Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu

Yıl 2024, Cilt: 30 Sayı: 7, 862 - 868, 28.12.2024

Öz

Polikaprolakton (PCL), yavaş biyobozunurluğu nedeniyle ilaç salınım
sistemlerinde ve doku mühendisliğinde sınırlı kullanıma sahiptir. PCL’
nin bozunma sürecini üzerine çalışmalar devam etmektedir. Bu çalışma,
grafen oksit (GO), indirgenmiş grafen oksit (RGO) ve grafen
nanoplatelet (GNP) dolgu maddelerinin PCL kompozit filmlerin yapısal
ve biyobozunurluk özellikleri üzerindeki etkilerini belirlemek amacıyla
yapılmıştır. GO, RGO ve GNP dolgularının aynı miktarları (ağ.% 0.5)
kullanılarak sıvı faz ultrasonik karıştırma yöntemi ile PCL kompozit
filmleri hazırlanmıştır. Filmlerin karakterizasyon çalışmaları X-Işını
Kırınımı (XRD), Fourier dönüşümlü Infrared spektroskopisi (FTIR),
Optik mikroskop (OM) ve yüzey pürüzlülüğü testleri ile analiz edilmiştir.
Tüm dolgu türlerinin polimer matrikse homojen dağıldığı ve polimerdolgu etkileşimlerinin sağlandığı tespit edilmiştir. Grafen türevlerinin
çekirdeklenme üzerinde farklı etkiler gösterdiği ve PCL/RGO filminin en
ince taneli yapıya sahip olduğu tespit edilmiştir. En yüksek gözeneklilik
oranıyla (%23.49) ve 12.33 µm yüzey pürüzlülüğü değeri ile PCL/GO
filminde en yüksek ağırlık kaybı gerçekleşmiştir. Bu çalışma oksijen
içeren fonksiyonel gruplara sahip grafen türevlerinin (GO ve RGO) PCL
matriksine ilave edilmesi ile biyobozunurluk artışının PCL’ nin bozunma
sürecini kontrol etmek için uygun bir yol olduğunu önermektedir.

