Araştırma Makalesi
BibTex RIS Kaynak Göster

FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi

Yıl 2024, Cilt: 30 Sayı: 7, 891 - 905, 28.12.2024

Öz

Fotovoltaik sistemler, güneş ışınımını doğrudan elektriğe dönüştüren
yenilenebilir enerji sistemlerinden birisidir. FV sisteme ait akım ile
gerilim arasındaki ilişki doğrusal değildir ve güç verimliliğinin en büyük
olduğu tek bir nokta bulunmaktadır. Güç verimliliği esas olarak güneş
ışınımı ve sıcaklık gibi atmosferik koşullara bağlıdır. Bu nedenle
literatürde, maksimum verimliliği elde etmek için çeşitli maksimum güç
noktası takibi algoritmaları önerilmiştir. Önerilen geleneksel yöntemler
tek tip ışınım ve sabit sıcaklık koşulları altında maksimum güç noktası
takibinde yüksek performans göstermektedir. Fakat güç verimliliğini
etkileyen diğer bir durum, kısmi gölgeli koşuldur ve kısmi gölgeli
koşullarda, çıkış gücü eğrisi üzerinde birden fazla maksimum nokta
bulunmaktadır. Bu sebeple, geleneksel yöntemler global maksimum güç
noktalarına ulaşmak için yetersiz kalmaktadırlar. Bu sorunu
çözebilmek için metasezgisel algoritmalar önerilmiştir. Bu çalışmada,
önerilen metasezgisel algoritmalar içerisinden parçacık sürü
optimizasyonu, gri kurt optimizasyonu ve balina optimizasyonu
algoritmaları seçilerek kısmi gölgeli koşullarda yakınsama hızı ve
verimlilik açısından karşılaştırmalı performans analizleri yapılmıştır.
Elde edilen sonuçlar hem grafiksel hem de sayısal olarak
karşılaştırılmıştır.

