Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of an active landslide area with the Electrical Resistivity Tomography (ERT) and surface-wave analysis methods in Hendek, Sakarya

Yıl 2024, Cilt: 30 Sayı: 5, 686 - 695, 30.10.2024

Öz

Landslides, one of the natural disaster problems, occur due to slope
stability triggered by natural or human activities. Once such mass
movements have begun, they are challenging to stop and, in some cases,
almost impossible. Geophysical methods are very effective in
determining the character and mechanical properties of landslides with
a high resolution before or after mass movement. This study aims
identifying the landslide that tends to continue in the Çamlıca
neighborhood of the Hendek district of Sakarya province by electrical
resistivity (ERT), surface waves analysis (MASW-ReMi), and mechanical
soil drilling. The low resistivity and low shear wave velocity (Vs) unit in
the geophysical sections was determined as a saturated clayey thick
cover layer from the borehole log. This clayey unit causes mass
movement on the slip surface. Andesite-basalt-containing bedrock unit
under the slip surface has been identified as having high resistivity and
high velocity in geophysical sections. The integrated use of geophysical
methods in this landslide, determined as the progressive mechanism,
contributed significantly to the realistic modeling of the landslide
internal structure.

Kaynakça

  • [1] Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F. “Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy”. Geomorphology, 139, 79-90, 2012.
  • [2] Akpan AE, Ilori AO, Essien NU. “Geophysical investigation of Obot Ekpo Landslide site, Cross River State, Nigeria”. Journal of African Earth Sciences, 109, 154-167, 2015.
  • [3] Rezaei S, Shooshpasha I, Rezaei H. “Reconstruction of landslide model from ERT, geotechnical, and field data, Nargeschal landslide, Iran”. Bulletin of Engineering Geology and the Environment, 78(5), 3223-3237, 2019.
  • [4] Coruk Ö, Kavak A. “Causes of Bursa Yıldırım district mollaarap landslide and improvement studies”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(8), 1408-1412, 2020.
  • [5] Guerriero L, Revellino P, Luongo A, Focareta M, Grelle G, Guadagno FM. “The mount pizzuto earth flow: deformational pattern and recent thrusting evolution”. Journal of Maps, 12(5), 1187-1194, 2016.
  • [6] Afet ve Acil Durum Yönetimi Başkanlığı. “Provincial Disaster Risk Reduction Plan of Sakarya”. AFAD, Ankara, Türkiye, 2022. https://sakarya.afad.gov.tr/kurumlar/sakarya.afad/Dok umanlar/Sakarya-IRAP-plani-onaylanmis-_1_.pdf
  • [7] Cihangir ME. “Kayma tipi heyelanların farklı duyarlılık modellerinde kombinasyonu: Sakarya Havzası Yukarı Çığırı Örneği”. Türk Coğrafya Dergisi, 80, 21-38, 2022.
  • [8] Su L, Xu X, Geng X, Liang S. “An integrated geophysical approach for investigating hydro-geological characteristics of a debris landslide in the Wenchuan earthquake area”. Engineering Geology, 219, 52-63, 2017.
  • [9] Emre Ö, Duman TY, Özalp S, Şaroğlu F, Olgun Ş, Elmacı H, Çan T. “Active fault database of Turkey”. Bulletin of Earthquake Engineering, 16(8), 3229-3275, 2018.
  • [10] Sarıaslan M, Yurdakul ME, Osman ÇR, Keçer M, Basa F, Şentürk K. “Sakarya İlinin çevre jeolojisi ve doğal kaynakları”. MTA Raporu, Ankara, Türkiye, 10195, 1998.
  • [11] Mezerreg NEH, Kessasra F, Bouftouha Y, Bouabdallah H, Bollot N, Baghdad A, Bougdal R. “Integrated geotechnical and geophysical investigations in a landslide site at Jijel, Algeria”. Journal of African Earth Sciences, 160, 1-12, 2019.
  • [12] Kahyaoğlu MR, İmançlı G. “Stabilization of a failed slope with piled structures”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 94-99, 2008.
  • [13] Hibert C, Grandjean G, Bitri A, Travelletti J, Malet JP. “Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France)”. Engineering Geology, 128, 23-29, 2012.
  • [14] Imani P, Tian G, Hadiloo S, El-Raouf AA. “Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China”. Journal of Applied Geophysics, 184, 1-13, 2021.
  • [15] Devi A, Israil M, Anbalagan R, Gupta PK. “Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region”. Journal of Applied Geophysics, 144, 78-85, 2017.
  • [16] Göktürkler G, Balkaya Ç, Erhan Z. “Geophysical investigation of a landslide: The Altındağ landslide site, İzmir (western Turkey)”. Journal of Applied Geophysics, 65(2), 84-96, 2008.
