Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye

Yıl 2024, Cilt: 30 Sayı: 4, 536 - 546, 30.08.2024

Öz

Decomposition products from direct disposal of manure and sewage sludge have negative impacts on water resources, soil and atmosphere. Here, biochar synthesized from cattle and poultry manure and sewage sludge generated in the Küçük Menderes Basin (>6 million tons dw/year) by pyrolysis and the properties of the biochars were examined. TGA-DTA results showed that, the maximum weight losses realized in the range of 200-500 °C. The loss of O-H stretching of hydroxyl groups and C-H stretching of aliphatic CHx observed in the analysis of FT-IR results indicated the successful pyrolysis. Biochars synthesized from cattle and poultry manure at 700oC resulted in the largest BET surface areas (47.59 m2/g and 11.31 m2/g, respectively). The largest BET surface area for sewage sludge biochar was obtained at 500 °C (41.76 m2/g). This different result was found to be related to the melting of the high inert content of sewage sludge containing treatment chemicals at >500 °C. SEM results supported the BET results and it was evaluated that the melted inert structure of the sludge partially trapped the biochar formed. It was concluded that, not only the volatile content of the wastes, but also the ratio and structure of their inert content are effective in biochar quality.

Kaynakça

  • [1] Salihoğlu G, Poroy Z, Salihoğlu NK. “Life Cycle Assessment for Municipal Waste Management: Analysis for Bursa”. Pamukkale University Journal of Engineering Sciences, 25(6), 692-699, 2019.
  • [2] Duyar A, Akgül V, Civelekoglu G, Cırık K. “Performances of sequential denitrification and partial nitrification process for treatment of landfill leachate”. Pamukkale University Journal of Engineering Sciences, 27(6), 737-743, 2021.
  • [3] Kaza S, Shrikanth S, Chaudhary S. “More Growth, Less Garbage”. Urban Development Series, Washington, DC, USA, Scientific Report, 10.1596/978-1-4648-1329-0, 2021.
  • [4] Liu J, de Neergaard A, Jensen LS. “Increased retention of available nitrogen during thermal drying of solids of digested sewage sludge and manure by acid and zeolite addition”. Waste Management, 100, 306-317, 2019.
  • [5] Ghorbani M, Konvalina P, Walkiewicz A, Neugschwandtner RW, Kopecký M, Zamanian K, Chen WH, Bucur D. “Feasibility of biochar derived from sewage sludge to promote sustainable agriculture and mitigate GHG emissions-A review”. International Journal of Environmental Research and Public Health, 19(19), 1-23, 2022.
  • [6] Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ. “Sludge treatment: Current research trends”. Bioresource Technology, 243, 1159-1172, 2017.
  • [7] EuroStat. “Sewage Sludge Production and Disposal”. https://ec.europa.eu/eurostat/databrowser/view/ENV_WW_SPD__custom_6127736/default/table?lang=en (09.05.2023).
  • [8] Shaddel S, Bakhtiary-Davijany H, Kabbe C, Dadgar F, Østerhus SW. “Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies”. Sustainability (Switzerland), 11(12), 1-12, 2019.
  • [9] European Council.“Directive on Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture”. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31986L0278 (09.05.2023).
  • [10] Delibacak S, Voronina L, Morachevskaya E, Ongun AR. “Use of sewage sludge in agricultural soils: Useful or harmful”. Eurasian Journal of Soil Science, 9(2), 126-139, 2020.
  • [11] EuroStat. “Treatment of Waste by Waste Category, Hazardousness and Waste Management Operations”. https://ec.europa.eu/eurostat/databrowser/view/ENV_WASTRT__custom_795114/default/table?lang=en (09.05.2023).
  • [12] TurkStat. “Animal Statistics”. https://biruni.tuik.gov.tr/medas/?kn=101&locale=tr (09.05.2023).
  • [13] Yılmaz H, Lauwers L, Buysse J, Van Huylenbroeck G. “Economic aspects of manure management and practices for sustainable agriculture in Turkey”. Present Environment and Sustainable Development, 13(1), 249-263, 2019.
  • [14] Oni BA, Oziegbe O, Olawole OO. “Significance of biochar application to the environment and economy”. Annals of Agricultural Sciences, 64(2), 222-236, 2019.
  • [15] Singh S, Kumar V, Dhanjal DS, Datta S, Bhatia D, Dhiman J, Samuel J, Prasad R, Singh J. “A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects”. Journal of Cleaner Production, 269, 1-16, 2020.
  • [16] Shakoor A, Shahzad SM, Chatterjee N, Arif MS, Farooq TH, Altaf MM, Tufail MA, Dar AA, Mehmood T. “Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis”. Journal of Environmental Management, 285, 1-11, 2021.
  • [17] Inal A, Gunes A, Sahin O, Taskin MB, Kaya EC. “Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize”. Soil Use and Management, 31(1), 106-113, 2015.
  • [18] Sümer SK, Kavdır Y, Çiçek G. “Türkiye’de tarımsal ve hayvansal atıklardan biyokömür üretim potansiyelinin belirlenmesi”. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(4), 379-387, 2016.
