Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı pin konfigürasyonlarina sahip mantar benzeri elektromanyetik bant aralığı yapıları ile geliştirilmiş yeni bir mikroşerit yama anten tasarımı

Yıl 2024, Cilt: 30 Sayı: 7, 884 - 890, 28.12.2024

Öz

Bu çalışmada, bir mikroşerit yama anten ve farklı pin konumlarına
sahip mantar benzeri EBG yapıların uygun kombinasyonlarıyla
tasarımlar sunulmuştur. Referans antenin performansı kaldırılan
ve/veya merkezden kaydırılan pin konfigürasyonarına sahip
tasarımlarla geliştirilmiştir. Özelikle antenin yayın yapan yamasına en
yakın olan EBG yapıların birinci sırasından kaldırılan ve/veya
kaydırılan pinlerin anten performansı üzerindeki etkisinin daha
belirgin olduğu farklı tasarımlarla gözlenmiştir. Önerilen tasarımlarla,
referans antene göre %32’ye kadar bant genişliği iyileştirmesi ve
2.9 dBi’ye kadar kazanç arttırımı sağlanmıştır. Referans antenin
16.9 dB olan ön/arka (F/B) oranı sunulan tasarımlarla 26 ile 29 dB
arasındaki değerlere iyileştirilmiştir. Ayrıca, sunulan antenlerin tek
katmanlı basit tasarımları üretimlerini kolaylaştırırken, 0.05 ile iyi bir
ince profil değeri (h/𝜆0, 𝜆0 merkez frekanstaki boş uzay dalga boyudur)
de sağlar.

Kaynakça

  • 1] Balanis CA. Antenna Theory: Analysis and Design. 3rd ed. India Edition. New Jersey, USA, Wiley, 2012.
  • [2] Yang F, Rahmat-Samii Y. Electromagnetic Band Gap Structures in Antenna Engineering. 1st ed. New York, USA, Cambridge University Press, 2009.
  • [3] Rahmat-Samii Y, Mosallaei H. “Electromagnetic band-gap structures: Classification, characterization, and applications”. 11th International Conference on Antennas and Propagation (ICAP), Manchester, UK, 17-21 April 2001.
  • [4] Yang F, Rahmat-Samii Y.” Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications”. IEEE Transaction on Antenna and Propagation, 51(10), 2936- 2946, 2003.
  • [5] Folayan O, Zhu S, Langley RJ. “INITIAL EBG antennas”. IET Seminar on Metamaterials for Microwave and (Sub) Millimeter wave Applications: Electromagnetic Bandgap and Double Negative Designs, Structures, Devices and Experimental Validation, London, UK, 19 September 2006.
  • [6] Sievenpiper D, Zhang L, Jimenez-Broas F, Alexopolous N, Yablonovitch E. “High-impedance electromagnetic surfaces with a forbidden frequency band”. IEEE Transaction on Microwave Theory and Techniques, 47(11), 2059–2074, 1999.
  • [7] Dassault Systemes. “CST Studio Suite”. https://www.3ds.com/products/simulia/cst-studio suite (12.01.2023).
  • [8] Hacımehmet M. “X band microstrip ring patch antenna design and performance evaluation according to feeding types”. Pamukkale University Journal of Engineering Sciences, 28(2), 215-221, 2022.
  • [9] Benikhlef F. Boukli-Hacene N. “Influence of side effect of EBG structures on the far-field pattern of patch antennas”. IJCSI International Journal of Computer Science Issues, 9(1), 241-245, 2012.
  • [10] Ketkuntod P, Hongnara T, Thaiwirot W and P Akkaraekthalin, "Gain enhancement of microstrip patch antenna using I-shaped Mushroom-like EBG structure for WLAN application". 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, 30 October-02 November 2017.
  • [11] Kovács P, Urbanec T. "Electromagnetic band gap structures: Practical tips and advice for antenna engineers". Radioengineering, 21(1), 414-421, 2012.
  • [12] Tesneli NB, Tangel C, Nisanci MH, Tesneli AY, “Investigation of an optimal distance between the microstrip patch antenna and the surrounding electromagnetic bandgap structure”. Progress in Electromagnetics Research Symposium (PIERS), Shanghai, China, 08-11 August 2016.
  • [13] Balanis CA. Advanced Engineering Electromagnetics. 2nd ed. USA, John Wiley & Sons, 2012.
  • [14] Rajo-Iglesias E, Caiazzo M, Incla´n-Sa´nchez L, Kildal PS. “Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces”. IET Microw. Antennas Propag., Special Issue on Metamaterials EBG, 1(1), 184-189, 2007.
  • [15] Engheta N, Ziolkowski RW. Metamaterials: Physics and Engineering. Explorations (PhD Thesis), University of Pennsylvania, Pennsylvania, US, 2006.
  • [16] Kumar H, Kumar M, Kumar M, Kumar A, Kanth R, “Study on band gap behaviour of electromagnetic band-gap (EBG) structure with microstrip antenna”. 14th International Conference on Advanced Communication Technology (ICACT), Pyeong Chang, Korea (South), 19-22 February 2012.
  • [17] De Paulis F, Raimondo L, Orlandi A.” Impact of shorting vias placement on embedded planar electromagnetic bandgap structures within multilayer printed circuit boards”. IEEE Transactions on Microwave Theory and Techniques, 58(7), 1867-1876, 2010.
  • [18] Wang CD, Yu YM, De Paulis F, Scogna AC, Orlandi A, Chiou YP, Wu TL, “Bandwidth enhancement based on optimized via location for multiple vias EBG power/ground planes”. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(2), 332-341, 2012.
  • [19] Yang F, Rahmat-Samii Y, “Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications”. Microwave Optical Technology Letters, 41(6), 439–444, 2004.
  • [20] Chen D, Yang W, Che W. “High-Gain patch antenna based on cylindrically projected EBG planes”. IEEE Antennas and Wireless Propagation Letters, 17(12), 2374–2378, 2018.
  • [21] Rajo-Iglesias E, Inclán-Sánchez L, Vázquez-Roy JL, García Muñoz E, “Size Reduction of mushroom-type EBG surfaces by using edge-located vias”. IEEE Microwave and Wireless Components Letters, 17(9), 670-67, 2007.
  • [22] Chen D, Yang W, Che W and Feng W. "Novel High-gain patch antenna using non-periodic EBG structures with off centre vias". 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 1 May 2018.
  • [23] Bhavarthe PP, Rathod SS, Reddy KTV. "A compact two via slot-type electromagnetic bandgap structure". IEEE Microwave and Wireless 27(12), 446-448, 2017.