  • [17] Yalcinkaya E, Alp H, Ozel O, Gorgun E, Martino S, Lenti L, Bourdeau, Bigarre p, Coccia S. “Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey”. Journal of Applied Geophysics, 134, 23-35, 2016.
  • [18] Perrone A, Canora F, Calamita G, Bellonova J, Serlenga V, Panabianco S, Trangi N, Piscitelli S, Vignola L, Doglioni A, Simeone V, Sdao F, Lapenna V. “A multidisciplinary approach for landslide residual risk assessment: The Pomarico landslide (Basilicata Region, Southern Italy) case study”. Landslides, 18(1), 353-365, 2021.
  • [19] Hussain Y, Hamza O, Cárdenas-Soto M, Borges WR, Dou J, Rebolledo JFR, Prado RL. “Characterization of Sobradinho landslide in fluvial valley using MASW and ERT methods”. REM-International Engineering Journal, 73(4), 487-497, 2020.
  • [20] Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD. “Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK”, Geomorphology, 125, 472-484, 2011.
  • [21] Capizzi P, Martorana R. “Integration of constrained electrical and seismic tomographies to study the landslide affecting the cathedral of Agrigento”. Journal of Geophysics and Engineering, 11(4), 1-16, 2014.
  • [22] Duman TY, Çan T, Emre Ö. “1/1.500.000 ölçekli Türkiye Heyelan Envanteri Haritası”. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi, 27, 2011.
  • [23] Uyanık O, Çatlıoğlu B. “Determination of landslide geometry by using electrical resistivity and seismic refraction methods”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 22-29, 2014.
  • [24] Yılmaz S, Narman C. “2-D electrical resistivity imaging for investigating an active landslide along a ridgeway in Burdur region, southern Turkey”. Arabian Journal of Geosciences, 8(5), 3343-3349, 2015.
  • [25] Samodra G, Ramadhan MF, Sartohadi J, Setiawan MA, Christanto N, Sukmawijaya A. “Characterization of displacement and internal structure of landslides from multitemporal UAV and ERT imaging”. Landslides, 17(10, 2455-2468, 2020.
  • [26] Petronio L, Boaga J, Cassiani G. “Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics”. Journal of Applied Geophysics, 128, 58-67, 2016.
  • [27] Perrone A, Lapenna V, Piscitelli S. “Electrical resistivity tomography technique for landslide investigation: A review”. Earth-Science Reviews, 135, 65-82, 2014.
  • [28] Karaaslan H, Karavul C. “Usefulness of electrical and magnetic methods in finding buried structure of the Alabanda Ancient Cistern in Çine Town, Aydın City, Turkey”. Arabian Journal of Geosciences, 11(8), 1-11, 2018.
  • [29] Loke MH, Barker RD. “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1”. Geophysical Prospecting, 44(1), 131-152, 1996.
  • [30] Xia J, Miller RD, Park CB. “Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves”. Geophysics, 64(3), 691-700, 1999.
  • [31] Louie JN. “Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays”. Bulletin of the Seismological Society of America, 91(2), 347-364, 2001.
  • [32] Garofalo F, Foti S, Hollender F, Bard PY, Cornou C, Cox BR, Ohrnberger M, Sicilia D, Asten M, Giulio GD, Forbriger T, Guillier B, Hayashi K, Martin A, Matsushima S, Mercerat D, Poggi V, Yamanaka H. “InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods”. Soil Dynamics and Earthquake Engineering, 82, 222-240, 2016.
  • [33] Silahtar A. “Evaluation of local soil conditions with 1D nonlinear site response analysis of Arifiye (Sakarya District), Turkey”. Natural Hazards, 116, 727-751, 2023.
  • [34] Kanbur MZ, Tokbaş İ. “Refraction microtremor (ReMiTM)- based investigation of the accumulation of Quaternary sediments on the northern edge of Isparta, Turkey”. Arabian Journal of Geosciences, 13, 1-10, 2020.
  • [35] Harba P, Pilecki Z, Krawiec K. “Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface”. Acta Geophysica, 67(6), 1875-1883, 2019.
  • [36] Xu X, Su L, Zhang G, Zhu H. “Analysis on shear wave velocity structure of a gravel landslide based on dualsource surface wave method”. Landslides, 14(3), 1127-1137, 2017.
  • [37] Park CB, Miller RD, Miura H. “Optimum field parameters of an MASW survey”. Proceedings of the 6th SEG-J International Symposium (Extended Abstracts), Tokyo, Japan, 22-23 May 2002.
  • [38] Zeng C, Xia J, Miller RD, Tsoflias GP, Wang Z. “Numerical investigation of MASW applications in presence of surface topography”. Journal pf Applied Geophysics, 84, 52-60, 2012.
  • [39] Olafsdottir EA, Erlingsson S, Bessason B. “Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils”. Canadian Geotechnical Journal, 55(2), 217-233, 2018.

Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek

Yıl 2024, Cilt: 30 Sayı: 5, 686 - 695, 30.10.2024

Öz

Yıkıcı doğal afetlerden birisi olan heyelanlar, şev stabilitesinin doğa
veya insan kaynaklı aktiviteler ile tetiklenmesi sonucu meydana
gelmektedir. Bu tür kütle hareketlerini başladıktan sonra onları
durdurmak çok zor ve hatta bazı durumlarda neredeyse imkânsızdır.
Bu kütle hareketinin öncesi veya sonrasında, heyelanın karakterinin ve
mekanik özeliklerinin yüksek çözünürlüklü belirlenmesinde jeofizik
yöntemler oldukça etkilidir. Bu çalışmada Sakarya ili Hendek ilçesi
Çamlıca Mahallesi’nde meydana gelen ve devam etme eğiliminde olan
bir heyelanın elektrik özdirenç (ERT), yüzey dalgaları analizi (MASWReMi) ve mekanik zemin sondajı ile tanımlanması amaçlanmıştır. Elde
edilen jeofizik kesitlerdeki düşük özdirençli ve düşük kayma dalgası hızlı
(Vs) birim sondaj logundan suya doygun killi kalın örtü tabası olarak
belirlenmiştir. Kayma yüzeyi üzerinde kütle hareketine sebep olan bu
birimin altındaki andezit-bazalt içerikli anakaya birimi jeofizik
kesitlerde yüksek özdirençli ve yüksek hızlı olarak tespit edilmiştir.
İlerleyici hareket mekanizmasına uygun olarak belirlenen bu heyelanda
jeofizik yöntemlerin tümleşik kullanımı, heyelanın içyapısının gerçeğe
yakın olarak modellenmesine önemli katkı sağlamıştır.

