”. Applied Thermal Engineering ,196, 1-8, 2021.
  • [35] Jin K, Tai Y, Toghraie D, Hekmatifar M. “The effects of nanoparticle percentages and an external variable magnetic field on the atomic and thermal behaviors in an oscillating heat pipe via molecular dynamics simulation”. Journal of Molecular Liquids, 360, 1-10, 2022.
  • [36] Zhou Y, Cui X, Weng J, Shi S, Han H, Chen C. “Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids”. Powder Technology, 332, 371-380, 2018.
  • [37] Eastman JA, Choi SUS, Li A, Yu W, Thompson LJ. “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”. Applied Physics Letters, 78(6), 718-720, 2001.
  • [38] Liu MS, Lin MCC, Tsai CY, Wang CC. “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method”. International Journal of Heat Mass Transfer, 49(17), 3028-3033, 2006.
  • [39] Xuan Y, Li Q. “Heat transfer enhancement of nanofluids”. International Journal of Heat Fluid Flow, 21(1), 58-64, 2000.
  • [40] Hong TK, Yang HS, Choi CJ. “Study of the enhanced thermal conductivity of Fe nanofluids”. Journal of Applied Physics, 97, 1-5, 2005.
  • [41] Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects”. Applied Physics Letters, 83, 2931-2933, 2003.
  • [42] Wei X, Zhu H, Kong T, Wang L. “Synthesis and thermal conductivity of Cu2O nanofluids”. International Journal of Heat and Mass Transfer, 52(19), 4371-4374, 2009.
  • [43] Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG. “Thermal conductivity of nanoparticle suspensions”. Journal of Applied Physics, 99(8), 1-7, 2006.
  • [44] Zhu H, Zhang C, Liu S, Tang Y, Yansheng Y. “Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids”. Applied Physics Letters, 89(2), 1-4, 2006.
  • [45] Murshed SMS, Leong KC, Yang C. “Enhanced thermal conductivity of TiO2-Water based nanofluids”. International Journal of Thermal Sciences, 44(4), 367-373, 2005.
  • [46] Xie H, Wang J, Xi T, Liu Y, Ai F, Qingren W. “Thermal conductivity enhancement of suspensions containing nanosized alumina particles”. Journal of Applied Physics, 91(7), 4568-4572, 2002.
  • [47] Zhang X, Gu H, Fujii M. “Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids”. International Journal of Thermophysics, 2(2), 569-580, 2006.
  • [48] Huaqing X, Jinchang W, Tonggeng X, Yan L. “Study on the thermal conductivity of SiC nanofluids”. Journal of the Chinese Ceramic Society, 29(4), 361-364, 2001.
  • [49] Liu M S, Lin MCC, Huang IT, Wang CC. “Enhancement of thermal conductivity with carbon nanotube for nanofluids”. International Community Heat and Mass Transfer, 32(9), 1202-1210, 2005.
  • [50] Choi SUS, Zhang ZG, YuW, Lockwood FE, Grulke EA. “Anomalous thermal conductivity enhancement in nanotube suspensions”. Applied Physics Letters, 79(14), 2252-2254, 2001.
  • [51] Xie H, Lee H, Youn W, Choi M. “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities”. Journal of Applied Physics, 94(8), 4967-4971, 2003.
  • [52] Yang B, Han, ZH. “Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids”. Applied Physics Letters, 88(26), 1-4, 2006.
  • [53] Qu, J., Wu, H. Y., Cheng, P. “Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids”. International Communications in Heat and Mass Transfer, 37(2), 111-115, 2010.
  • [54] Jia H, Jia L, Tan Z. “An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe”. Journal of Thermal Sciences, 22(5), 484-490, 2013.
  • [55] Goshayeshi H, Goodarzi M, Dahari M. “Effect of magnetic field on the heat transfer rate of Kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe”. Experimental Thermal and Fluid Science, 68, 663-668, 2015.
  • [56] Wilson CA. Experimental Investigation of Nanofluid Oscillating Heat Pipes. Phd Thesis, University of Missouri, Columbia, 2006.
  • [57] Yin D, Wang H, Ma HB, Ji YL. “Operation limitation of an oscillating heat pipe”. International Journal of Heat and Mass Transfer, 94, 366-372, 2016.