A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations

Yıl 2024, Cilt: 30 Sayı: 7, 884 - 890, 28.12.2024

Öz

In this study, the designs with suitable combinations of a microstrip
patch antenna and mushroom like EBG structures having different via
locations are presented. The performance of the reference antenna is
improved with the designs having removed and/or offset via
configuration. It has been experienced with different designs that the
vias removed and/or shifted from the first row of EBG structures, which
are closest to the radiating patch of the antenna, have a significant
effect on antenna performance. With the proposed designs, up to 32%
bandwidth enhancement and up to 2.9 dBi gain increment are achieved
according to the reference antenna. Moreover, the front to back ratio
(F/B) of the reference antenna is enhanced to values between 26 and
29 dB from the 16.9 dB by the presented designs. In addition, while the
simple single layer designs of the presented antennas facilitate their
manufacturing, they also achieve a good thin profile merit (h/𝜆0 , 𝜆0 is
the free-space wavelength at the centre frequency) with a value of 0.05.

Kaynakça

  • 1] Balanis CA. Antenna Theory: Analysis and Design. 3rd ed. India Edition. New Jersey, USA, Wiley, 2012.
  • [2] Yang F, Rahmat-Samii Y. Electromagnetic Band Gap Structures in Antenna Engineering. 1st ed. New York, USA, Cambridge University Press, 2009.
  • [3] Rahmat-Samii Y, Mosallaei H. “Electromagnetic band-gap structures: Classification, characterization, and applications”. 11th International Conference on Antennas and Propagation (ICAP), Manchester, UK, 17-21 April 2001.
  • [4] Yang F, Rahmat-Samii Y.” Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications”. IEEE Transaction on Antenna and Propagation, 51(10), 2936- 2946, 2003.
  • [5] Folayan O, Zhu S, Langley RJ. “INITIAL EBG antennas”. IET Seminar on Metamaterials for Microwave and (Sub) Millimeter wave Applications: Electromagnetic Bandgap and Double Negative Designs, Structures, Devices and Experimental Validation, London, UK, 19 September 2006.
  • [6] Sievenpiper D, Zhang L, Jimenez-Broas F, Alexopolous N, Yablonovitch E. “High-impedance electromagnetic surfaces with a forbidden frequency band”. IEEE Transaction on Microwave Theory and Techniques, 47(11), 2059–2074, 1999.
  • [7] Dassault Systemes. “CST Studio Suite”. https://www.3ds.com/products/simulia/cst-studio suite (12.01.2023).
  • [8] Hacımehmet M. “X band microstrip ring patch antenna design and performance evaluation according to feeding types”. Pamukkale University Journal of Engineering Sciences, 28(2), 215-221, 2022.
  • [9] Benikhlef F. Boukli-Hacene N. “Influence of side effect of EBG structures on the far-field pattern of patch antennas”. IJCSI International Journal of Computer Science Issues, 9(1), 241-245, 2012.
  • [10] Ketkuntod P, Hongnara T, Thaiwirot W and P Akkaraekthalin, "Gain enhancement of microstrip patch antenna using I-shaped Mushroom-like EBG structure for WLAN application". 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, 30 October-02 November 2017.
  • [11] Kovács P, Urbanec T. "Electromagnetic band gap structures: Practical tips and advice for antenna engineers". Radioengineering, 21(1), 414-421, 2012.
  • [12] Tesneli NB, Tangel C, Nisanci MH, Tesneli AY, “Investigation of an optimal distance between the microstrip patch antenna and the surrounding electromagnetic bandgap structure”. Progress in Electromagnetics Research Symposium (PIERS), Shanghai, China, 08-11 August 2016.
  • [13] Balanis CA. Advanced Engineering Electromagnetics. 2nd ed. USA, John Wiley & Sons, 2012.