Kaynakça

  • [1] Salavagione HJ, Martínez G, Ellis G. “Recent advances in the covalent modification of graphene with polymers”. Macromolecular Rapid Communications, 32(22), 1771-1789, 2011.
  • [2] Fattah FS, Khoddamı A,Aving OO. “Poly(Lactic Acid) nano structure mats as potential wound dressings Potansiyel yara pansuman malzemesi olarak Poli(Laktik Asit) (PLA) Nano yapı matları”. Pamukkale Univ Muh Bilim Dergisi, 26(7), 1193-1203, 2020.
  • [3] Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. “Morphology and properties of electrospun PCL and its composites for medical applications: A mini review”. Applied Sciences, 9(11), 1-17, 2019.
  • [4] Malikmammadov E., Tanir T. E., Kiziltay A., Hasirci V., Hasirci N. “PCL and PCL-based materials in biomedical applications”. Journal of Biomaterials science, Polymer Edition, 29(7-9), 863-893, 2018.
  • [5] Miladi K, Ibraheem D, Iqbal M, Sfar S, Fessi H, Elaissari A. “Particles from preformed polymers as carriers for drug delivery”. EXCLI Journal, 13, 28-57, 2014.
  • [6] Dhanaraju M, Sathyyamoorthy N, Sundar V. “Preparation of polycaprolactone microspheres containing Etoposide by solvent evaporation method”. Asian Journal of Pharmaceutical Science, 5(3), 114-122, 2010.
  • [7] Behara AK, Barik BB, Joshi S. “Polycaprolactone based microspheres and nanospheres: a review”. FS Journal of Pharmacy Research, 1(2), 38-45, 2012.
  • [8] Aydin O, Aydin B, Tezcaner A, Keskin D. “Study of physicochemical structure and in vitro release behaviors of Doxycycline-loaded PCL microspheres”. Journal of Applied Polymer Science, 132(14), 1-13, 2015.
  • [9] Mondal D, Griffith M, Venkatraman S. “Polycaprolactone based biomaterials for tissue engineering and drug delivery: current scenario and challenges”. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255-265, 2016.
  • [10] Woodruff, MA, Hutmacher DW. “The return of a forgotten polymer- polycaprolactone in the 21st century”. Progress in Polymer Science, 35(10), 1217-1256, 2010.
  • [11] Hsu PH, Arboleda C, Stubelius A, Li LW, Olejniczaka J, Almutairi A. “Highly responsive and rapid hydrogen peroxidetriggered degradation of polycaprolactone nanoparticles”. Biomaterials Science, 8, 2394-2397, 2020.
  • [12] Gracia Lux, C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A. “Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide”. Journal of the American Chemical Society, 134, 15758-15764, 2012.
  • [13] Ma HL, Zhang HB, Hu QH, Li WJ, Jiang ZG, Yu ZZ, Dasari A. “Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites”. ACS Appl Mater Interfaces, 4(4), 1948-1953, 2012.
  • [14] Yan D, Zhang HB, Jia Y, Hu J, Qi XY, Zhang Z, Yu ZZ. “Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding”. ACS Appl Mater Interfaces, 4(9), 4740-4745, 2012.
  • [15] Mindivan F.“Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, 25(1), 43-48, 2019.
  • [16] Canlıdinç RS. “Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, 26(7), 1319-1327, 2020.
  • [17] Damonte G, Cantamessa F, Fina A, Monticelli O. “Starshaped furoate-PCL: An effective compound for the development of graphite nanoplatelets-based films”. Reactive and Functional Polymers, 184, 1-8, 2023.
  • [18] Wiederoder MS, Weissb M, Yoona B, Paffenroth RC, McGrawa SK, Uzarskia JR. “Impact of graphene nanoplatelet concentration and film thickness on vapor detection for polymer based chemiresistive sensors”. Current Applied Physics, 19(9), 978-983, 2019.
  • [19] Lamastra FR, Puglia D, Monti M, Vella A, Peponi L, Kenny JM, Nanni F. “Poly(e-caprolactone) reinforced with fibres of Poly(methyl methacrylate) loaded with multiwall carbon nanotubes or graphene nanoplatelets”. Chemical Engineering Journal, 195-196, 140-148, 2012.
  • [20] Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. “ Polycaprolactone/Graphene Oxide-Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications”. Journal of Inorganic and Organometallic Polymers and Materials, 32, 912-930, 2022.
  • [21] Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. “Design of biocompatible polycaprolactone-based nanocomposite loaded with graphene oxide/strontium nanohybrid for biomedical applications”. Applied Nanoscience, 13(6), 4471-4477, 2023.
  • [22] Malik N. “Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications”. Materıals Technology, 37(5), 345-354, 2022.
  • [23] Castilla-Cortázar I, Vidaurre A, Marí B, CampilloFernández AJ. “Morphology, crystallinity, and molecular weight of poly (ε-caprolactone)/graphene oxide hybrids”. Polymers, 11(7), 1-19, 2019.