Kaynakça

  • [1] Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F. “Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy”. Geomorphology, 139, 79-90, 2012.
  • [2] Akpan AE, Ilori AO, Essien NU. “Geophysical investigation of Obot Ekpo Landslide site, Cross River State, Nigeria”. Journal of African Earth Sciences, 109, 154-167, 2015.
  • [3] Rezaei S, Shooshpasha I, Rezaei H. “Reconstruction of landslide model from ERT, geotechnical, and field data, Nargeschal landslide, Iran”. Bulletin of Engineering Geology and the Environment, 78(5), 3223-3237, 2019.
  • [4] Coruk Ö, Kavak A. “Causes of Bursa Yıldırım district mollaarap landslide and improvement studies”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(8), 1408-1412, 2020.
  • [5] Guerriero L, Revellino P, Luongo A, Focareta M, Grelle G, Guadagno FM. “The mount pizzuto earth flow: deformational pattern and recent thrusting evolution”. Journal of Maps, 12(5), 1187-1194, 2016.
  • [6] Afet ve Acil Durum Yönetimi Başkanlığı. “Provincial Disaster Risk Reduction Plan of Sakarya”. AFAD, Ankara, Türkiye, 2022. https://sakarya.afad.gov.tr/kurumlar/sakarya.afad/Dok umanlar/Sakarya-IRAP-plani-onaylanmis-_1_.pdf
  • [7] Cihangir ME. “Kayma tipi heyelanların farklı duyarlılık modellerinde kombinasyonu: Sakarya Havzası Yukarı Çığırı Örneği”. Türk Coğrafya Dergisi, 80, 21-38, 2022.
  • [8] Su L, Xu X, Geng X, Liang S. “An integrated geophysical approach for investigating hydro-geological characteristics of a debris landslide in the Wenchuan earthquake area”. Engineering Geology, 219, 52-63, 2017.
  • [9] Emre Ö, Duman TY, Özalp S, Şaroğlu F, Olgun Ş, Elmacı H, Çan T. “Active fault database of Turkey”. Bulletin of Earthquake Engineering, 16(8), 3229-3275, 2018.
  • [10] Sarıaslan M, Yurdakul ME, Osman ÇR, Keçer M, Basa F, Şentürk K. “Sakarya İlinin çevre jeolojisi ve doğal kaynakları”. MTA Raporu, Ankara, Türkiye, 10195, 1998.
  • [11] Mezerreg NEH, Kessasra F, Bouftouha Y, Bouabdallah H, Bollot N, Baghdad A, Bougdal R. “Integrated geotechnical and geophysical investigations in a landslide site at Jijel, Algeria”. Journal of African Earth Sciences, 160, 1-12, 2019.
  • [12] Kahyaoğlu MR, İmançlı G. “Stabilization of a failed slope with piled structures”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 94-99, 2008.
  • [13] Hibert C, Grandjean G, Bitri A, Travelletti J, Malet JP. “Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France)”. Engineering Geology, 128, 23-29, 2012.
  • [14] Imani P, Tian G, Hadiloo S, El-Raouf AA. “Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China”. Journal of Applied Geophysics, 184, 1-13, 2021.
  • [15] Devi A, Israil M, Anbalagan R, Gupta PK. “Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region”. Journal of Applied Geophysics, 144, 78-85, 2017.
  • [16] Göktürkler G, Balkaya Ç, Erhan Z. “Geophysical investigation of a landslide: The Altındağ landslide site, İzmir (western Turkey)”. Journal of Applied Geophysics, 65(2), 84-96, 2008.
  • [17] Yalcinkaya E, Alp H, Ozel O, Gorgun E, Martino S, Lenti L, Bourdeau, Bigarre p, Coccia S. “Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey”. Journal of Applied Geophysics, 134, 23-35, 2016.
  • [18] Perrone A, Canora F, Calamita G, Bellonova J, Serlenga V, Panabianco S, Trangi N, Piscitelli S, Vignola L, Doglioni A, Simeone V, Sdao F, Lapenna V. “A multidisciplinary approach for landslide residual risk assessment: The Pomarico landslide (Basilicata Region, Southern Italy) case study”. Landslides, 18(1), 353-365, 2021.
  • [19] Hussain Y, Hamza O, Cárdenas-Soto M, Borges WR, Dou J, Rebolledo JFR, Prado RL. “Characterization of Sobradinho landslide in fluvial valley using MASW and ERT methods”. REM-International Engineering Journal, 73(4), 487-497, 2020.
  • [20] Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD. “Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK”, Geomorphology, 125, 472-484, 2011.
  • [21] Capizzi P, Martorana R. “Integration of constrained electrical and seismic tomographies to study the landslide affecting the cathedral of Agrigento”. Journal of Geophysics and Engineering, 11(4), 1-16, 2014.
  • [22] Duman TY, Çan T, Emre Ö. “1/1.500.000 ölçekli Türkiye Heyelan Envanteri Haritası”. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi, 27, 2011.
  • [23] Uyanık O, Çatlıoğlu B. “Determination of landslide geometry by using electrical resistivity and seismic refraction methods”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 22-29, 2014.
  • [24] Yılmaz S, Narman C. “2-D electrical resistivity imaging for investigating an active landslide along a ridgeway in Burdur region, southern Turkey”. Arabian Journal of Geosciences, 8(5), 3343-3349, 2015.
  • [25] Samodra G, Ramadhan MF, Sartohadi J, Setiawan MA, Christanto N, Sukmawijaya A. “Characterization of displacement and internal structure of landslides from multitemporal UAV and ERT imaging”. Landslides, 17(10, 2455-2468, 2020.
  • [26] Petronio L, Boaga J, Cassiani G. “Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics”. Journal of Applied Geophysics, 128, 58-67, 2016.
  • [27] Perrone A, Lapenna V, Piscitelli S. “Electrical resistivity tomography technique for landslide investigation: A review”. Earth-Science Reviews, 135, 65-82, 2014.
  • [28] Karaaslan H, Karavul C. “Usefulness of electrical and magnetic methods in finding buried structure of the Alabanda Ancient Cistern in Çine Town, Aydın City, Turkey”. Arabian Journal of Geosciences, 11(8), 1-11, 2018.
  • [29] Loke MH, Barker RD. “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1”. Geophysical Prospecting, 44(1), 131-152, 1996.
  • [30] Xia J, Miller RD, Park CB. “Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves”. Geophysics, 64(3), 691-700, 1999.
  • [31] Louie JN. “Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays”. Bulletin of the Seismological Society of America, 91(2), 347-364, 2001.
  • [32] Garofalo F, Foti S, Hollender F, Bard PY, Cornou C, Cox BR, Ohrnberger M, Sicilia D, Asten M, Giulio GD, Forbriger T, Guillier B, Hayashi K, Martin A, Matsushima S, Mercerat D, Poggi V, Yamanaka H. “InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods”. Soil Dynamics and Earthquake Engineering, 82, 222-240, 2016.
  • [33] Silahtar A. “Evaluation of local soil conditions with 1D nonlinear site response analysis of Arifiye (Sakarya District), Turkey”. Natural Hazards, 116, 727-751, 2023.
  • [34] Kanbur MZ, Tokbaş İ. “Refraction microtremor (ReMiTM)- based investigation of the accumulation of Quaternary sediments on the northern edge of Isparta, Turkey”. Arabian Journal of Geosciences, 13, 1-10, 2020.
  • [35] Harba P, Pilecki Z, Krawiec K. “Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface”. Acta Geophysica, 67(6), 1875-1883, 2019.
  • [36] Xu X, Su L, Zhang G, Zhu H. “Analysis on shear wave velocity structure of a gravel landslide based on dualsource surface wave method”. Landslides, 14(3), 1127-1137, 2017.
  • [37] Park CB, Miller RD, Miura H. “Optimum field parameters of an MASW survey”. Proceedings of the 6th SEG-J International Symposium (Extended Abstracts), Tokyo, Japan, 22-23 May 2002.
  • [38] Zeng C, Xia J, Miller RD, Tsoflias GP, Wang Z. “Numerical investigation of MASW applications in presence of surface topography”. Journal pf Applied Geophysics, 84, 52-60, 2012.
  • [39] Olafsdottir EA, Erlingsson S, Bessason B. “Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils”. Canadian Geotechnical Journal, 55(2), 217-233, 2018.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Hasan Karaaslan

