Araştırma Makalesi
BibTex RIS Kaynak Göster

Hematit ve götit takviyeli karbon fiber polimer kompozitlerin uzak alan elektromanyatik kalkanlama etkinliği performansı

Yıl 2024, Cilt: 30 Sayı: 6, 779 - 784, 29.11.2024

Öz

Karbon fiber (carbon fiber: CF) katkılı malzemeler, günlük hayatımızda
vazgeçilemez malzemelerdir. CF takviyeli kompozitlerinin (CFRP) üstün
mukavemeti, yüksek dielektrik özelliği, üretim kolaylığı ve korozyon
direnci, CFRP’leri diğer malzemelerden öne çıkaran özelliklerinden
yalnızca birkaçıdır. Bu çalışmada partikül boyutları 50 nm ve 45 μm
(325 mesh) olan iki farklı hematit (alfa-Fe2O3) ile götit (FeO(OH))
takviyeli, 2 katmanlı CF takviyeli epoksi kompozitler el ile yatırma
yöntemi kullanılarak üretilmiştir. Üretilen kompozitler 700 MHz-6000
MHz aralığında uzak alan elektromanyetik kalkanlama özelliklerini
tespit etmek için testlere tabi tutulmuşlardır. Maksimum kalkanlama
etkisi, ağırlıkça %5 FeO(OH) takviyeli kompozit için 39.28 dB ile
5200 MHz'de, %10 Fe2O3(325 mesh) takviyeli için 38.38 dB ile 4700
MHz’de, %15 Fe2O3(50 nm) takviyeli için 37.15 dB ile 3800 MHz’de
belirlenmiştir.

Kaynakça

  • [1] Lv H, Yang Z, Pan H, Wu R. “Electromagnetic absorption materials: Current progress and new frontiers”. Progress in Materials Science, 127, 1-74, 2022.
  • [2] Song S, Li H, Liu P, Peng X. “Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding”. Carbohydrate Polymers, 287, 1-18, 2022.
  • [3] Liu H, Wu S, You C, Tian N, Li Y, Chopra N. “Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding”. Carbon, 172, 569-596, 2022.
  • [4] Gupta S, Tai NH. “Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band". Carbon, 152, 159-187, 2019.
  • [5] Wu J, Ye Z, Ge H, Chen J, Liu W, Liu Z. “Modified carbon fiber/magnetic graphene/epoxy composites with synergistic effect for electromagnetic interference shielding over broad frequency band”. Journal of Colloid and Interface Science, 506, 217-226, 2017.
  • [6] Shukla V. “Review of electromagnetic interference shielding materials fabricated by iron ingredients”. Nanoscale Advances, 1, 1640-1671, 2019.
  • [7] Liu Z, Ge H, Wu J, Chen J. “Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles”. Construction and Building Materials, 151, 575-581, 2017.
  • [8] Salimkhani H, Movassagh-Alanagh F, Aghajani H, OsouliBostanabad K. “Study on the magnetic and microwave properties of electrophoretically deposited Nano-Fe3O4 on carbon fiber”. Procedia Materials Science, 11, 231-237, 2015.
  • [9] Anaraki NI, Poursalehi R. “Shielding effectiveness of polymeric nanocomposites filled with iron/wüstite nanoparticle”. Procedia Materials Science, 11, 700-705, 2015.
  • [10] Jakubas A, Łada-Tondyra E, Makówka M, Suchecki Ł. “A study on the possibility of using iron scale in the construction of electromagnetic field shields”. Energies, 15(4), 1-18, 2022.
  • [11] Yin Z, Cai W, Lu J, Yu B, Wang B, Song L, Hu Y. “Costeffective graphite felt and phosphorous flame retardant with extremely high electromagnetic shielding”. Composites Part B: Engineering, 236, 1-11, 2022.
  • [12] Kong WW, Shi JF, Zou KK, Li N, Wang YY, Yan DX, Li ZM. “Synergistically optimizing interlaminar and electromagnetic interference shielding behavior of carbon fiber composite based on interfacial reinforcement”. Carbon, 200, 448–455, 2022.
  • [13] Guo Z, Ren P, Wang J, Tang J, Zhang F, Zong Z, Chen Z, Jin Y, Ren F. “Multifunctional sandwich-structured magneticelectric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding”. Composites Part B: Engineering, 236, 1-11, 2022.
  • [14] Cao J, Chung DDL. “Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding”. Cement and Concrete Research, 33(11), 1737-1740, 2003.
  • [15] Kocakusak A, Colak B. Helhel S. “Frequency dependent complex dielectric permittivity of rubber and magnolia leaves and leaf water content relation”. Journal of Microwave Power and Electromagnetic Energy, 4, 294-307, 2016.
  • [16] Helhel S, Kocakusak A, Sunel M. “Determining loss tangent values of dry granite for potential S-band applications”. Microwave and Optical Technology Letters, 62(11), 3476-3484, 2020.
  • [17] Cakir M, Kockal NU, Ozen S, Kocakusak A, Helhe, S. “Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips”. Journal of Microwave Power and Electromagnetic Energy, 51(1), 31-42, 2017.
  • [18] Yawen D, Mingqing S, Chenguo L, Zhuoqiu L. “ Electromagnetic wave absorbing characteristics of carbon black cement-based composites”. Cement and Concrete Composites, 32(7), 508-513, 2010.
  • [19] Pruksanubal, A. "Study on electromagnetic properties of reinforced concrete construction wall". PIER Symposium Proceedings. Marrakesh, Morocco, 20–23 March 2011.
  • [20] Vineeta S. "Review of electromagnetic interference shielding materials fabricated by iron ingredients". Nanoscale Advances, 1(5), 1640-1671, 2019.
  • [21] Cheng, David Keun. Field and Wave Electromagnetics. 2nd ed. USA, Pearson, 2014.
  • [22] Basyigit IB, Dogan H, Helhel S. “The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metallic enclosures”. Journal of Microwave Power and Electromagnetic Energy, 53(2), 115-127, 2019.

Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field

Yıl 2024, Cilt: 30 Sayı: 6, 779 - 784, 29.11.2024

Öz

Carbon fibers (CFs) are indispensable materials in our daily life. The
excellent bearing capacity, remarkable dielectric property, ease of
production, and corrosion resistance of CFRP composites distinguish
them from all other options in addition to them, CFRPs may also shield
from electromagnetic interference (EMI). In this study, two-layer CF
reinforced epoxy composites reinforced with two different hematite
(alpha- Fe2O3) and goethite (FeO(OH)) particle sizes of 50 nm and 45
μm (325 mesh) were produced using the manual lay-up method. Then,
far field electromagnetic shielding effectiveness (SE) with 700 MHz -
6000 MHz range were examined. The maximum shielding effectiveness
was determined to be at 5200 MHz with 39.28 dB for 5 wt.% FeO(OH),
at 4700 MHz with 38.38 dB for 10 wt.% Fe2O3(325 mesh), at 3800 MHz
with 37.15 dB for 15 wt.% Fe2O3(50 nm).

Kaynakça

  • [1] Lv H, Yang Z, Pan H, Wu R. “Electromagnetic absorption materials: Current progress and new frontiers”. Progress in Materials Science, 127, 1-74, 2022.
  • [2] Song S, Li H, Liu P, Peng X. “Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding”. Carbohydrate Polymers, 287, 1-18, 2022.
  • [3] Liu H, Wu S, You C, Tian N, Li Y, Chopra N. “Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding”. Carbon, 172, 569-596, 2022.
  • [4] Gupta S, Tai NH. “Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band". Carbon, 152, 159-187, 2019.
  • [5] Wu J, Ye Z, Ge H, Chen J, Liu W, Liu Z. “Modified carbon fiber/magnetic graphene/epoxy composites with synergistic effect for electromagnetic interference shielding over broad frequency band”. Journal of Colloid and Interface Science, 506, 217-226, 2017.
  • [6] Shukla V. “Review of electromagnetic interference shielding materials fabricated by iron ingredients”. Nanoscale Advances, 1, 1640-1671, 2019.
  • [7] Liu Z, Ge H, Wu J, Chen J. “Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles”. Construction and Building Materials, 151, 575-581, 2017.
  • [8] Salimkhani H, Movassagh-Alanagh F, Aghajani H, OsouliBostanabad K. “Study on the magnetic and microwave properties of electrophoretically deposited Nano-Fe3O4 on carbon fiber”. Procedia Materials Science, 11, 231-237, 2015.
  • [9] Anaraki NI, Poursalehi R. “Shielding effectiveness of polymeric nanocomposites filled with iron/wüstite nanoparticle”. Procedia Materials Science, 11, 700-705, 2015.
  • [10] Jakubas A, Łada-Tondyra E, Makówka M, Suchecki Ł. “A study on the possibility of using iron scale in the construction of electromagnetic field shields”. Energies, 15(4), 1-18, 2022.
  • [11] Yin Z, Cai W, Lu J, Yu B, Wang B, Song L, Hu Y. “Costeffective graphite felt and phosphorous flame retardant with extremely high electromagnetic shielding”. Composites Part B: Engineering, 236, 1-11, 2022.
  • [12] Kong WW, Shi JF, Zou KK, Li N, Wang YY, Yan DX, Li ZM. “Synergistically optimizing interlaminar and electromagnetic interference shielding behavior of carbon fiber composite based on interfacial reinforcement”. Carbon, 200, 448–455, 2022.
  • [13] Guo Z, Ren P, Wang J, Tang J, Zhang F, Zong Z, Chen Z, Jin Y, Ren F. “Multifunctional sandwich-structured magneticelectric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding”. Composites Part B: Engineering, 236, 1-11, 2022.
  • [14] Cao J, Chung DDL. “Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding”. Cement and Concrete Research, 33(11), 1737-1740, 2003.
