Araştırma Makalesi
BibTex RIS Kaynak Göster

CO2 akışkanlı yaş evaporatörlü paralel kompresörlü booster soğutma çevriminin güç tüketiminin arı algoritması ile optimizasyonu

Yıl 2024, Cilt: 30 Sayı: 7, 853 - 861, 28.12.2024

Öz

Modern toplumdaki en önemli konulardan biri enerji tedariğidir. Bu
nedenle günlük hayatta sıklıkla kullanılan sistemlerde enerji tasarrufu
önem kazanmaktadır. Bu enerji tasarrufu hedeflerine yönelik
süpermarket soğutma sistemlerinin daha az enerji tüketmesini
amaçlayan çok sayıda çalışma literatürde bulunmaktadır. Bu
çalışmalar arasında yaş evaporatörlü ve paralel kompresörlü CO2
booster soğutma çevrimi (BFP) enerji tasarruflu ve doğa dostu bir seçim
olarak ön plana çıkmaktadır. Bu çalışmada, BFP çevriminde minimum
güç tüketimini (maksimum COP) elde etmek için Arı Algoritması
optimizasyonu uygulanmıştır. Optimizasyon parametreleri olarak gaz
soğutucu basıncı (𝑃𝑔𝑐), ara basınç (𝑃𝑖𝑛𝑡) ve orta sıcaklık (MT) seviyesi
evaporatörü çıkış kuruluk derecesi (𝑥14) seçilmiştir. Arı Algoritması
optimizasyon sonuçlarına göre bu üç parametre, toplamda önemli
ölçüde enerji tasarrufu sağlamaları sebebiyle (sabit ara basınç ve sabit
MT evaporatör çıkış kuruluk derecesine kıyasla %8.7'ye kadar)
optimize edilmeye değer bulunmuştur. Analiz sonucunda, optimum 𝑃𝑔𝑐
değerlerinin 28 °C ila 46 °C arasındaki çevre sıcaklıklarında 7600 kPa
ile 12000 kPa arasında olduğu tespit edilmiştir. Optimum
𝑃𝑖𝑛𝑡 değerlerinin 14 °C çevre sıcaklığının altında yaklaşık 3500 kPa ve
bu sıcaklığın üstünde yaklaşık 4500 kPa olduğu bulunmuştur. x14 için
optimum değerler 0.62 ile 0.69 arasında elde edilmiştir. Ayrıca dört
farklı iklim tipi için yıllık enerji tüketimi (AEC) ve 15 yıllık toplam
eşdeğer emisyon (TEE) hesaplanmıştır. En yüksek AEC ve TEE sırasıyla
728.56 MWh ve 10000 tonun üzerinde değerlerle tropikal iklimde elde
edilmiştir. En düşük ise 380.01 MWh AEC ve yaklaşık 6000 ton TEE ile
karasal iklimde bulunmuştur.