  • [24] Male U, Kyoung Shin B, Huh DS. “Graphene oxide incorporated Poly(ε-caprolactone) honeycomb-patterned porous polymer films by the breath figure method”. Macromolecular Research, 25(3), 297-302, 2017.
  • [25] Wlodarczyk D, Zmuda-Trzebiatowska I, Karczewski J, Lubinska-Szczygel M, Urban M, Marciniak A, Kaminska A, Sikorska P, Graczyk MK, Strankowki M. “Structural evaluation of percolating, self-healing polyurethanepolycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers”. Polymers and Polymer Composites, 29(5), 541-552, 2021.
  • [26] Ghanem AF, Yassin MA, Rabie AM, Gouanve´ F, Espuche E, Abdel Rehim MH. “Investigation of water sorption, gas barrier and antimicrobial properties of polycaprolactone films contain modified graphene”. Journal of Materials Science, 56, 497-512, 2021.
  • [27] Hummers WS, Offeman RE. “Preparation of graphitic oxide”. Journal of the American Chemical Society, 80, 1339-1339, 1958.
  • [28] Mindivan F, Göktaş M. “Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties”. Polymer Bulletin, 77(4), 1929-1949, 2020.
  • [29] Monshi A, Foroughi MR, Monshi MR. “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD”. World Journal of Nano Science and Engineering, 2(3), 154-160, 2, 154, 2012.
  • [30] Danilchenko SN, Kukharenko OG, Moseke C, Protsenko IY, Sukhodub LF, Sulkio-Cleff B. “Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening”. Crystal Research Technology, 37(11), 1234-1240, 2002.
  • [31] Mindivan F, Göktaş M, Dike AS. “Mechanical, thermal, and micro- and nanostructural properties of polyvinyl chloride/graphene nanoplatelets nanocomposites”. Polymer Composites, 41, 3707-3716, 2020.
  • [32] Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A. “Electrospun captopril-loaded PCL-carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies”. Polymers Advanced Technologies, 31, 3302-3315, 2020.
  • [33] Gupta D, Venugopal J, Prabhakaran MP, Dev VG, Low S, Choon AT, Ramakrishna S. “Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering”. Acta Biomaterialia, 5(7), 2560-2569, 2009.
  • [34] YAMASA. “Yüzey Ölçüm Parametreleri”. https://yamasa.com.tr/242/1/4/yamasa/yuzeyolcumpa rametreleri.aspx (22.12.2023).
  • [35] Yu T, Wang GS, Liu L, Wang P, Wei ZY, Qi M. “Synthesis of PCL/graphene oxide composites by in situ polymerization”. In Advanced Materials Research, 518-523, 837-840, 2012.
  • [36] Rajitha K, Mohana KN. “Application of modified graphene oxide-Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium”. Materials Chemistry and Physics, 241, 1-10, 2020.
  • [37] Wei J, Li Y, Lau KT. “Preparation and Characterization of a Nano Apatite/Polyamide6 Bioactive Composite”. Composites: Part B, 38, 301-305, 2007.
  • [38] Mindivan F, Dere H. “Wear‐resistant layers containing graphene derivatives”. Polymer Composites, 45(5), 4138-4150, 2024.
  • [39] Mindivan F, Çolak A. “Tribo‐material based on a UHMWPE/RGOC biocomposite for using in artificial joints”. Journal of Applied Polymer Science, 138 (31), 1-13, 2021.
  • [40] Bagheri M, Mahmoodzadeh A. “Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers”. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1566-1577, 2020.
  • [41] Balu R, Kumar TS, Ramalingam M, Ramakrishna S. “Electrospun Polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration”. Journal of Biomaterials and Tissue Engineering, 1, 30-33, 2011.
  • [42] Azizi M, Azimzadeh M, Afzali M, Alafzadeh M, Hossein SS, Mirhosseini. “Characterization and optimization of using calendula officinalis extract in the fabrication of polycaprolactone/gelatin electrospun nanofibers for wound dressing applications”. Materials Science, 6(2), 34-46, 2018.
  • [43] Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J. “Development and properties of polycaprolactone/hydroxyapatite composite biomaterials”. Journal of materials science: Materials in medicine, 14(2), 103-107, 2003.
  • [44] Díaz E, Sandonis I, Valle MB. “In vitro degradation of poly (caprolactone)/nHA composites”. Journal of Nanomaterials, 2014(1), 1-8, 2014.
  • [45] Salgado CL, Sanchez EM, Zavaglia CA, Granja PL. “Biocompatibility and biodegradation of polycaprolactone‐sebacic acid blended gels”. Journal of Biomedical Materials Research Part A, 100(1), 243-251, 2012.
  • [46] Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW. “Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment”. Progress in Polymer Science, 96, 1-20, 2019.