  • [19] Dursun N. “Hayvansal ve bitkisel atıklar kaynaklı biyokömür üretim potansiyelinin belirlenmesi: Malatya ili örneği”. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 720-727, 2020.
  • [20] Demirbas A, Pehlivan E, Altun T. “Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources”. International Journal of Hydrogen Energy, 31(5), 613-620, 2006.
  • [21] Kaya EC, Akça H, Taşkın MB, Mounirou MM, Kaya T. “Biyokömür ve fosfor uygulamalarının mısır ve çeltik bitkilerinin gelişimi ve mineral element konsantrasyonlarına etkileri”. Toprak Su Dergisi, 8(1), 46-54, 2019.
  • [22] Arın A, Coşkan A. “Biyokömür uygulamalarının Karadeniz bölgesi toprağının pH’sına ve bazı biyolojik aktivite parametrelerine etkileri”. Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 187-199, 2021.
  • [23] Sakin E, Yanardağ İH. “Effect of application of sheep manure and its biochar on carbon emissions in salt affected calcareous soil in Sanliurfa region se Turkey”. Fresenius Environmental Bulletin, 28(4), 2553-2560, 2019.
  • [24] Sönmez F, Çığ F. “Artan dozdaki biyokömür ve solucan gübresi uygulamalarının buğdayda ve toprakta besin elementi içeriği üzerine etkilerinin belirlenmesi”. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2(4), 526-536, 2019.
  • [25] The Ministry of Agriculture and Forestry. “Küçük Menderes River Basin Management Plan, Strategic Environmental Assessment Scoping Report”. Ankara, Türkiye, 1, 2018.
  • [26] The Ministry of Agriculture and Forestry. “Küçük Menderes River Basin Management Plan Strategic Environmental Assessment Final Report”. Ankara, Türkiye, 1, 2020.
  • [27] The Ministry of Environment and Urbanization, “The Regulation on Using Domestic and Urban Treatment Sludge in Soil”. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=14167&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5 (09.05.2023).
  • [28] Özdemir A, Özkan A, Günkaya Z, Banar M. “Co-pyrolysis of municipal solid waste and municipal sewage sludge and characterization of liquid product”. Pamukkale University Journal of Engineering Sciences, 28(6), 920-928, 2022.
  • [29] Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. “Biochar production by sewage sludge pyrolysis”. Journal of Analytical and Applied Pyrolysis, 101, 72-78, 2013.
  • [30] Gao N, Li J, Qi B, Li A, Duan Y, Wang Z. “Thermal analysis and products distribution of dried sewage sludge pyrolysis”. Journal of Analytical and Applied Pyrolysis, 105, 43-48, 2014.
  • [31] Font-Palma C. “Methods for the treatment of cattle manure-A review”. Journal of Carbon Research, 5(2), 1-30, 2019.
  • [32] Topaç FO, Uçaroğlu S. “Atıksu arıtma çamurlarının sürdürülebilir kullanım alternatifleri: Öncelikli yaklaşımlar”. European Journal of Science and Technology, 20, 728-739, 2020.
  • [33] The Ministry of Environment and Urbanization. “Zero Waste Regulation”. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=32659&MevzuatTur=7&MevzuatTertip=5 (04.05.2023).
  • [34] European Commission. “Towards a circular economy- a zero waste programme for europe”. Brussels, Belgium, Scientific Report, 52014DC0398, 2014.
  • [35] European Parliament and Council. “Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives”. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098 (05.05.2023).
  • [36] Environmental Protection Agency (EPA), “How Communities Have Defined Zero Waste”. https://www.epa.gov/transforming-waste-tool/how-communities-have-defined-zero-waste (16.05.2023).
  • [37] European Union Council. “The urban waste water treatment directive”. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271 (12.05.2023).
  • [38] Environmental Protection Agency (EPA). “Biosolids Laws and Regulations”. https://www.epa.gov/biosolids/biosolids-laws-and-regulations#how (12.05.2023).
  • [39] İzmir Governorship Directorate of Agriculture and Forestry. “İzmir Brifing”. https://izmir.tarimorman.gov.tr/Belgeler/2021%20Brifing.pdf (16.05.2023).
  • [40] İzmir Commodity Exchange. “Cattle and Sheep Animal Asset and Milk Production: Current Status (Turkey - Izmir). https://itb.org.tr/Sayfa/121-buyukbas-kucukbas-hayvan-varligi-ve-sut-uretimi-mevcut-durumu-turkiye--izmir (16.05.2023).
  • [41] The Ministry of Agriculture and Forestry. “Preparation of River Basin Management Plan for Küçük Menderes Basin-River Basin Management Plan Final Report”. Ankara, Turkey, 1, 2019.
  • [42] The Administration of İzmir Water and Sewerage. “Facilities and Wastewater Treatment Amounts”. https://www.izsu.gov.tr/tr/TesisDetay/1/32/2 (25.05.2023)
  • [43] The Ministry of Environment and Urbanization. “Sludge Treatment and Removal”. Ankara, Turkey, 2019-1, 2019.
  • [44] TurkStat. “Census Based on Address Records”. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr (25.05.2023).
  • [45] The Ministry of Environment and Urbanization. “Determination of Sewage Sludge Amount”. Ankara, Turkey, 2, 2019.