Kaynakça

  • [1] Gullo P, Hafner A, Banasiak K. “Transcritical R744 refrigeration systems for supermarket applications: Current status and future perspectives”. International Journal of Refrigeration, 93, 269–310, 2018.
  • [2] Goetzler W, Sutherland T, Rassi M, Burgos J. “Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants”. U.S. Department of Energy, United States, Technical Report, 2014.
  • [3] Kauf F. “Determination of the optimum high pressure for transcritical CO2-refrigeration cycles”. International Journal of Thermal Sciences, 38, 325-330, 1999.
  • [4] Liao SM, Zhao TS, Jakobsen A. “A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles”. Applied Thermal Engineering, 20, 831-841, 2000.
  • [5] Yang L, Li H, Cai SW, Shao LL, Zhang CL. “Minimizing COP loss from optimal high pressure correlation for transcritical CO2 cycle”. Applied Thermal Engineering, 89, 656–662, 2015.
  • [6] European Commission. “Development and demonstration of a prototype transcritical CO2 refrigeration system Final Report”. European Comission, Denmark, Scientific Report, LIFE05 ENV/DK/000156, 2008.
  • [7] Ge YT, Tassou SA. “Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket”. Energy Conversion and Management, 52, 1868–1875, 2011.
  • [8] Mylona Z, Kolokotroni M, Tsamos KM, Tassou SA. “Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application”. Energy Procedia, 123, 121–130, 2017.
  • [9] Amaris C, Tsamos KM, Tassou SA. “Analysis of an R744 typical booster configuration, an R744 parallelcompressor booster configuration and an R717/R744 cascade refrigeration system for retail food applications. Part 1: Thermodynamic analysis”. Energy Procedia, 161, 259–267, 2019.
  • [10] Lata M, Purohit N, Gupta DK. “Techno-economic assessment of trans-critical CO2 booster system with modified evaporative cooling for supermarket application in Indian context”. Environmental Progress & Sustainable Energy, 40(2), 1-13, 2021.
  • [11] Cui Q, Gao E, Zhang Z, Zhang X. “Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China: An energetic, economic, and environmental analysis”. Energy Conversion and Management, 225, 1-15 2020.
  • [12] Karampour M, Sawalha S. “State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis”. International Journal of Refrigeration, 86, 239–257, 2018.
  • [13] Sooben D, Purohit N, Mohee R, Meunier F, Dasgupta MS. “R744 refrigeration as an alternative for the supermarket sector in small tropical island developing states: The case of Mauritius”. International Journal of Refrigeration, 103, 264-273, 2019.
  • [14] Lata M, Gupta DK. “Performance evaluation and comparative analysis of trans-critical CO2 booster refrigeration systems with modified evaporative cooled gas cooler for supermarket application in Indian context”. International Journal of Refrigeration, 120, 248–259, 2020.
  • [15] Mitsopoulos G, Syngounas E, Tsimpoukis D, Bellos E, Tzivanidis C, Anagnostatos S. “Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant”. Energy Conversion and Management: X, 1, 1-17, 2019.
  • [16] Gullo P, Cortella G, Minetto S, Polzot A. “Overfed evaporators and parallel compression in commercial R744 booster refrigeration systems-An assessment of energy benefits”. 12th IIR Gustav Lorentzen Conference on Natural Refrigerants, Edinburgh, United Kingdom, 21-24 August 2016.
  • [17] Sun Z, Li J, Liang Y, Sun H, Liu S, Yang L, Wang C, Dai B. “Performance assessment of CO2 supermarket refrigeration system in different climate zones of China”. Energy Conversion and Management, 208, 1-14, 2020.
  • [18] Sacasas D, Vega J, Cuevas C. “An annual energetic evaluation of booster and parallel refrigeration systems with R744 in food retail supermarkets. A Chilean perspective”. International Journal of Refrigeration, 133, 326–336, 2022.
  • [19] Isik M, Bilir Sag N “Energetic, economic, and environmental analysis of CO2 booster refrigeration systems of supermarket application for Türkiye”. Sadhana, 48, 1-15, 2023.
  • [20] Deymi-Dashtebayaz M, Sulin A, Ryabova T, Sankina I, Farahnak M, Nazeri R. “Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants”. Journal of Environmental Chemical Engineering, 9, 1-13, 2021.
  • [21] Sun Y, Wang J, Xie J. “Performance optimizations of the transcritical CO2 two‐stage compression refrigeration system and influences of the auxiliary gas cooler”. Energies, 14, 1-17, 2021.
  • [22] Citarella B, Viscito L, Mochizuki K, Mauro AW. “Multicriteria (thermo-economic) optimization and environmental analysis of a food refrigeration system working with low environmental impact refrigerants”. Energy Conversion and Management, 253, 1-19, 2022.
  • [23] Ge YT, Tassou SA, Santosa ID, Tsamos K. “Design optimisation of CO2 gas cooler/condenser in a refrigeration system”. Applied Energy, 160, 973–981, 2015.
  • [24] Liu G, Zhao H, Wang Z, Abdulwahid AA, Han J. “Performance Study and Multi-Objective Optimization of a Two-Temperature CO2 Refrigeration System with Economizer Based on Energetic, Exergetic and Economic Analysis”. Journal of Thermal Science, 31, 1416–1433, 2022.
  • [25] Ahmed R, Mahadzir S, Erniza B Rozali N, Biswas K, Matovu F, Ahmed K. “Artificial intelligence techniques in refrigeration system modelling and optimization: A multidisciplinary review”. Sustainable Energy Technologies and Assessments, 47, 1-25, 2021.
  • [26] Unal RE, Guzel MH, Sen MA, Kose F, Kalyoncu M. “Investigation on the cost-effective optimal dimensions of a solar chimney with the Bees Algorithm”. International Journal of Energy and Environmental Engineering, 14, 475-485, 2022.
  • [27] Fahmy AA, Kalyoncu M, Castellani M. “Automatic design of control systems for robot manipulators using the bees algorithm”. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 226, 497–508, 2012.
  • [28] Fahmy AA. “Using the Bees Algorithm to select the optimal speed parameters for wind turbine generators”. Journal of King Saud University - Computer and Information Sciences, 24, 17-26, 2012.
  • [29] Banooni S, Zarea H, Molana M. “Thermodynamic and economic optimization of plate fin heat exchangers using the bees algorithm”. Heat Transfer-Asian Research, 43, 427-446, 2014.
  • [30] Pham DT, Kalyoncu M. “Optimisation of a fuzzy logic controller for a flexible single-link robot arm using the bees algorithm”. 7th IEEE International Conference on Industrial Informatics, Cardiff, United Kingdom, 23-26 June 2009.
  • [31] F-Chart Software. “Engineering Equation Solver”. https://fchartsoftware.com/ees/ (24.06.2023).
  • [32] Mathworks. “MATLAB (R2021a)”. https://www.mathworks.com/products/matlab.html (24.06.2023).
  • [33] Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. “Present and future köppen-geiger climate classification maps at 1-km resolution”. Scientific Data, 5, 1-12, 2018.
  • [34] Gullo P. “Innovative fully integrated transcritical R744 refrigeration systems for a HFC-free future of supermarkets in warm and hot climates”. International Journal of Refrigeration, 108, 283–310, 2019.
  • [35] Republic of Türkiye Ministry of Enivornment, Urbanization and Climate Change. “Turkish State Meteorological Service Meteorological Data”. 2021. https://www.mgm.gov.tr
  • [36] Purohit N, Gupta DK, Dasgupta MS. “Energetic and economic analysis of trans-critical CO2 booster system for refrigeration in warm climatic condition”. International Journal of Refrigeration, 80, 182–196, 2017.
  • [37] Gullo P, Tsamos K, Hafner A, Ge Y, Tassou SA. “State-of-theart technologies for transcritical R744 refrigeration systems - A theoretical assessment of energy advantages for European food retail industry”. Energy Procedia, 123, 46–53, 2017.
  • [38] Bell IH, Wronski J, Quoilin S, Lemort V. “Pure and pseudopure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop”. Industrial & Engineering Chemistry Research, 53, 2498-2508, 2014.
  • [39] Chen Y, Gu J. “The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers”. International Journal of Refrigeration, 28, 1238-1249, 2005.
  • [40] Qi PC, He YL, Wang XL, Meng XZ. “Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater”. Applied Thermal Engineering, 56, 120-125, 2013.

Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm

Yıl 2024, Cilt: 30 Sayı: 7, 853 - 861, 28.12.2024

Öz

Energy supply is one of the most significant issues in modern society. So,
energy saving becomes important in systems used frequently in daily
life. Due to these energy saving concerns, there are numerous studies in
literature to make supermarket refrigeration systems consume less
energy. Among these studies, CO2 booster refrigeration system with
flooded evaporators and parallel compressor (BFP) seems as an energysaving and nature-friendly choice. In this study, BFP was selected as the
system of concern and the Bees Algorithm optimization was applied to
get minimum power consumption (maximum COP). Gas cooler pressure
(𝑃𝑔𝑐), intermediate pressure (𝑃𝑖𝑛𝑡), and medium temperature (MT) level
evaporator outlet quality(𝑥14) were chosen as optimization
parameters. According to the optimization results, the Bees Algorithm
converged well, and these three parameters were found worthy to
optimize as they brought significant energy saving in total (up to 8.7%
in comparison with constant intermediate pressure and MT evaporator
outlet quality). As a result of this analysis, the optimal 𝑃𝑔𝑐 values were
found to be between 7600 kPa and 12000 kPa at ambient temperatures
ranging from 28 to 46°C. The optimal 𝑃𝑖𝑛𝑡 values were found to be
around 3500 kPa below ambient temperature of 14 °C and around 4500
kPa above this temperature. The optimal values for x14 ranged between
0.62 and 0.69. Additionally, annual energy consumption (AEC) and total
equivalent emission (TEE) for 15 years were calculated for four
different climate types. The highest AEC and TEE were obtained at
tropical climate with 728.56 MWh and over 10000 tons, respectively.
The lowest AEC and TEE were found at continental conditions as
380.01 MWh and almost 6000 tons of emission.