Synthesis, structural properties and biodegradability of PCL composite films filled with graphene derivatives

Yıl 2024, Cilt: 30 Sayı: 7, 862 - 868, 28.12.2024

Öz

PCL has limited use in drug delivery systems and tissue engineering due
to its slow biodegradability. Studies are continuing on the degradation
process of PCL. This study was carried out to determine the effects of
graphene derivative fillers on the structural and biodegradability
properties of PCL composite films. PCL composite films filled with the
same content (0.5 wt%) of graphene oxide (GO), reduced graphene
oxide (RGO), and graphene nanoplatelets (GNP) were prepared by the
liquid-phase ultrasonic mixing method. Characterization studies of the
films were analyzed by X-ray diffraction (XRD), Fourier transform
infrared spectroscopy (FTIR), optical microscopy (OM), and surface
roughness tests. All fillers were homogeneously distributed in the
polymer matrix, and polymer-filler interactions were achieved.
Graphene derivatives showed different effects on nucleation, and the
PCL/RGO film had the finest grain structure. The highest weight loss
occurred in PCL/GO film, which had the highest porosity (23.49%) and
surface roughness value of 12.33 µm. This study proposes the addition
of graphene derivatives (GO and RGO) with oxygen-containing
functional groups to the PCL matrix as a viable way to control the
degradation process of PCL.