  • [46] ASTM International. “ASTM D2974-13- Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils”. 10.1520/D2974-13, 2014.
  • [47] ASTM International. “ASTM E872-82- Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels”. 10.1520/E0872-82R19.2, 2019.
  • [48] ASTM International. “ASTM E1755-01- Standard Test Method for Ash in Biomass”. 10.1520/E1755-01R20.2, 2020.
  • [49] Basu P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. 2nd ed. London, UK, Academic Press, 2013.
  • [50] ASTM International. “ASTM D5373-21- Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke”. 10.1520/D5373-21, 2021.
  • [51] ASTM International. “ASTM D4239-18e1-Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion”. 10.1520/D4239-18E01, 2018.
  • [52] Thipkhunthod P, Meeyoo V, Rangsunvigit P, Kitiyanan B, Siemanond K, Rirksomboon T. “Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses”. Fuel, 84(7-8), 849-857, 2005.
  • [53] Otero M, Díez C, Calvo LF, García AI, Morán A. “Analysis of the co-combustion of sewage sludge and coal by TG-MS”. Biomass and Bioenergy, 22(4), 319-329, 2002.
  • [54] Cely P, Gascó G, Paz-Ferreiro J, Méndez A. “Agronomic properties of biochars from different manure wastes”. Journal of Analytical and Applied Pyrolysis, 111, 173-182, 2015.
  • [55] Yuan X, He T, Cao H, Yuan Q. “Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods”. Renewable Energy, 107, 489-496, 2017.
  • [56] Quiroga G, Castrillón L, Fernández-Nava Y, Marañón E. “Physico-chemical analysis and calorific values of poultry manure”. Waste Management, 30(5), 880-884, 2010.
  • [57] Zaker A, Chen Z, Zaheer-Uddin M. “Catalytic pyrolysis of sewage sludge with HZSM5 and sludge-derived activated char: A comparative study using TGA-MS and artificial neural networks”. Journal of Environmental Chemical Engineering, 9(5), 1-10, 2021.
  • [58] De Oliveira Silva J, Filho GR, Da Silva Meireles C, Ribeiro SD, Vieira JG, Da Silva CV, Cerqueira, DA. “Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. the case of sludge in the city of Uberlândia-MG, Brazil”. Thermochimica Acta, 528, 72-75, 2012.
  • [59] Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y. “Chemical characterization of rice straw-derived biochar for soil amendment”. Biomass and Bioenergy, 47, 268-276, 2012.
  • [60] Jouiad M, Al-Nofeli N, Khalifa N, Benyettou F, Yousef LF. “Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm”. Journal of Analytical and Applied Pyrolysis, 111, 183-190, 2015.
  • [61] Li G, Zhu W, Zhu L, Chai X. “Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse”. Korean Journal of Chemical Engineering, 33(7), 2215-2221, 2016.
  • [62] Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK. “Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels”. Bioenergy Research, 6(2), 663-677, 2013.
  • [63] Elnour AY, Alghyamah AA, Shaikh HM, Poulose AM, Al-Zahrani SM, Anis A, Al-Wabel MI. “Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites”. Applied Sciences, 9(6), 7-9, 2019.
  • [64] Reza MS, Afroze S, Bakar MSA, Saidur R, Aslfattahi N, Taweekun J, Azad AK. “Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature”. Biochar, 2(2), 239-251, 2020.
  • [65] Siengchum T, Isenberg M, Chuang SSC. “Fast pyrolysis of coconut biomass-An FTIR study”. Fuel, 105, 559-565, 2013.
  • [66] Taşar Ş, Kaya F, Özer A. “A Study on the Pyrolysis of Peanut Shells at Different Isothermal Conditions and Determination of the Kinetic Parameters”. Pamukkale University Journal of Engineering Sciences, 21(7), 306-313, 2015.
  • [67] Stylianou M, Christou A, Dalias P, Polycarpou P, Michael C, Agapiou A, Papanastasiou P, Fatta-Kassinos D. “Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds”. Journal of the Energy Institute, 93(5), 2063-2073, 2020.
  • [68] Murray RS, Quirk JP. “Surface Area of Clays”. Langmuir, 6(1), 122-124, 1990.
  • [69] Pehlivan E. “Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of reactive red (procion red MX-5B) from aqueous solutions”. Pamukkale University Journal of Engineering Sciences, 23(7), 912-918, 2017.
  • [70] Song W, Guo M. “Quality variations of poultry litter biochar generated at different pyrolysis temperatures”. Journal of Analytical and Applied Pyrolysis, 94, 138-145, 2012.
  • [71] Ma M, Wang J, Song X, Su W, Bai Y, Yu G. “Co-gasification of cow manure and bituminous coal: A study on reactivity, synergistic effect, and char structure evolution”. ACS Omega, 5(27), 16779-16788, 2020.
  • [72] Zhang J, Lü F, Zhang H, Shao L, Chen D, He P. “Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication”. Scientific Reports, 5, 1-8, 2015.
  • [73] Cuixia Y, Yingming X, Lin W, Xuefeng L, Yuebing S, Hongtao J. “Effect of different pyrolysis temperatures on physico-chemical characteristics and lead (II) removal of biochar derived from chicken manure”. RSC Advances, 10(7), 3667-3674, 2020.