  • [58] Spinato G, Borhani N, Thome JR. “Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe”. Energy, 90, 889-99, 2015.
  • [59] Yoon A, Kim SJ. “Experimental and theoretical studies on oscillation frequencies of liquid slugs in micro pulsating heat pipes”. Energy Conversation Management, 181, 48-58, 2019.
  • [60] Wang X, Li B, Yan Y, Gao N, Chen G. “Predicting of thermal resistances of closed vertical meandering pulsating heat pipe using artificial neural network model”. Applied Thermal Engineering, 149, 1134-1141, 2019.
  • [61] Wang X, Yana Y, Meng X, Chen G. “A general method to predict the performance of closed pulsating heat pipe by artificial neural network”. Applied Thermal Engineering, 157, 1-8, 2019.
  • [62] Shafii MB, Arabnejad S, Saboohi Y, Jamshidi H. “Experimental investigation of pulsating heat pipes and a proposed correlation”. Heat Transfer Engineering, 31, 854-861, 2010.
  • [63] Khandekar S, Charoensawan P, Groll M, Terdtoon P. “Closed loop pulsating heat pipes: Part B: Visualization and semi-empirical modeling”. Applied Thermal Engineering, 23, 2021-2033, 2003.
  • [64] Kholi FK, Mucci A, Kallath H, Ha, MY, Chetwynd-Chatwin J, Min JK. “An improved correlation to predict the heat transfer in pulsating heat pipes over increased range of fluid-filling ratios and operating inclinations”. Journal of Mechanical Science and Technology, 34(6), 20637-2646, 2020.
  • [65] Duy-Tan V, Hyoung-Tak K, Junghyuk K, Kwang-Hyun B. “An experimental and three-dimensional numerical simulation of pulsating heat pipes”. International Journal of Heat And Mass Transfer, 150, 1-12, 2020.
  • [66] Rudersha S, Kumar V. “CFD analysis and experimental investigation on thermal performance of closed loop pulsating heat pipe using different nanofluids”. International Journal of Advanced Research, 2(8), 753-760, 2014.
  • [67] Lin Z, Wang S, Shirakashi R, Zhang LW. “Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modelling”. International Journal of Heat and Mass Transfer, 57, 642-656, 2013
  • [68] Nagwase YS, Pachghare RP. “Experimental and CFD Analysis of Closed Loop Pulsating Heat Pipe with DI-Water”. IEEE 2013 International Conferenceon Energy Efficiet Technologies for Sustainibility, Nagercoil, India, 10-12 April 2013.
  • [69] Ashutosh Gupta A, Ajit K, Parwani AK. “CFD modelling for thermal performance of closed loop pulsating heat pipe in bottom heating mode”. Sixth International Conference On Advances in Civil, Structural and Mechanical Engineering-ACSM, Bangkok, Thailand, 26 February 2017.
  • [70] Suresh JV, Bhramar P. “CFD analysis of copper closed loop pulsating heat pipe”. Materials Today: Proceedings, 5, 5487-5495, 2018.
  • [71] Rajendra SD, Deshmukh DA, Pawar RS. “Experimental ınvestigation of closed loop pulsating heat pipe thermal performance and CFD validation”. Journal of Thermal Engineering. 4(1), 33-51, 2019.
  • [72] Katpradit T, Wongratanaphisan T, Terdtoon P, Kamonpet P, Polchai A, Akbarzadeh A. “Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state”. Applied Thermal Engineering, 25, 2138-2151, 2005.
  • [73] Qu J, Wang Q. “Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling”. Applied Energy, 112, 1154-1160, 2013.
  • [74] Rittidech S, Terdtoon P, Murakami M, Kamonpet P, Jompakdee W. “Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition”. Applied Thermal Engineering, 23, 497-510, 2003.
  • [75] Rittidech S, Dangeton W, Soponronnarit S. “Closed ended oscillating heat-pipe (CEOHP) air-preheater for energy thrift in a dryer”. Applied Energy, 81, 198-208, 2005.
  • [76] Charoensawan P, Terdtoon P. “Thermal performance of horizontal closed-loop oscillating heat pipes”. Applied Thermal Engineering, 28, 460-466, 2008.
  • [77] Dehshali ME, Nazari MA, Shafii MB. “Thermal performance of rotating closed-loop pulsating heat pipes: Experimental investigation and semi-empirical correlation”. International Journal of Thermal Sciences, 123, 14-26, 2018.
