Araştırma Makalesi
BibTex RIS Kaynak Göster

Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu

Yıl 2024, Cilt: 30 Sayı: 6, 715 - 728, 29.11.2024

Öz

Proton değişim membranlı yakıt pilleri (PEMYP) altı esas bileşenden
oluşmaktadır: akım toplayıcılar (AT), uç plakalar (UP), bipolar plakalar
(BP), gaz difüzyon tabakaları (GDT), contalar ve membran elektrot
ünitesi (MEÜ)’dir. Maksimum performans, yüksek dayanım ve
güvenilirlik için PEMYP montaj veya tasarım parametreleri kritik bir
öneme sahiptir. Optimum yakıt pil montaj ve tasarımı için hücrenin
mekanik davranışlarının bilinmesi gerekmektedir. Yakıt pilinin
mekanik montaj sürecinin deneysel tekniklerle gerçek zamanlı olarak
yapılması oldukça maliyetli ve zaman alıcıdır. Bu nedenle, 100 cm² aktif
alana sahip PEMYP’nin üç boyutlu sonlu eleman modeli geliştirilmiş,
hücre bileşenlerindeki gerilme ve deformasyon değerleri Ansys
Mechanical yazılımı ile hesaplanmıştır. Optimum seviyeleri elde etmek
ve tasarım parametrelerinin etkisini analiz etmek için cevap yüzeyi
yöntemi (CYY) uygulanmıştır. İstatistiksel analiz için cıvata sayısı,
cıvata delik çapı ve sıkıştırma torkları üç farklı bağımsız tasarım
değişkeni olarak tanımlanmış, bunların yanıt parametreleri olarak
belirlenen gerilme ve deformasyon üzerindeki bireysel-birleşik etkileri
analiz edilmiştir. Bu nedenle çalışılan cıvata sayısı, cıvata delik çapı ve
sıkıştırma torku aralıkları sırasıyla 12-20, 4-6 mm ve 9-15 Nm’dir.
Cıvata deliği çapının 6 mm'den 4 mm'ye düşürülmesi sonucunda,
toplam deformasyon yaklaşık olarak %60.4 oranında artmıştır. Artan
cıvata sayısıyla birlikte daha homojen gerilme dağılımları sağlanmış ve
uç plakadaki maksimum gerilme yaklaşık olarak %83.3 oranında
artmıştır. Sıkıştırma torkundaki yükselme ise membran üzerinde
yaklaşık olarak 21 MPa'lık bir basınç artışına neden olmuştur.
Çalışmanın sayısal ve istatistiksel bulguları, PEMYP performansının,
dayanıklılığının ve güvenilirliğinin değerlendirilmesinde önemli bir
rehber olabilir.