Piroliz yoluyla biyoçar sentezi için hammadde olarak inek gübresi, tavuk gübresi ve arıtma çamurunun incelenmesi: Küçük Menderes Havzası-Türkiye için bir vaka çalışması

Yıl 2024, Cilt: 30 Sayı: 4, 536 - 546, 30.08.2024

Öz

Tarımsal ve kentsel alanlardan kaynaklanan hayvan gübresi ve arıtma çamuru gibi atıkların doğrudan bertarafı olumsuz çevresel etkiler yaratmaktadır. Çalışma kapsamında Küçük Menderes Havzasında oluşan ve yıllık toplam üretimleri 6 milyon ton kuru maddeye ulaşan inek ve tavuk atıkları ile arıtma çamurundan biyoçar üretimi ele alınmış ve piroliz yoluyla sentezlenen biyoçarların özellikleri incelenmiştir. TGA-DTA sonuçlarına göre malzemelerde kütlesel kayıpların en fazla 200-500 °C aralığında olduğu belirlenmiştir. FT-IR sonuçları incelendiğinde, hidroksil gruplarının O-H gerilmesinin ve alifatiklerin C-H gerilmesinin kaybolması, numunelerin pirolizinin başarılı olduğunu göstermektedir. BET analizlerine göre inek ve tavuk gübresinden 700 °C’de sentezlenen biyoçarlar en iyi BET yüzey alanı değerini verirken, arıtma çamurundan 500 °C’de üretilen biyoçar en yüksek BET yüzey alanı değerini vermiştir. Bu farklılık, arıtma çamurunun bünyesinde kalan, >500 °C’de ergiyen, yüksek inert içeriğe sahip arıtma kimyasalları ile ilişkili bulunmuştur. SEM sonuçları BET sonuçlarını destekler nitelikte olup, ergiyen inert içeriğin oluşan biyoçarı kısmen bünyesinde hapsettiği değerlendirilmiştir. İnek ve tavuk gübresi ile arıtma çamurundan biyoçar üretimi umut vadediyor olmakla birlikte daha ileri çalışmalar gerektirmektedir.