  • [78] Belfi F. Pulsating Heat Pipe: An Innovative Heat Exchanger for Nonconventional Applications. MSc Thesis, Universit`a di Pisa, Pisa, Italy, 2017.
  • [79] Liang Q, Li Y, Wang Q. “Experimental investigation on the performance of a neon cryogenic oscillating heat pipe”. Cryogenics, 84, 7-12, 2017.
  • [80] Liang Q, Li Y, Wang Q. “Effects of filling ratio and condenser temperature on the thermal performance of a neon cryogenic oscillating heat pipe”. Cryogenics, 89, 102-106, 2018.
  • [81] Im YH, Lee JY, Ahn TI, Youn YJ. “Operational characteristics of oscillating heat pipe at sub-zero temperature for cold energy storage”. International Journal of Heat and Mass Transfer, 201(1), 1-11, 2023.
  • [82] Sagar KR, Desai AB, Naik HB, Mehta BH. “Experimental investigations on two-turn cryogenic pulsating heat pipe with cylindrical shell-type condenser”. Applied Thermal Engineering, 196, 1-10, 2021.
  • [83] Wang Q, Rao Z, Huo Y, Wang S. “Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system”. International Journal of Thermal Sciences, 102, 9-16, 2016.
  • [84] Lv L, Li J, Zhou G. “A robust pulsating heat pipe cooler for integrated high power LED chips”. Heat and Mass Transfer, 53, 3305-3313, 2017.
  • [85] Wang H, Qu J, Peng Y, Sun Q. “Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application”. Energy Conversion Managament, 189, 215-222, 2019.
  • [86] Wang H, Qu J, Sun Q, Kang Z, Han X. “Thermal characteristic comparison of three dimensional oscillating heat pipes with/without sintered copper particles inside flat-plate evaporator for concentrating photovoltaic cooling”. Applied Thermal Engineering, 167, 1-10, 2020.
  • [87] Ling YZ, Zhang XS, Wang F, She XH. “Performance study of phase change materials coupled with three dimensional oscillating heat pipes with different structures for electronic cooling” Renewable Energy, 154, 1-14, 2020.
  • [88] Li C, Li J. “Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs”. Thermal Science and Engineering Progress, 37, 1-13, 2023.
  • [89] Mahajan G, Thompson SM, Cho H. “Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation”. Energy Reports, 3, 46-53, 2017.
  • [90] Wan DY, Li J, Chen YC, Tang Q, Hong J, Wang WW, Zhao FY, Guo JH. “Experimental investigation and semi-empirical correlations for a pulsating heat pipe filling with hybrid nanofluids applied for low-grade energy recovery”. Case Studies in Thermal Engineering, 40, 1-12, 2022.
  • [91] Zhao J, Jiang W, Rao Z. “Thermal performance investigation of an oscillating heat pipe with external expansion structure used for thermal energy recovery and storage”. International Journal of Heat and Mass Transfer, 132, 920-928, 2019.
  • [92] Liu X, Han X, Wang Z, Hao G, Zhang Z, Chen Y. “Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery”. Energy Conversion and Management, 205, 1-15, 2020.
  • [93] Mahajan G, Thompson SM, Cho H. “Experimental characterization of an n-pentane oscillating heat pipe for waste heat recovery in ventilation systems”. Heliyon, 4(11), 1-22, 2018.
  • [94] Kılıç FÇ. “Güneş enerjisi, Türkiye’deki son durumu ve üretim teknolojileri”. Mühendis ve Makina, 56(671), 28-40, 2015.
  • [95] Jin H, Lin G, Zeiny A, Bai L, Cai J, Wen D. “Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids”. International Journal of Heat and Mass Transfer, 139, 789-801, 2019.
  • [96] Xu RJ, Zhang XH, Wang RX, Xu SH, Wang HS. “Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator”. Energy Conversion and Management, 148, 68-77, 2017.
  • [97] Wang WW, Yang HF, Zhang HL, Xu TY, Zhao FY, Wu SJ. “Pulsating heat pipe and thermo-electric generator jointly applied in renewable energy exploitation: Analytical and experimental investigations”. Energy, 263, 1-12, 2023.