Kaynakça

  • [1] Xu J, Zhang C, Wan Z, Chen X, Chan SH, Tu Z. “Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: a review”. Renewable and Sustainable Energy Reviews, 155, 1-23, 2022.
  • [2] Aadil Rasool M, Khalilpour K, Rafiee A, Karimi I, Madlener R. “Evaluation of alternative power-to-chemical pathways for renewable energy exports”. Energy Conversion and Management, 287, 1-16, 2023.
  • [3] Becken S, Mackey B, Lee DS. “Implications of preferential access to land and clean energy for Sustainable Aviation Fuels”. Science of The Total Environment, 886, 1-11, 2023.
  • [4] Akgül G, Turan Z. ‘‘Application of biochar derived from industrial tea waste into the fuel cell-a novel approach’’. Pamukkale University Journal of Engineering Sciences, 26(1), 122-126, 2020.
  • [5] Yola M. ‘‘Application of polyoxometalate/carbon nitride nanotubes nanocomposite for directly methanol oxidation’’. Pamukkale University Journal of Engineering Sciences, 25(7), 904-906, 2019.
  • [6] Barbir F, Yazici S.“Status and development of PEM fuel cell technology”. International Journal of Energy Research, 32(5), 369-378, 2008.
  • [7] Tawalbeh M, Alarab S, Al-Othman A, Javed RMN. “The operating parameters, structural composition, and fuel sustainability aspects of PEM fuel cells: a mini review”. Fuels, 3(3), 449-474, 2022.
  • [8] Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF, Ashuri T, Krohn J. “Hydrogen fuel cell vehicles; Current status and future prospect”. Applied Sciences, 9(11), 1-17, 2019.
  • [9] Song K, Wang Y, Ding Y, Xu H, Mueller-Welt P, Stuermlinger T, Bause K, Ehrmann C, Weinmann HW, Schaefer J, Fleischer J, Zhu K, Weihard F, Trostmann M, Schwartze M, Albers A. “Assembly techniques for proton exchange membrane fuel cell stack: A literature review”. Renewable and Sustainable Energy Reviews, 153, 1-28, 2022.
  • [10] Dafalla A, Jiang F. “Stresses and their impacts on proton exchange membrane fuel cells: A review”. International Journal of Hydrogen Energy, 43, 2327-2348, 2018.
  • [11] Chen CY, Su SC. “Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates”. Energy, 159, 440-447, 2018.
  • [12] Gatto I, Urbani F, Giacoppo G, Barbera O, Passalacqua E. “Influence of the bolt torque on PEFC performance with different gasket materials”. International Journal of Hydrogen Energy, 36(20), 13043-13050, 2011.
  • [13] Huo W, Wu P, Xie B, Du Q, Liang J, Qin Z, Zhang G, Sarani I, Xu W, Liu B, Wang B, Yin Y, Lin J, Jiao K. “Elucidating nonuniform assembling effect in large-scale PEM fuel cell by coupling mechanics and performance models”. Energy Conversion and Management, 277, 1-14, 2023.
  • [14] Liu J, Tan J, Yang W, Li Y, Wang C, “Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism”. Energy, 229, 1-12, 2021.
  • [15] Bates A, Mukherjee S, Hwang S, Lee SC, Kwon O., Choi GH, Park S. “Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack”. International Journal of Hydrogen Energy, 38(15), 6481-6493, 2013.
  • [16] Zhang Z, Tao WQ. “Effect of assembly pressure on the performance of proton exchange membrane fuel cell”. Energy Storage and Saving, 2, 359-369, 2023.
  • [17] Atyabi SA, Afshari E, Wongwises S, Yan WM, Hadjadj A, Shadloo MS.“Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances”. Energy, 179, 490-501, 2019.
  • [18] Zhang H, Rahman MA, Mojica F, Sui PC, Chuang PA. “A comprehensive two-phase proton exchange membrane fuel cell model coupled with anisotropic properties and mechanical deformation of the gas diffusion layer”. Electrochimica Acta, 382, 1-13, 2021.
  • [19] Yang D, Hao Y, Li B, Ming P, Zhang C. “Topology optimization design for the lightweight endplate of proton exchange membrane fuel cell stack clamped with bolts”. International Journal of Hydrogen Energy, 47(16), 9680-9689, 2022.
  • [20] Chang WR, Hwang JJ, Weng FB, Chan SH. “Effect of clamping pressure on the performance of a PEM fuel cell”. Journal of Power Sources, 166(1), 149-154, 2007.
  • [21] Boyaci San FG, Isik-Gulsac I, Okur O. “Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)”. Energy, 55, 1067-1075, 2013.
  • [22] Ngetich CC, Mutua J, Kareru P, Karanja K, Wanjiru E. “Integrated Taguchi and response surface methods in geometric and parameter optimization of PEM fuel cells”. Fuel Cells, 23(5), 324-337, 2023.
  • [23] Peng L, Lai X, Liu D, Hu P, Ni J. “Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell”. Journal of Power Sources, 178(1), 223-230, 2008.
  • [24] Chen Z, Zuo W, Zhou K, Li Q, Huang Y, EJ. “Multi-objective optimization of proton exchange membrane fuel cells by RSM and NSGA-II”. Energy Conversion and Management, 277, 1-16, 2023.
  • [25] Al-Baghdadi Maher. “Influence of the number of cells on the stress distribution in a running PEM fuel cell stack”. International Journal of Energy and Environment, 9(2), 103-128, 2018.
  • [26] Hu G, Wu X, Suo Y, Xia Y, Xu Y, Zhang Z. “Finite element analysis of PEMFC assembling based on ANSYS”. International Journal of Electrochemical Science, 13(2), 2080-2089, 2018.
  • [27] Jo M, Cho HS, Na Y. “Comparative analysis of circular and square end plates for a highly pressurized proton exchange membrane water electrolysis stack”. Applied Sciences (Switzerland), 10(18), 1-14, 2020.
  • [28] Movahedi M, Ramiar A, Ranjber AA. “3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field”. Energy, 142, 617-632, 2018.
  • [29] Ozdemir SN, Taymaz I, Okumuş E, Boyacı San FG, Akgün F. “Optimization of operating parameters for boosting the performance of the PEMEC by the response surface methodology”. International Journal of Green Energy, 20(15), 1861-1872, 2023
  • [30] Myers RH, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed. New York, USA, Wiley, 2016.
  • [31] Ceylan H, Kubilay S, Aktas N, Sahiner N. “An approach for prediction of optimum reaction conditions for laccasecatalyzed bio-transformation of 1-naphthol by response surface methodology (RSM)”. Bioresource Technology, 99(6), 2025-2031, 2008.
  • [32] Shahi A, Chellam PV, Singh RS, Verma A. “Biodegradation of reactive red 120 in microbial fuel cell by staphylococcus equoruma RAP2: Statistical modelling and process optimization”. Journal of Water Process Engineering, 40, 1-11, 2021.
  • [33] Zhang L, Jiang Y, Pang X, Hua P, Gao X, Li Q, Li Z. “Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of angelica keiskei using response surface methodology (RSM)”. Molecules, 24(19), 1-15, 2019.
  • [34] Liu B, Wei MY, Zhang W, Wu CW. “Effect of impact acceleration on clamping force design of fuel cell stack”. Journal of Power Sources, 303, 118-125, 2016.
  • [35] Sedighi M, Aljlil SA, Alsubei MD, Ghasemi M, Mohammadi M. “Performance optimisation of microbial fuel cell for wastewater treatment and sustainable clean energy generation using response surface methodology”. Alexandria Engineering Journal, 57(4), 4243-4253, 2018.
  • [36] Pham TA, Koo S, Park H, Luong QT, Kwon OJ, Jang S, Kim SM, Kim K. “Investigation on the microscopic/macroscopic mechanical properties of a thermally annealed nafion® membrane”. Polymers, 13(22), 1-11, 2021.
  • [37] Wen CY, Lin YS, Lu CH. “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack”. Journal of Power Sources, 192(2), 475-485, 2009.
  • [38] Zhang Z, Zhang J, Zhang T. “Endplate design and topology optimization of fuel cell stack clamped with bolts”. Sustainability (Switzerland), 14(8), 1-13, 2022.
  • [39] Asghari S, Shahsamandi MH, Ashraf Khorasani MR. “Design and manufacturing of end plates of a 5 kW PEM fuel cell”. International Journal of Hydrogen Energy, 35(17), 9291-9297, 2010.