Kaynakça

  • [1] Salihoğlu G, Poroy Z, Salihoğlu NK. “Life Cycle Assessment for Municipal Waste Management: Analysis for Bursa”. Pamukkale University Journal of Engineering Sciences, 25(6), 692-699, 2019.
  • [2] Duyar A, Akgül V, Civelekoglu G, Cırık K. “Performances of sequential denitrification and partial nitrification process for treatment of landfill leachate”. Pamukkale University Journal of Engineering Sciences, 27(6), 737-743, 2021.
  • [3] Kaza S, Shrikanth S, Chaudhary S. “More Growth, Less Garbage”. Urban Development Series, Washington, DC, USA, Scientific Report, 10.1596/978-1-4648-1329-0, 2021.
  • [4] Liu J, de Neergaard A, Jensen LS. “Increased retention of available nitrogen during thermal drying of solids of digested sewage sludge and manure by acid and zeolite addition”. Waste Management, 100, 306-317, 2019.
  • [5] Ghorbani M, Konvalina P, Walkiewicz A, Neugschwandtner RW, Kopecký M, Zamanian K, Chen WH, Bucur D. “Feasibility of biochar derived from sewage sludge to promote sustainable agriculture and mitigate GHG emissions-A review”. International Journal of Environmental Research and Public Health, 19(19), 1-23, 2022.
  • [6] Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ. “Sludge treatment: Current research trends”. Bioresource Technology, 243, 1159-1172, 2017.
  • [7] EuroStat. “Sewage Sludge Production and Disposal”. https://ec.europa.eu/eurostat/databrowser/view/ENV_WW_SPD__custom_6127736/default/table?lang=en (09.05.2023).
  • [8] Shaddel S, Bakhtiary-Davijany H, Kabbe C, Dadgar F, Østerhus SW. “Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies”. Sustainability (Switzerland), 11(12), 1-12, 2019.
  • [9] European Council.“Directive on Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture”. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31986L0278 (09.05.2023).
  • [10] Delibacak S, Voronina L, Morachevskaya E, Ongun AR. “Use of sewage sludge in agricultural soils: Useful or harmful”. Eurasian Journal of Soil Science, 9(2), 126-139, 2020.
  • [11] EuroStat. “Treatment of Waste by Waste Category, Hazardousness and Waste Management Operations”. https://ec.europa.eu/eurostat/databrowser/view/ENV_WASTRT__custom_795114/default/table?lang=en (09.05.2023).
  • [12] TurkStat. “Animal Statistics”. https://biruni.tuik.gov.tr/medas/?kn=101&locale=tr (09.05.2023).
  • [13] Yılmaz H, Lauwers L, Buysse J, Van Huylenbroeck G. “Economic aspects of manure management and practices for sustainable agriculture in Turkey”. Present Environment and Sustainable Development, 13(1), 249-263, 2019.
  • [14] Oni BA, Oziegbe O, Olawole OO. “Significance of biochar application to the environment and economy”. Annals of Agricultural Sciences, 64(2), 222-236, 2019.
  • [15] Singh S, Kumar V, Dhanjal DS, Datta S, Bhatia D, Dhiman J, Samuel J, Prasad R, Singh J. “A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects”. Journal of Cleaner Production, 269, 1-16, 2020.
  • [16] Shakoor A, Shahzad SM, Chatterjee N, Arif MS, Farooq TH, Altaf MM, Tufail MA, Dar AA, Mehmood T. “Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis”. Journal of Environmental Management, 285, 1-11, 2021.
  • [17] Inal A, Gunes A, Sahin O, Taskin MB, Kaya EC. “Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize”. Soil Use and Management, 31(1), 106-113, 2015.
  • [18] Sümer SK, Kavdır Y, Çiçek G. “Türkiye’de tarımsal ve hayvansal atıklardan biyokömür üretim potansiyelinin belirlenmesi”. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(4), 379-387, 2016.
  • [19] Dursun N. “Hayvansal ve bitkisel atıklar kaynaklı biyokömür üretim potansiyelinin belirlenmesi: Malatya ili örneği”. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 720-727, 2020.
  • [20] Demirbas A, Pehlivan E, Altun T. “Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources”. International Journal of Hydrogen Energy, 31(5), 613-620, 2006.
  • [21] Kaya EC, Akça H, Taşkın MB, Mounirou MM, Kaya T. “Biyokömür ve fosfor uygulamalarının mısır ve çeltik bitkilerinin gelişimi ve mineral element konsantrasyonlarına etkileri”. Toprak Su Dergisi, 8(1), 46-54, 2019.
  • [22] Arın A, Coşkan A. “Biyokömür uygulamalarının Karadeniz bölgesi toprağının pH’sına ve bazı biyolojik aktivite parametrelerine etkileri”. Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 187-199, 2021.
  • [23] Sakin E, Yanardağ İH. “Effect of application of sheep manure and its biochar on carbon emissions in salt affected calcareous soil in Sanliurfa region se Turkey”. Fresenius Environmental Bulletin, 28(4), 2553-2560, 2019.