Ali Silahtar

Yayımlanma Tarihi 30 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 5

Kaynak Göster

APA Karaaslan, H., & Silahtar, A. (2024). Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(5), 686-695.
AMA Karaaslan H, Silahtar A. Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2024;30(5):686-695.
Chicago Karaaslan, Hasan, ve Ali Silahtar. “Elektrik Rezistivite Tomografi (ERT) Ve yüzey Dalgası Analiz yöntemleriyle Aktif Bir Heyelan alanının Incelenmesi, Sakarya, Hendek”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 5 (Ekim 2024): 686-95.
EndNote Karaaslan H, Silahtar A (01 Ekim 2024) Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 5 686–695.
IEEE H. Karaaslan ve A. Silahtar, “Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 5, ss. 686–695, 2024.
ISNAD Karaaslan, Hasan - Silahtar, Ali. “Elektrik Rezistivite Tomografi (ERT) Ve yüzey Dalgası Analiz yöntemleriyle Aktif Bir Heyelan alanının Incelenmesi, Sakarya, Hendek”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/5 (Ekim 2024), 686-695.
JAMA Karaaslan H, Silahtar A. Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:686–695.
MLA Karaaslan, Hasan ve Ali Silahtar. “Elektrik Rezistivite Tomografi (ERT) Ve yüzey Dalgası Analiz yöntemleriyle Aktif Bir Heyelan alanının Incelenmesi, Sakarya, Hendek”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 5, 2024, ss. 686-95.
Vancouver Karaaslan H, Silahtar A. Elektrik Rezistivite Tomografi (ERT) ve yüzey dalgası analiz yöntemleriyle aktif bir heyelan alanının incelenmesi, Sakarya, Hendek. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(5):686-95.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.