Kaynakça

  • [1] Gullo P, Hafner A, Banasiak K. “Transcritical R744 refrigeration systems for supermarket applications: Current status and future perspectives”. International Journal of Refrigeration, 93, 269–310, 2018.
  • [2] Goetzler W, Sutherland T, Rassi M, Burgos J. “Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants”. U.S. Department of Energy, United States, Technical Report, 2014.
  • [3] Kauf F. “Determination of the optimum high pressure for transcritical CO2-refrigeration cycles”. International Journal of Thermal Sciences, 38, 325-330, 1999.
  • [4] Liao SM, Zhao TS, Jakobsen A. “A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles”. Applied Thermal Engineering, 20, 831-841, 2000.
  • [5] Yang L, Li H, Cai SW, Shao LL, Zhang CL. “Minimizing COP loss from optimal high pressure correlation for transcritical CO2 cycle”. Applied Thermal Engineering, 89, 656–662, 2015.
  • [6] European Commission. “Development and demonstration of a prototype transcritical CO2 refrigeration system Final Report”. European Comission, Denmark, Scientific Report, LIFE05 ENV/DK/000156, 2008.
  • [7] Ge YT, Tassou SA. “Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket”. Energy Conversion and Management, 52, 1868–1875, 2011.
  • [8] Mylona Z, Kolokotroni M, Tsamos KM, Tassou SA. “Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application”. Energy Procedia, 123, 121–130, 2017.
  • [9] Amaris C, Tsamos KM, Tassou SA. “Analysis of an R744 typical booster configuration, an R744 parallelcompressor booster configuration and an R717/R744 cascade refrigeration system for retail food applications. Part 1: Thermodynamic analysis”. Energy Procedia, 161, 259–267, 2019.
  • [10] Lata M, Purohit N, Gupta DK. “Techno-economic assessment of trans-critical CO2 booster system with modified evaporative cooling for supermarket application in Indian context”. Environmental Progress & Sustainable Energy, 40(2), 1-13, 2021.
  • [11] Cui Q, Gao E, Zhang Z, Zhang X. “Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China: An energetic, economic, and environmental analysis”. Energy Conversion and Management, 225, 1-15 2020.
  • [12] Karampour M, Sawalha S. “State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis”. International Journal of Refrigeration, 86, 239–257, 2018.
  • [13] Sooben D, Purohit N, Mohee R, Meunier F, Dasgupta MS. “R744 refrigeration as an alternative for the supermarket sector in small tropical island developing states: The case of Mauritius”. International Journal of Refrigeration, 103, 264-273, 2019.
  • [14] Lata M, Gupta DK. “Performance evaluation and comparative analysis of trans-critical CO2 booster refrigeration systems with modified evaporative cooled gas cooler for supermarket application in Indian context”. International Journal of Refrigeration, 120, 248–259, 2020.
  • [15] Mitsopoulos G, Syngounas E, Tsimpoukis D, Bellos E, Tzivanidis C, Anagnostatos S. “Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant”. Energy Conversion and Management: X, 1, 1-17, 2019.
  • [16] Gullo P, Cortella G, Minetto S, Polzot A. “Overfed evaporators and parallel compression in commercial R744 booster refrigeration systems-An assessment of energy benefits”. 12th IIR Gustav Lorentzen Conference on Natural Refrigerants, Edinburgh, United Kingdom, 21-24 August 2016.
  • [17] Sun Z, Li J, Liang Y, Sun H, Liu S, Yang L, Wang C, Dai B. “Performance assessment of CO2 supermarket refrigeration system in different climate zones of China”. Energy Conversion and Management, 208, 1-14, 2020.
  • [18] Sacasas D, Vega J, Cuevas C. “An annual energetic evaluation of booster and parallel refrigeration systems with R744 in food retail supermarkets. A Chilean perspective”. International Journal of Refrigeration, 133, 326–336, 2022.
  • [19] Isik M, Bilir Sag N “Energetic, economic, and environmental analysis of CO2 booster refrigeration systems of supermarket application for Türkiye”. Sadhana, 48, 1-15, 2023.
  • [20] Deymi-Dashtebayaz M, Sulin A, Ryabova T, Sankina I, Farahnak M, Nazeri R. “Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants”. Journal of Environmental Chemical Engineering, 9, 1-13, 2021.
  • [21] Sun Y, Wang J, Xie J. “Performance optimizations of the transcritical CO2 two‐stage compression refrigeration system and influences of the auxiliary gas cooler”. Energies, 14, 1-17, 2021.
  • [22] Citarella B, Viscito L, Mochizuki K, Mauro AW. “Multicriteria (thermo-economic) optimization and environmental analysis of a food refrigeration system working with low environmental impact refrigerants”. Energy Conversion and Management, 253, 1-19, 2022.
  • [23] Ge YT, Tassou SA, Santosa ID, Tsamos K. “Design optimisation of CO2 gas cooler/condenser in a refrigeration system”. Applied Energy, 160, 973–981, 2015.
  • [24] Liu G, Zhao H, Wang Z, Abdulwahid AA, Han J. “Performance Study and Multi-Objective Optimization of a Two-Temperature CO2 Refrigeration System with Economizer Based on Energetic, Exergetic and Economic Analysis”. Journal of Thermal Science, 31, 1416–1433, 2022.
  • [25] Ahmed R, Mahadzir S, Erniza B Rozali N, Biswas K, Matovu F, Ahmed K. “Artificial intelligence techniques in refrigeration system modelling and optimization: A multidisciplinary review”. Sustainable Energy Technologies and Assessments, 47, 1-25, 2021.
  • [26] Unal RE, Guzel MH, Sen MA, Kose F, Kalyoncu M. “Investigation on the cost-effective optimal dimensions of a solar chimney with the Bees Algorithm”. International Journal of Energy and Environmental Engineering, 14, 475-485, 2022.
  • [27] Fahmy AA, Kalyoncu M, Castellani M. “Automatic design of control systems for robot manipulators using the bees algorithm”. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 226, 497–508, 2012.
  • [28] Fahmy AA. “Using the Bees Algorithm to select the optimal speed parameters for wind turbine generators”. Journal of King Saud University - Computer and Information Sciences, 24, 17-26, 2012.
  • [29] Banooni S, Zarea H, Molana M. “Thermodynamic and economic optimization of plate fin heat exchangers using the bees algorithm”. Heat Transfer-Asian Research, 43, 427-446, 2014.
  • [30] Pham DT, Kalyoncu M. “Optimisation of a fuzzy logic controller for a flexible single-link robot arm using the bees algorithm”. 7th IEEE International Conference on Industrial Informatics, Cardiff, United Kingdom, 23-26 June 2009.
  • [31] F-Chart Software. “Engineering Equation Solver”. https://fchartsoftware.com/ees/ (24.06.2023).
  • [32] Mathworks. “MATLAB (R2021a)”. https://www.mathworks.com/products/matlab.html (24.06.2023).
  • [33] Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. “Present and future köppen-geiger climate classification maps at 1-km resolution”. Scientific Data, 5, 1-12, 2018.
  • [34] Gullo P. “Innovative fully integrated transcritical R744 refrigeration systems for a HFC-free future of supermarkets in warm and hot climates”. International Journal of Refrigeration, 108, 283–310, 2019.
  • [35] Republic of Türkiye Ministry of Enivornment, Urbanization and Climate Change. “Turkish State Meteorological Service Meteorological Data”. 2021. https://www.mgm.gov.tr
  • [36] Purohit N, Gupta DK, Dasgupta MS. “Energetic and economic analysis of trans-critical CO2 booster system for refrigeration in warm climatic condition”. International Journal of Refrigeration, 80, 182–196, 2017.
  • [37] Gullo P, Tsamos K, Hafner A, Ge Y, Tassou SA. “State-of-theart technologies for transcritical R744 refrigeration systems - A theoretical assessment of energy advantages for European food retail industry”. Energy Procedia, 123, 46–53, 2017.
  • [38] Bell IH, Wronski J, Quoilin S, Lemort V. “Pure and pseudopure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop”. Industrial & Engineering Chemistry Research, 53, 2498-2508, 2014.
  • [39] Chen Y, Gu J. “The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers”. International Journal of Refrigeration, 28, 1238-1249, 2005.
  • [40] Qi PC, He YL, Wang XL, Meng XZ. “Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater”. Applied Thermal Engineering, 56, 120-125, 2013.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Metehan Işık