Finite element method modeling and optimization of the mechanical behavior of a low-temperature PEM fuel cell

Yıl 2024, Cilt: 30 Sayı: 6, 715 - 728, 29.11.2024

Öz

Proton exchange membrane fuel cells (PEMFCs) consist of six main
components: current collectors (CC), end plates (EP), bipolar plates
(BPP), gas diffusion layers (GDL), gaskets, and membrane electrode
assembly (MEA). PEMFC assembly or design parameters are critical for
maximum performance, strength, and reliability. The cell's mechanical
behavior should be known for optimum fuel cell assembly and design.
Therefore, a three-dimensional finite element model of PEMFC with an
active area of 100 cm² was developed, and the stress and deformation
values in the cell components were calculated with Ansys Mechanical
software. The response surface method (RSM) was applied to obtain
optimum levels and analyze the effect of design parameters. For
statistical analysis, bolt number, bolt hole diameter, and clamping
torque were defined as three different independent design variables,
and their individual-combined effects on stress and deformation, which
were determined as response parameters, were analyzed. Therefore, the
number of bolts, bolt hole diameter, and clamping torque ranges are 12-
20, 4-6 mm, and 9-15 Nm, respectively. When the number of bolts is 12,
the bolt hole diameter is 6 mm, the clamping torque is 9 Nm, the total
minimum deformation is 0.063 mm, and the minimum stress on the
membrane is 12.846 MPa. As a result of reducing the bolt hole diameter
from 6 mm to 4 mm, the total deformation has increased by
approximately 60.4%. With the increasing number of bolts, more
homogeneous stress distributions were achieved, and the end plate's
maximum stress increased by about 83.3%. The increase in clamping
torque has caused a pressure increase of roughly 21 MPa on the
membrane. The numerical and statistical findings of the study can be an
important guide in evaluating the performance, durability and
reliability of the PEMFC.