Kaynakça

  • [1] Salavagione HJ, Martínez G, Ellis G. “Recent advances in the covalent modification of graphene with polymers”. Macromolecular Rapid Communications, 32(22), 1771-1789, 2011.
  • [2] Fattah FS, Khoddamı A,Aving OO. “Poly(Lactic Acid) nano structure mats as potential wound dressings Potansiyel yara pansuman malzemesi olarak Poli(Laktik Asit) (PLA) Nano yapı matları”. Pamukkale Univ Muh Bilim Dergisi, 26(7), 1193-1203, 2020.
  • [3] Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. “Morphology and properties of electrospun PCL and its composites for medical applications: A mini review”. Applied Sciences, 9(11), 1-17, 2019.
  • [4] Malikmammadov E., Tanir T. E., Kiziltay A., Hasirci V., Hasirci N. “PCL and PCL-based materials in biomedical applications”. Journal of Biomaterials science, Polymer Edition, 29(7-9), 863-893, 2018.
  • [5] Miladi K, Ibraheem D, Iqbal M, Sfar S, Fessi H, Elaissari A. “Particles from preformed polymers as carriers for drug delivery”. EXCLI Journal, 13, 28-57, 2014.
  • [6] Dhanaraju M, Sathyyamoorthy N, Sundar V. “Preparation of polycaprolactone microspheres containing Etoposide by solvent evaporation method”. Asian Journal of Pharmaceutical Science, 5(3), 114-122, 2010.
  • [7] Behara AK, Barik BB, Joshi S. “Polycaprolactone based microspheres and nanospheres: a review”. FS Journal of Pharmacy Research, 1(2), 38-45, 2012.
  • [8] Aydin O, Aydin B, Tezcaner A, Keskin D. “Study of physicochemical structure and in vitro release behaviors of Doxycycline-loaded PCL microspheres”. Journal of Applied Polymer Science, 132(14), 1-13, 2015.
  • [9] Mondal D, Griffith M, Venkatraman S. “Polycaprolactone based biomaterials for tissue engineering and drug delivery: current scenario and challenges”. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255-265, 2016.
  • [10] Woodruff, MA, Hutmacher DW. “The return of a forgotten polymer- polycaprolactone in the 21st century”. Progress in Polymer Science, 35(10), 1217-1256, 2010.
  • [11] Hsu PH, Arboleda C, Stubelius A, Li LW, Olejniczaka J, Almutairi A. “Highly responsive and rapid hydrogen peroxidetriggered degradation of polycaprolactone nanoparticles”. Biomaterials Science, 8, 2394-2397, 2020.
  • [12] Gracia Lux, C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A. “Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide”. Journal of the American Chemical Society, 134, 15758-15764, 2012.
  • [13] Ma HL, Zhang HB, Hu QH, Li WJ, Jiang ZG, Yu ZZ, Dasari A. “Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites”. ACS Appl Mater Interfaces, 4(4), 1948-1953, 2012.
  • [14] Yan D, Zhang HB, Jia Y, Hu J, Qi XY, Zhang Z, Yu ZZ. “Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding”. ACS Appl Mater Interfaces, 4(9), 4740-4745, 2012.
  • [15] Mindivan F.“Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, 25(1), 43-48, 2019.
  • [16] Canlıdinç RS. “Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, 26(7), 1319-1327, 2020.
  • [17] Damonte G, Cantamessa F, Fina A, Monticelli O. “Starshaped furoate-PCL: An effective compound for the development of graphite nanoplatelets-based films”. Reactive and Functional Polymers, 184, 1-8, 2023.
  • [18] Wiederoder MS, Weissb M, Yoona B, Paffenroth RC, McGrawa SK, Uzarskia JR. “Impact of graphene nanoplatelet concentration and film thickness on vapor detection for polymer based chemiresistive sensors”. Current Applied Physics, 19(9), 978-983, 2019.
  • [19] Lamastra FR, Puglia D, Monti M, Vella A, Peponi L, Kenny JM, Nanni F. “Poly(e-caprolactone) reinforced with fibres of Poly(methyl methacrylate) loaded with multiwall carbon nanotubes or graphene nanoplatelets”. Chemical Engineering Journal, 195-196, 140-148, 2012.
  • [20] Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. “ Polycaprolactone/Graphene Oxide-Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications”. Journal of Inorganic and Organometallic Polymers and Materials, 32, 912-930, 2022.
  • [21] Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. “Design of biocompatible polycaprolactone-based nanocomposite loaded with graphene oxide/strontium nanohybrid for biomedical applications”. Applied Nanoscience, 13(6), 4471-4477, 2023.
  • [22] Malik N. “Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications”. Materıals Technology, 37(5), 345-354, 2022.
  • [23] Castilla-Cortázar I, Vidaurre A, Marí B, CampilloFernández AJ. “Morphology, crystallinity, and molecular weight of poly (ε-caprolactone)/graphene oxide hybrids”. Polymers, 11(7), 1-19, 2019.
  • [24] Male U, Kyoung Shin B, Huh DS. “Graphene oxide incorporated Poly(ε-caprolactone) honeycomb-patterned porous polymer films by the breath figure method”. Macromolecular Research, 25(3), 297-302, 2017.
  • [25] Wlodarczyk D, Zmuda-Trzebiatowska I, Karczewski J, Lubinska-Szczygel M, Urban M, Marciniak A, Kaminska A, Sikorska P, Graczyk MK, Strankowki M. “Structural evaluation of percolating, self-healing polyurethanepolycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers”. Polymers and Polymer Composites, 29(5), 541-552, 2021.