  • [24] Sönmez F, Çığ F. “Artan dozdaki biyokömür ve solucan gübresi uygulamalarının buğdayda ve toprakta besin elementi içeriği üzerine etkilerinin belirlenmesi”. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2(4), 526-536, 2019.
  • [25] The Ministry of Agriculture and Forestry. “Küçük Menderes River Basin Management Plan, Strategic Environmental Assessment Scoping Report”. Ankara, Türkiye, 1, 2018.
  • [26] The Ministry of Agriculture and Forestry. “Küçük Menderes River Basin Management Plan Strategic Environmental Assessment Final Report”. Ankara, Türkiye, 1, 2020.
  • [27] The Ministry of Environment and Urbanization, “The Regulation on Using Domestic and Urban Treatment Sludge in Soil”. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=14167&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5 (09.05.2023).
  • [28] Özdemir A, Özkan A, Günkaya Z, Banar M. “Co-pyrolysis of municipal solid waste and municipal sewage sludge and characterization of liquid product”. Pamukkale University Journal of Engineering Sciences, 28(6), 920-928, 2022.
  • [29] Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. “Biochar production by sewage sludge pyrolysis”. Journal of Analytical and Applied Pyrolysis, 101, 72-78, 2013.
  • [30] Gao N, Li J, Qi B, Li A, Duan Y, Wang Z. “Thermal analysis and products distribution of dried sewage sludge pyrolysis”. Journal of Analytical and Applied Pyrolysis, 105, 43-48, 2014.
  • [31] Font-Palma C. “Methods for the treatment of cattle manure-A review”. Journal of Carbon Research, 5(2), 1-30, 2019.
  • [32] Topaç FO, Uçaroğlu S. “Atıksu arıtma çamurlarının sürdürülebilir kullanım alternatifleri: Öncelikli yaklaşımlar”. European Journal of Science and Technology, 20, 728-739, 2020.
  • [33] The Ministry of Environment and Urbanization. “Zero Waste Regulation”. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=32659&MevzuatTur=7&MevzuatTertip=5 (04.05.2023).
  • [34] European Commission. “Towards a circular economy- a zero waste programme for europe”. Brussels, Belgium, Scientific Report, 52014DC0398, 2014.
  • [35] European Parliament and Council. “Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives”. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098 (05.05.2023).
  • [36] Environmental Protection Agency (EPA), “How Communities Have Defined Zero Waste”. https://www.epa.gov/transforming-waste-tool/how-communities-have-defined-zero-waste (16.05.2023).
  • [37] European Union Council. “The urban waste water treatment directive”. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271 (12.05.2023).
  • [38] Environmental Protection Agency (EPA). “Biosolids Laws and Regulations”. https://www.epa.gov/biosolids/biosolids-laws-and-regulations#how (12.05.2023).
  • [39] İzmir Governorship Directorate of Agriculture and Forestry. “İzmir Brifing”. https://izmir.tarimorman.gov.tr/Belgeler/2021%20Brifing.pdf (16.05.2023).
  • [40] İzmir Commodity Exchange. “Cattle and Sheep Animal Asset and Milk Production: Current Status (Turkey - Izmir). https://itb.org.tr/Sayfa/121-buyukbas-kucukbas-hayvan-varligi-ve-sut-uretimi-mevcut-durumu-turkiye--izmir (16.05.2023).
  • [41] The Ministry of Agriculture and Forestry. “Preparation of River Basin Management Plan for Küçük Menderes Basin-River Basin Management Plan Final Report”. Ankara, Turkey, 1, 2019.
  • [42] The Administration of İzmir Water and Sewerage. “Facilities and Wastewater Treatment Amounts”. https://www.izsu.gov.tr/tr/TesisDetay/1/32/2 (25.05.2023)
  • [43] The Ministry of Environment and Urbanization. “Sludge Treatment and Removal”. Ankara, Turkey, 2019-1, 2019.
  • [44] TurkStat. “Census Based on Address Records”. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr (25.05.2023).
  • [45] The Ministry of Environment and Urbanization. “Determination of Sewage Sludge Amount”. Ankara, Turkey, 2, 2019.
  • [46] ASTM International. “ASTM D2974-13- Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils”. 10.1520/D2974-13, 2014.
  • [47] ASTM International. “ASTM E872-82- Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels”. 10.1520/E0872-82R19.2, 2019.
  • [48] ASTM International. “ASTM E1755-01- Standard Test Method for Ash in Biomass”. 10.1520/E1755-01R20.2, 2020.
  • [49] Basu P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. 2nd ed. London, UK, Academic Press, 2013.