Kaynakça

  • [1] Xu J, Zhang C, Wan Z, Chen X, Chan SH, Tu Z. “Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: a review”. Renewable and Sustainable Energy Reviews, 155, 1-23, 2022.
  • [2] Aadil Rasool M, Khalilpour K, Rafiee A, Karimi I, Madlener R. “Evaluation of alternative power-to-chemical pathways for renewable energy exports”. Energy Conversion and Management, 287, 1-16, 2023.
  • [3] Becken S, Mackey B, Lee DS. “Implications of preferential access to land and clean energy for Sustainable Aviation Fuels”. Science of The Total Environment, 886, 1-11, 2023.
  • [4] Akgül G, Turan Z. ‘‘Application of biochar derived from industrial tea waste into the fuel cell-a novel approach’’. Pamukkale University Journal of Engineering Sciences, 26(1), 122-126, 2020.
  • [5] Yola M. ‘‘Application of polyoxometalate/carbon nitride nanotubes nanocomposite for directly methanol oxidation’’. Pamukkale University Journal of Engineering Sciences, 25(7), 904-906, 2019.
  • [6] Barbir F, Yazici S.“Status and development of PEM fuel cell technology”. International Journal of Energy Research, 32(5), 369-378, 2008.
  • [7] Tawalbeh M, Alarab S, Al-Othman A, Javed RMN. “The operating parameters, structural composition, and fuel sustainability aspects of PEM fuel cells: a mini review”. Fuels, 3(3), 449-474, 2022.
  • [8] Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF, Ashuri T, Krohn J. “Hydrogen fuel cell vehicles; Current status and future prospect”. Applied Sciences, 9(11), 1-17, 2019.
  • [9] Song K, Wang Y, Ding Y, Xu H, Mueller-Welt P, Stuermlinger T, Bause K, Ehrmann C, Weinmann HW, Schaefer J, Fleischer J, Zhu K, Weihard F, Trostmann M, Schwartze M, Albers A. “Assembly techniques for proton exchange membrane fuel cell stack: A literature review”. Renewable and Sustainable Energy Reviews, 153, 1-28, 2022.
  • [10] Dafalla A, Jiang F. “Stresses and their impacts on proton exchange membrane fuel cells: A review”. International Journal of Hydrogen Energy, 43, 2327-2348, 2018.
  • [11] Chen CY, Su SC. “Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates”. Energy, 159, 440-447, 2018.
  • [12] Gatto I, Urbani F, Giacoppo G, Barbera O, Passalacqua E. “Influence of the bolt torque on PEFC performance with different gasket materials”. International Journal of Hydrogen Energy, 36(20), 13043-13050, 2011.
  • [13] Huo W, Wu P, Xie B, Du Q, Liang J, Qin Z, Zhang G, Sarani I, Xu W, Liu B, Wang B, Yin Y, Lin J, Jiao K. “Elucidating nonuniform assembling effect in large-scale PEM fuel cell by coupling mechanics and performance models”. Energy Conversion and Management, 277, 1-14, 2023.
  • [14] Liu J, Tan J, Yang W, Li Y, Wang C, “Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism”. Energy, 229, 1-12, 2021.
  • [15] Bates A, Mukherjee S, Hwang S, Lee SC, Kwon O., Choi GH, Park S. “Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack”. International Journal of Hydrogen Energy, 38(15), 6481-6493, 2013.
  • [16] Zhang Z, Tao WQ. “Effect of assembly pressure on the performance of proton exchange membrane fuel cell”. Energy Storage and Saving, 2, 359-369, 2023.
  • [17] Atyabi SA, Afshari E, Wongwises S, Yan WM, Hadjadj A, Shadloo MS.“Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances”. Energy, 179, 490-501, 2019.
  • [18] Zhang H, Rahman MA, Mojica F, Sui PC, Chuang PA. “A comprehensive two-phase proton exchange membrane fuel cell model coupled with anisotropic properties and mechanical deformation of the gas diffusion layer”. Electrochimica Acta, 382, 1-13, 2021.
  • [19] Yang D, Hao Y, Li B, Ming P, Zhang C. “Topology optimization design for the lightweight endplate of proton exchange membrane fuel cell stack clamped with bolts”. International Journal of Hydrogen Energy, 47(16), 9680-9689, 2022.