  • [98] Aref L, Fallahzadeh R, Shabanian SR, Hosseinzadeh H. “A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector”. Energy, 230, 1-9, 2021.
  • [99] Zhao J, Jiang W, Rao Z. “Operational characteristics of oscillating heat pipe with long heat transport distance for solar energy application”. Experimental Thermal and Fluid Science, 98, 137-145, 2018.
  • [100] Qian N, Fu Y, Chen JJ, Marengo M, Zhang J, Xu J. “Thermal performance analysis of axial-rotating oscillating heat pipe and its prediction model based on grey system theory”. Thermal Science and Engineering Progress, 29, 1-8, 2022.
  • [101] Tseng CY, Wu HM, Wong SC, Yang KS, Wang CC. “A novel thermal module with 3-d configuration pulsating heat pipe for high-flux applications”. Energies, 11, 1-12, 2018.
  • [102] Qu J, Zhao J, Rao Z. “Experimental investigation on thermal performance of multi-layers three-dimensional oscillating heat pipes”. International Journal of Heat and Mass Transfer, 115, 810-819, 2017.
  • [103] Qu J, Li Z, Cui Y, Wang Q. “Design and experimental study on a hybrid flexible oscillating heat pipe”. International Journal of Heat and Mass Transfer, 107, 640-645, 2017.
  • [104] Lyu B, Xu D, Wang W, Xin J, Shi Y, Fang Z, Huang C, Huang R, Li L. “Experimental investigation of a serial-parallel configuration helium pulsating heat pipe”. Cryogenics, 131, 1-18, 2023.
  • [105] Liu X, Xu L, Wang C, Han X. “Experimental study on thermo-hydrodynamic characteristics in a micro oscillating heat pipe”. Experimental Thermal and Fluid Science, 109, 1-14, 2019.
  • [106] Iwata N, Miyazaki Y, Yasuda S, Ogawa H. “Thermal performance and flexibility evaluation of metallic micro oscillating heat pipe for thermal strap”. Applied Thermal Engineering, 197, 1-12, 2021.
  • [107] Yu C, Ji Y, Li Y, Liu Z, Chu L, Kuang H, Wang Z. “A three-dimensional oscillating heat pipe filled with liquid metal and ammonia for high-power and high-heat-flux dissipation”. International Journal of Heat and Mass Transfer, 194, 1-8, 2022.
  • [108] Wu M, Ji Y, Feng Y, Liu H, Yang X. “Experimental study on the effects of filling ratios on heat transfer characteristics of liquid high-temperature oscillating heat pipes”. International Journal of Heat and Mass Transfer, 209, 1-12, 2023.
Toplam 108 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Fırat Özdemir

Özay Akdemir

Ali Güngör Bu kişi benim

Yayımlanma Tarihi 30 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 4

Kaynak Göster

APA Özdemir, F., Akdemir, Ö., & Güngör, A. (2024). A review of oscillating heat pipes: general consideration and latest applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(4), 436-450.
AMA Özdemir F, Akdemir Ö, Güngör A. A review of oscillating heat pipes: general consideration and latest applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2024;30(4):436-450.
Chicago Özdemir, Fırat, Özay Akdemir, ve Ali Güngör. “A Review of Oscillating Heat Pipes: General Consideration and Latest Applications”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 4 (Ağustos 2024): 436-50.
EndNote Özdemir F, Akdemir Ö, Güngör A (01 Ağustos 2024) A review of oscillating heat pipes: general consideration and latest applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 4 436–450.
IEEE F. Özdemir, Ö. Akdemir, ve A. Güngör, “A review of oscillating heat pipes: general consideration and latest applications”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 4, ss. 436–450, 2024.
ISNAD Özdemir, Fırat vd. “A Review of Oscillating Heat Pipes: General Consideration and Latest Applications”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/4 (Ağustos 2024), 436-450.
JAMA Özdemir F, Akdemir Ö, Güngör A. A review of oscillating heat pipes: general consideration and latest applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:436–450.
MLA Özdemir, Fırat vd. “A Review of Oscillating Heat Pipes: General Consideration and Latest Applications”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 4, 2024, ss. 436-50.
Vancouver Özdemir F, Akdemir Ö, Güngör A. A review of oscillating heat pipes: general consideration and latest applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(4):436-50.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.