  • [14] Rajo-Iglesias E, Caiazzo M, Incla´n-Sa´nchez L, Kildal PS. “Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces”. IET Microw. Antennas Propag., Special Issue on Metamaterials EBG, 1(1), 184-189, 2007.
  • [15] Engheta N, Ziolkowski RW. Metamaterials: Physics and Engineering. Explorations (PhD Thesis), University of Pennsylvania, Pennsylvania, US, 2006.
  • [16] Kumar H, Kumar M, Kumar M, Kumar A, Kanth R, “Study on band gap behaviour of electromagnetic band-gap (EBG) structure with microstrip antenna”. 14th International Conference on Advanced Communication Technology (ICACT), Pyeong Chang, Korea (South), 19-22 February 2012.
  • [17] De Paulis F, Raimondo L, Orlandi A.” Impact of shorting vias placement on embedded planar electromagnetic bandgap structures within multilayer printed circuit boards”. IEEE Transactions on Microwave Theory and Techniques, 58(7), 1867-1876, 2010.
  • [18] Wang CD, Yu YM, De Paulis F, Scogna AC, Orlandi A, Chiou YP, Wu TL, “Bandwidth enhancement based on optimized via location for multiple vias EBG power/ground planes”. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(2), 332-341, 2012.
  • [19] Yang F, Rahmat-Samii Y, “Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications”. Microwave Optical Technology Letters, 41(6), 439–444, 2004.
  • [20] Chen D, Yang W, Che W. “High-Gain patch antenna based on cylindrically projected EBG planes”. IEEE Antennas and Wireless Propagation Letters, 17(12), 2374–2378, 2018.
  • [21] Rajo-Iglesias E, Inclán-Sánchez L, Vázquez-Roy JL, García Muñoz E, “Size Reduction of mushroom-type EBG surfaces by using edge-located vias”. IEEE Microwave and Wireless Components Letters, 17(9), 670-67, 2007.
  • [22] Chen D, Yang W, Che W and Feng W. "Novel High-gain patch antenna using non-periodic EBG structures with off centre vias". 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 1 May 2018.
  • [23] Bhavarthe PP, Rathod SS, Reddy KTV. "A compact two via slot-type electromagnetic bandgap structure". IEEE Microwave and Wireless 27(12), 446-448, 2017.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Nigar Berna Teşneli

Cemile Tangel Bu kişi benim

Ahmet Yahya Teşneli

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Teşneli, N. B., Tangel, C., & Teşneli, A. Y. (2024). A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 884-890.
AMA Teşneli NB, Tangel C, Teşneli AY. A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):884-890.
Chicago Teşneli, Nigar Berna, Cemile Tangel, ve Ahmet Yahya Teşneli. “A Novel Microstrip Patch Antenna Design Enhanced by Mushroom Like Electromagnetic Band Gap Structures With Different via Configurations”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 884-90.
EndNote Teşneli NB, Tangel C, Teşneli AY (01 Aralık 2024) A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 884–890.
IEEE N. B. Teşneli, C. Tangel, ve A. Y. Teşneli, “A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 884–890, 2024.
ISNAD Teşneli, Nigar Berna vd. “A Novel Microstrip Patch Antenna Design Enhanced by Mushroom Like Electromagnetic Band Gap Structures With Different via Configurations”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 884-890.
JAMA Teşneli NB, Tangel C, Teşneli AY. A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:884–890.
MLA Teşneli, Nigar Berna vd. “A Novel Microstrip Patch Antenna Design Enhanced by Mushroom Like Electromagnetic Band Gap Structures With Different via Configurations”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 884-90.
Vancouver Teşneli NB, Tangel C, Teşneli AY. A novel microstrip patch antenna design enhanced by mushroom like electromagnetic band gap structures with different via configurations. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):884-90.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.