  • [20] Chang WR, Hwang JJ, Weng FB, Chan SH. “Effect of clamping pressure on the performance of a PEM fuel cell”. Journal of Power Sources, 166(1), 149-154, 2007.
  • [21] Boyaci San FG, Isik-Gulsac I, Okur O. “Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)”. Energy, 55, 1067-1075, 2013.
  • [22] Ngetich CC, Mutua J, Kareru P, Karanja K, Wanjiru E. “Integrated Taguchi and response surface methods in geometric and parameter optimization of PEM fuel cells”. Fuel Cells, 23(5), 324-337, 2023.
  • [23] Peng L, Lai X, Liu D, Hu P, Ni J. “Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell”. Journal of Power Sources, 178(1), 223-230, 2008.
  • [24] Chen Z, Zuo W, Zhou K, Li Q, Huang Y, EJ. “Multi-objective optimization of proton exchange membrane fuel cells by RSM and NSGA-II”. Energy Conversion and Management, 277, 1-16, 2023.
  • [25] Al-Baghdadi Maher. “Influence of the number of cells on the stress distribution in a running PEM fuel cell stack”. International Journal of Energy and Environment, 9(2), 103-128, 2018.
  • [26] Hu G, Wu X, Suo Y, Xia Y, Xu Y, Zhang Z. “Finite element analysis of PEMFC assembling based on ANSYS”. International Journal of Electrochemical Science, 13(2), 2080-2089, 2018.
  • [27] Jo M, Cho HS, Na Y. “Comparative analysis of circular and square end plates for a highly pressurized proton exchange membrane water electrolysis stack”. Applied Sciences (Switzerland), 10(18), 1-14, 2020.
  • [28] Movahedi M, Ramiar A, Ranjber AA. “3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field”. Energy, 142, 617-632, 2018.
  • [29] Ozdemir SN, Taymaz I, Okumuş E, Boyacı San FG, Akgün F. “Optimization of operating parameters for boosting the performance of the PEMEC by the response surface methodology”. International Journal of Green Energy, 20(15), 1861-1872, 2023
  • [30] Myers RH, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed. New York, USA, Wiley, 2016.
  • [31] Ceylan H, Kubilay S, Aktas N, Sahiner N. “An approach for prediction of optimum reaction conditions for laccasecatalyzed bio-transformation of 1-naphthol by response surface methodology (RSM)”. Bioresource Technology, 99(6), 2025-2031, 2008.
  • [32] Shahi A, Chellam PV, Singh RS, Verma A. “Biodegradation of reactive red 120 in microbial fuel cell by staphylococcus equoruma RAP2: Statistical modelling and process optimization”. Journal of Water Process Engineering, 40, 1-11, 2021.
  • [33] Zhang L, Jiang Y, Pang X, Hua P, Gao X, Li Q, Li Z. “Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of angelica keiskei using response surface methodology (RSM)”. Molecules, 24(19), 1-15, 2019.
  • [34] Liu B, Wei MY, Zhang W, Wu CW. “Effect of impact acceleration on clamping force design of fuel cell stack”. Journal of Power Sources, 303, 118-125, 2016.
  • [35] Sedighi M, Aljlil SA, Alsubei MD, Ghasemi M, Mohammadi M. “Performance optimisation of microbial fuel cell for wastewater treatment and sustainable clean energy generation using response surface methodology”. Alexandria Engineering Journal, 57(4), 4243-4253, 2018.
  • [36] Pham TA, Koo S, Park H, Luong QT, Kwon OJ, Jang S, Kim SM, Kim K. “Investigation on the microscopic/macroscopic mechanical properties of a thermally annealed nafion® membrane”. Polymers, 13(22), 1-11, 2021.
  • [37] Wen CY, Lin YS, Lu CH. “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack”. Journal of Power Sources, 192(2), 475-485, 2009.
  • [38] Zhang Z, Zhang J, Zhang T. “Endplate design and topology optimization of fuel cell stack clamped with bolts”. Sustainability (Switzerland), 14(8), 1-13, 2022.
  • [39] Asghari S, Shahsamandi MH, Ashraf Khorasani MR. “Design and manufacturing of end plates of a 5 kW PEM fuel cell”. International Journal of Hydrogen Energy, 35(17), 9291-9297, 2010.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Safiye Nur Özdemir