  • [26] Ghanem AF, Yassin MA, Rabie AM, Gouanve´ F, Espuche E, Abdel Rehim MH. “Investigation of water sorption, gas barrier and antimicrobial properties of polycaprolactone films contain modified graphene”. Journal of Materials Science, 56, 497-512, 2021.
  • [27] Hummers WS, Offeman RE. “Preparation of graphitic oxide”. Journal of the American Chemical Society, 80, 1339-1339, 1958.
  • [28] Mindivan F, Göktaş M. “Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties”. Polymer Bulletin, 77(4), 1929-1949, 2020.
  • [29] Monshi A, Foroughi MR, Monshi MR. “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD”. World Journal of Nano Science and Engineering, 2(3), 154-160, 2, 154, 2012.
  • [30] Danilchenko SN, Kukharenko OG, Moseke C, Protsenko IY, Sukhodub LF, Sulkio-Cleff B. “Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening”. Crystal Research Technology, 37(11), 1234-1240, 2002.
  • [31] Mindivan F, Göktaş M, Dike AS. “Mechanical, thermal, and micro- and nanostructural properties of polyvinyl chloride/graphene nanoplatelets nanocomposites”. Polymer Composites, 41, 3707-3716, 2020.
  • [32] Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A. “Electrospun captopril-loaded PCL-carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies”. Polymers Advanced Technologies, 31, 3302-3315, 2020.
  • [33] Gupta D, Venugopal J, Prabhakaran MP, Dev VG, Low S, Choon AT, Ramakrishna S. “Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering”. Acta Biomaterialia, 5(7), 2560-2569, 2009.
  • [34] YAMASA. “Yüzey Ölçüm Parametreleri”. https://yamasa.com.tr/242/1/4/yamasa/yuzeyolcumpa rametreleri.aspx (22.12.2023).
  • [35] Yu T, Wang GS, Liu L, Wang P, Wei ZY, Qi M. “Synthesis of PCL/graphene oxide composites by in situ polymerization”. In Advanced Materials Research, 518-523, 837-840, 2012.
  • [36] Rajitha K, Mohana KN. “Application of modified graphene oxide-Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium”. Materials Chemistry and Physics, 241, 1-10, 2020.
  • [37] Wei J, Li Y, Lau KT. “Preparation and Characterization of a Nano Apatite/Polyamide6 Bioactive Composite”. Composites: Part B, 38, 301-305, 2007.
  • [38] Mindivan F, Dere H. “Wear‐resistant layers containing graphene derivatives”. Polymer Composites, 45(5), 4138-4150, 2024.
  • [39] Mindivan F, Çolak A. “Tribo‐material based on a UHMWPE/RGOC biocomposite for using in artificial joints”. Journal of Applied Polymer Science, 138 (31), 1-13, 2021.
  • [40] Bagheri M, Mahmoodzadeh A. “Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers”. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1566-1577, 2020.
  • [41] Balu R, Kumar TS, Ramalingam M, Ramakrishna S. “Electrospun Polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration”. Journal of Biomaterials and Tissue Engineering, 1, 30-33, 2011.
  • [42] Azizi M, Azimzadeh M, Afzali M, Alafzadeh M, Hossein SS, Mirhosseini. “Characterization and optimization of using calendula officinalis extract in the fabrication of polycaprolactone/gelatin electrospun nanofibers for wound dressing applications”. Materials Science, 6(2), 34-46, 2018.
  • [43] Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J. “Development and properties of polycaprolactone/hydroxyapatite composite biomaterials”. Journal of materials science: Materials in medicine, 14(2), 103-107, 2003.
  • [44] Díaz E, Sandonis I, Valle MB. “In vitro degradation of poly (caprolactone)/nHA composites”. Journal of Nanomaterials, 2014(1), 1-8, 2014.
  • [45] Salgado CL, Sanchez EM, Zavaglia CA, Granja PL. “Biocompatibility and biodegradation of polycaprolactone‐sebacic acid blended gels”. Journal of Biomedical Materials Research Part A, 100(1), 243-251, 2012.
  • [46] Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW. “Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment”. Progress in Polymer Science, 96, 1-20, 2019.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Bilimi ve Teknolojileri
Bölüm Makale
Yazarlar

Ferda Mindivan

Meryem Göktaş

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Mindivan, F., & Göktaş, M. (2024). Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 862-868.
AMA Mindivan F, Göktaş M. Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):862-868.
Chicago Mindivan, Ferda, ve Meryem Göktaş. “Grafen türevleri Dolgulu PCL Kompozit Filmlerin Sentezi, yapısal özellikleri Ve biyobozunurluğu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 862-68.
EndNote Mindivan F, Göktaş M (01 Aralık 2024) Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 862–868.
IEEE F. Mindivan ve M. Göktaş, “Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 862–868, 2024.
ISNAD Mindivan, Ferda - Göktaş, Meryem. “Grafen türevleri Dolgulu PCL Kompozit Filmlerin Sentezi, yapısal özellikleri Ve biyobozunurluğu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 862-868.
JAMA Mindivan F, Göktaş M. Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:862–868.
MLA Mindivan, Ferda ve Meryem Göktaş. “Grafen türevleri Dolgulu PCL Kompozit Filmlerin Sentezi, yapısal özellikleri Ve biyobozunurluğu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 862-8.
Vancouver Mindivan F, Göktaş M. Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):862-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.