  • [15] Kocakusak A, Colak B. Helhel S. “Frequency dependent complex dielectric permittivity of rubber and magnolia leaves and leaf water content relation”. Journal of Microwave Power and Electromagnetic Energy, 4, 294-307, 2016.
  • [16] Helhel S, Kocakusak A, Sunel M. “Determining loss tangent values of dry granite for potential S-band applications”. Microwave and Optical Technology Letters, 62(11), 3476-3484, 2020.
  • [17] Cakir M, Kockal NU, Ozen S, Kocakusak A, Helhe, S. “Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips”. Journal of Microwave Power and Electromagnetic Energy, 51(1), 31-42, 2017.
  • [18] Yawen D, Mingqing S, Chenguo L, Zhuoqiu L. “ Electromagnetic wave absorbing characteristics of carbon black cement-based composites”. Cement and Concrete Composites, 32(7), 508-513, 2010.
  • [19] Pruksanubal, A. "Study on electromagnetic properties of reinforced concrete construction wall". PIER Symposium Proceedings. Marrakesh, Morocco, 20–23 March 2011.
  • [20] Vineeta S. "Review of electromagnetic interference shielding materials fabricated by iron ingredients". Nanoscale Advances, 1(5), 1640-1671, 2019.
  • [21] Cheng, David Keun. Field and Wave Electromagnetics. 2nd ed. USA, Pearson, 2014.
  • [22] Basyigit IB, Dogan H, Helhel S. “The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metallic enclosures”. Journal of Microwave Power and Electromagnetic Energy, 53(2), 115-127, 2019.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Uğur Erbaş

Cantekin Kaykılarlı

Taha Yasin Eken

Burak Küçükelyas Bu kişi benim

Mehmet Barış Tabakcıoğlu

Yayımlanma Tarihi 29 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 6

Kaynak Göster

APA Erbaş, U., Kaykılarlı, C., Eken, T. Y., Küçükelyas, B., vd. (2024). Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(6), 779-784.
AMA Erbaş U, Kaykılarlı C, Eken TY, Küçükelyas B, Tabakcıoğlu MB. Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2024;30(6):779-784.
Chicago Erbaş, Uğur, Cantekin Kaykılarlı, Taha Yasin Eken, Burak Küçükelyas, ve Mehmet Barış Tabakcıoğlu. “Electromagnetic Shielding Effectiveness Performance of Carbon Fiber Reinforced Polymer (CFRP) Composites With Hematite and Goethite in Far-Field”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 6 (Kasım 2024): 779-84.
EndNote Erbaş U, Kaykılarlı C, Eken TY, Küçükelyas B, Tabakcıoğlu MB (01 Kasım 2024) Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 6 779–784.
IEEE U. Erbaş, C. Kaykılarlı, T. Y. Eken, B. Küçükelyas, ve M. B. Tabakcıoğlu, “Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, ss. 779–784, 2024.
ISNAD Erbaş, Uğur vd. “Electromagnetic Shielding Effectiveness Performance of Carbon Fiber Reinforced Polymer (CFRP) Composites With Hematite and Goethite in Far-Field”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/6 (Kasım 2024), 779-784.
JAMA Erbaş U, Kaykılarlı C, Eken TY, Küçükelyas B, Tabakcıoğlu MB. Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:779–784.
MLA Erbaş, Uğur vd. “Electromagnetic Shielding Effectiveness Performance of Carbon Fiber Reinforced Polymer (CFRP) Composites With Hematite and Goethite in Far-Field”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 6, 2024, ss. 779-84.
Vancouver Erbaş U, Kaykılarlı C, Eken TY, Küçükelyas B, Tabakcıoğlu MB. Electromagnetic shielding effectiveness performance of carbon fiber reinforced polymer (CFRP) composites with hematite and goethite in far-field. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(6):779-84.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.