Nagihan Bilir Sağ

Mete Kalyoncu

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Işık, M., Bilir Sağ, N., & Kalyoncu, M. (2024). Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 853-861.
AMA Işık M, Bilir Sağ N, Kalyoncu M. Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):853-861.
Chicago Işık, Metehan, Nagihan Bilir Sağ, ve Mete Kalyoncu. “Optimization of CO2 Booster Refrigeration Cycle With Flooded Evaporators and Parallel Compressor by Using the Bees Algorithm”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 853-61.
EndNote Işık M, Bilir Sağ N, Kalyoncu M (01 Aralık 2024) Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 853–861.
IEEE M. Işık, N. Bilir Sağ, ve M. Kalyoncu, “Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 853–861, 2024.
ISNAD Işık, Metehan vd. “Optimization of CO2 Booster Refrigeration Cycle With Flooded Evaporators and Parallel Compressor by Using the Bees Algorithm”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 853-861.
JAMA Işık M, Bilir Sağ N, Kalyoncu M. Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:853–861.
MLA Işık, Metehan vd. “Optimization of CO2 Booster Refrigeration Cycle With Flooded Evaporators and Parallel Compressor by Using the Bees Algorithm”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 853-61.
Vancouver Işık M, Bilir Sağ N, Kalyoncu M. Optimization of CO2 booster refrigeration cycle with flooded evaporators and parallel compressor by using the bees algorithm. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):853-61.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.