  • [50] ASTM International. “ASTM D5373-21- Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke”. 10.1520/D5373-21, 2021.
  • [51] ASTM International. “ASTM D4239-18e1-Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion”. 10.1520/D4239-18E01, 2018.
  • [52] Thipkhunthod P, Meeyoo V, Rangsunvigit P, Kitiyanan B, Siemanond K, Rirksomboon T. “Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses”. Fuel, 84(7-8), 849-857, 2005.
  • [53] Otero M, Díez C, Calvo LF, García AI, Morán A. “Analysis of the co-combustion of sewage sludge and coal by TG-MS”. Biomass and Bioenergy, 22(4), 319-329, 2002.
  • [54] Cely P, Gascó G, Paz-Ferreiro J, Méndez A. “Agronomic properties of biochars from different manure wastes”. Journal of Analytical and Applied Pyrolysis, 111, 173-182, 2015.
  • [55] Yuan X, He T, Cao H, Yuan Q. “Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods”. Renewable Energy, 107, 489-496, 2017.
  • [56] Quiroga G, Castrillón L, Fernández-Nava Y, Marañón E. “Physico-chemical analysis and calorific values of poultry manure”. Waste Management, 30(5), 880-884, 2010.
  • [57] Zaker A, Chen Z, Zaheer-Uddin M. “Catalytic pyrolysis of sewage sludge with HZSM5 and sludge-derived activated char: A comparative study using TGA-MS and artificial neural networks”. Journal of Environmental Chemical Engineering, 9(5), 1-10, 2021.
  • [58] De Oliveira Silva J, Filho GR, Da Silva Meireles C, Ribeiro SD, Vieira JG, Da Silva CV, Cerqueira, DA. “Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. the case of sludge in the city of Uberlândia-MG, Brazil”. Thermochimica Acta, 528, 72-75, 2012.
  • [59] Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y. “Chemical characterization of rice straw-derived biochar for soil amendment”. Biomass and Bioenergy, 47, 268-276, 2012.
  • [60] Jouiad M, Al-Nofeli N, Khalifa N, Benyettou F, Yousef LF. “Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm”. Journal of Analytical and Applied Pyrolysis, 111, 183-190, 2015.
  • [61] Li G, Zhu W, Zhu L, Chai X. “Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse”. Korean Journal of Chemical Engineering, 33(7), 2215-2221, 2016.
  • [62] Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK. “Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels”. Bioenergy Research, 6(2), 663-677, 2013.
  • [63] Elnour AY, Alghyamah AA, Shaikh HM, Poulose AM, Al-Zahrani SM, Anis A, Al-Wabel MI. “Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites”. Applied Sciences, 9(6), 7-9, 2019.
  • [64] Reza MS, Afroze S, Bakar MSA, Saidur R, Aslfattahi N, Taweekun J, Azad AK. “Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature”. Biochar, 2(2), 239-251, 2020.
  • [65] Siengchum T, Isenberg M, Chuang SSC. “Fast pyrolysis of coconut biomass-An FTIR study”. Fuel, 105, 559-565, 2013.
  • [66] Taşar Ş, Kaya F, Özer A. “A Study on the Pyrolysis of Peanut Shells at Different Isothermal Conditions and Determination of the Kinetic Parameters”. Pamukkale University Journal of Engineering Sciences, 21(7), 306-313, 2015.
  • [67] Stylianou M, Christou A, Dalias P, Polycarpou P, Michael C, Agapiou A, Papanastasiou P, Fatta-Kassinos D. “Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds”. Journal of the Energy Institute, 93(5), 2063-2073, 2020.
  • [68] Murray RS, Quirk JP. “Surface Area of Clays”. Langmuir, 6(1), 122-124, 1990.
  • [69] Pehlivan E. “Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of reactive red (procion red MX-5B) from aqueous solutions”. Pamukkale University Journal of Engineering Sciences, 23(7), 912-918, 2017.
  • [70] Song W, Guo M. “Quality variations of poultry litter biochar generated at different pyrolysis temperatures”. Journal of Analytical and Applied Pyrolysis, 94, 138-145, 2012.
  • [71] Ma M, Wang J, Song X, Su W, Bai Y, Yu G. “Co-gasification of cow manure and bituminous coal: A study on reactivity, synergistic effect, and char structure evolution”. ACS Omega, 5(27), 16779-16788, 2020.
  • [72] Zhang J, Lü F, Zhang H, Shao L, Chen D, He P. “Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication”. Scientific Reports, 5, 1-8, 2015.
  • [73] Cuixia Y, Yingming X, Lin W, Xuefeng L, Yuebing S, Hongtao J. “Effect of different pyrolysis temperatures on physico-chemical characteristics and lead (II) removal of biochar derived from chicken manure”. RSC Advances, 10(7), 3667-3674, 2020.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Ayşenur Özuysal