İmdat Taymaz

Emre Kurt

Yayımlanma Tarihi 29 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 6

Kaynak Göster

APA Özdemir, S. N., Taymaz, İ., & Kurt, E. (2024). Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(6), 715-728.
AMA Özdemir SN, Taymaz İ, Kurt E. Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2024;30(6):715-728.
Chicago Özdemir, Safiye Nur, İmdat Taymaz, ve Emre Kurt. “Düşük sıcaklıklı Bir PEM yakıt hücresinin Mekanik davranışının Sonlu Elemanlar yöntemiyle Modellenmesi Ve Optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 6 (Kasım 2024): 715-28.
EndNote Özdemir SN, Taymaz İ, Kurt E (01 Kasım 2024) Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 6 715–728.
IEEE S. N. Özdemir, İ. Taymaz, ve E. Kurt, “Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, ss. 715–728, 2024.
ISNAD Özdemir, Safiye Nur vd. “Düşük sıcaklıklı Bir PEM yakıt hücresinin Mekanik davranışının Sonlu Elemanlar yöntemiyle Modellenmesi Ve Optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/6 (Kasım 2024), 715-728.
JAMA Özdemir SN, Taymaz İ, Kurt E. Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:715–728.
MLA Özdemir, Safiye Nur vd. “Düşük sıcaklıklı Bir PEM yakıt hücresinin Mekanik davranışının Sonlu Elemanlar yöntemiyle Modellenmesi Ve Optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, 2024, ss. 715-28.
Vancouver Özdemir SN, Taymaz İ, Kurt E. Düşük sıcaklıklı bir PEM yakıt hücresinin mekanik davranışının sonlu elemanlar yöntemiyle modellenmesi ve optimizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(6):715-28.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.