Görkem Akıncı

Yayımlanma Tarihi 30 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 4

Kaynak Göster

APA Özuysal, A., & Akıncı, G. (2024). Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(4), 536-546.
AMA Özuysal A, Akıncı G. Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2024;30(4):536-546.
Chicago Özuysal, Ayşenur, ve Görkem Akıncı. “Investigation of Cattle Manure, Poultry Manure and Sewage Sludge As Raw Materials for Biochar Synthesis via Pyrolysis: A Case Study for Küçük Menderes Basin-Türkiye”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 4 (Ağustos 2024): 536-46.
EndNote Özuysal A, Akıncı G (01 Ağustos 2024) Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 4 536–546.
IEEE A. Özuysal ve G. Akıncı, “Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 4, ss. 536–546, 2024.
ISNAD Özuysal, Ayşenur - Akıncı, Görkem. “Investigation of Cattle Manure, Poultry Manure and Sewage Sludge As Raw Materials for Biochar Synthesis via Pyrolysis: A Case Study for Küçük Menderes Basin-Türkiye”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/4 (Ağustos 2024), 536-546.
JAMA Özuysal A, Akıncı G. Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:536–546.
MLA Özuysal, Ayşenur ve Görkem Akıncı. “Investigation of Cattle Manure, Poultry Manure and Sewage Sludge As Raw Materials for Biochar Synthesis via Pyrolysis: A Case Study for Küçük Menderes Basin-Türkiye”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 4, 2024, ss. 536-4.
Vancouver Özuysal A, Akıncı G. Investigation of cattle manure, poultry manure and sewage sludge as raw materials for biochar synthesis via pyrolysis: A case study for Küçük Menderes Basin-Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(4):536-4.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.