Kaynakça

  • [1] Walker HA, Desai JD, Heimiller DM. “Performance of Photovoltaic Systems Recorded by Open Solar Performance and Reliability Clearinghouse (oSPARC)”. National Renewable Energy Lab. (NREL), Golden, CO, USA, 2020.
  • [2] Sulukan E. “İstanbul’da bir fotovoltaik sistemin tekno ekonomik ve çevresel analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 127-132, 2020.
  • [3] Amalathas AP, Alkaisi MM “Nanostructures for light trapping in thin film solar cells”. Micromachines, 10(9), 1-18, 2019.
  • [4] Kurtz S, Newmiller J, Kimber A, Flottemesch R, Riley E, Dierauf T, McKee J, Krishnani P. “Analysis of Photovoltaic System Energy Performance Evaluation Method”. National Renewable Energy Lab. (NREL), Golden, CO, USA, 2013.
  • [5] Eltawil MA, Zhao Z. “MPPT techniques for photovoltaic applications”. Renewable and Sustainable Energy Reviews, 25, 793-813, 2013.
  • [6] Elgendy MA, Zahawi B, Atkinson DJ. “Analysis of the performance of DC photovoltaic pumping systems with maximum power point tracking”. in 2008 4th IET Conference on Power Electronics, Machines and Drives, York, England, 02-04 April 2008.
  • [7] Elgendy MA, Zahawi B, Atkinson DJ. “Assessment of perturb and observe MPPT algorithm ımplementation techniques for PV pumping applications”. IEEE Transactions on Sustainable Energy, 3(1), 21-33, 2012.
  • [8] Suwannatrai P, Liutanakul P, Wipasuramonton P. “Maximum power point tracking by incremental conductance method for photovoltaic systems with phase shifted full-bridge dc-dc converter”. in The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand- Conference, Thailand , 17-19 May 2011.
  • [9] Lasheen M, Rahman AKA., Abdel-Salam M, Ookawara S. “Performance enhancement of constant voltage based MPPT for photovoltaic applications using genetic algorithm”. Energy Procedia, 100, 217-222, 2016.
  • [10] Saxena AR, Gupta SM. “Performance analysis of P&O and ıncremental conductance MPPT algorithms under rapidly changing weather conditions”. Journal of Electrical Systems, 10(3), 292-304, 2014.
  • [11] Kahoul N, Mekki M. “Adaptive P&O MPPT Technique for photovoltaic buck-boost converter system”. International Journal of Computer Applications, 112(12), 23-27, 2015.
  • [12] Yüksek G, Mete AN. “A P&O based variable step size MPPT algorithm for photovoltaic applications”. Gazi University Journal of Science, 36(2), 608-622, 2023.
  • [13] Belkaid A, Colak I, Kayisli K. “Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions”. Electrical Engineering, 99, 839-846, 2017.
  • [14] Patel H, Agarwal V. “Maximum power point tracking scheme for PV systems operating under partially shaded conditions”. IEEE Transactions on Industrial Electronics, 55(4), 1689-1698, 2008.
  • [15] Ji YH, Jung DY, Won CY, Lee BK, Kim JW. “Maximum power point tracking method for PV array under partially shaded condition”. IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20-24 September 2009.
  • [16] Dorofte C, Borup U, Blaabjerg F. “A combined two-method MPPT control scheme for grid-connected photovoltaic systems”. European Conference on Power Electronics and Applications, Dresden, Germany, 11-14 September 2005.
  • [17] Yafoui A, Wu B, Cheung R. “Implementation of maximum power point tracking algorithm for residential photovoltaic systems”. 2nd Canadian Solar Buildings Conference, Calgary, 10-14 June 2007.
  • [18] Lee JH, Bae H, Cho BH. “Advanced ıncremental conductance MPPT algorithm with a variable step size”. 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August-01 September 2006.
  • [19] Ahmed J, Salam Z. “A maximum power point tracking (MPPT) for PV system using Cuckoo Search with partial shading capability”. Applied Energy, 119, 118-130, 2014.
  • [20] Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L. “Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition”. Journal of Cleaner Production, 215, 1203-1222, 2019.
  • [21] Patel H, Agarwal V. “MATLAB-Based modeling to study the effects of partial shading on PV array characteristics”. IEEE Transactions on Energy Conversion, 23(1), 302-310, 2008.
  • [22] Shi J, Zhang W, Zhang Y, Xue F, Yang T. “MPPT for PV systems based on a dormant PSO algorithm”. Electric Power Systems Research, 123, 100-107, 2015.
  • [23] Koutroulis E, Blaabjerg F. “A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions”. IEEE Journal of Photovoltaics, 2(2), 184-190, 2012.
  • [24] Spertino F, Ahmad J, Ciocia A, Di Leo P, Murtaza AF, Chiaberge M. “Capacitor charging method for I-V curve tracer and MPPT in photovoltaic systems”. Solar Energy, 119, 461-473, 2015.
  • [25] Álvarez-Alvarado JM, Ríos-Moreno JG, Obregón-Biosca SA, Ronquillo-Lomelí G, Ventura-Ramos E, Trejo-Perea M. “Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: a review”. Applied Sciences, 11(3), 1-16, 2021.
  • [26] Nivetha V, Gowri GV. “Maximum power point tracking of photovoltaic system using ant colony and particle swam optimization algorithms”. 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26-27 February 2015.
  • [27] Sundareswaran K, Vigneshkumar V, Sankar P, Simon SP, Nayak PSR, Palani S. “Development of an Improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV System”. IEEE Transactions on Industrial Informatics, 12(1), 187-200, 2016.
  • [28] Nugraha DA, Lian KL, Suwarno. “A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system”. Canadian Journal of Electrical and Computer Engineering, 42(3), 173-182, 2019.
  • [29] Eltamaly AM. “An ımproved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial 14(4), 1-25 2021. shading conditions”. Energies, 14(4), 1-25 2021.
  • [30] Zhang M, Chen Z, Wei L. “An ımmune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions”. Energies, 12(16), 1-15, 2019.
  • [31] Teshome DF, Lee CH, Lin YW, Lian KL. “A Modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 661-671, 2017.
  • [32] Kumar C, Rao R. “A novel global MPP tracking of photovoltaic system based on whale optimization algorithm”. International Journal of Renewable Energy Development, 5(3), 225-232, 2016.
  • [33] Mohamed AA, Haridy AL, Hemeida AM. “The Whale Optimization Algorithm based controller for PMSG wind energy generation system”. International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 02-04 February 2019.
  • [34] Guo K, Cui L, Mao M, Zhou L, Zhang Q. “An ımproved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading”. IEEE Access, 8, 103476-103490, 2020.
  • [35] Motamarri R, Bhookya N, Chitti Babu B. “Modified grey wolf optimization for global maximum power point tracking under partial shading conditions in photovoltaic system”. International Journal of Circuit Theory and Applications, 49(7), 1884-1901, 2021.
  • [36] Singh Chawda G, Prakash Mahela O, Gupta N, Khosravy M, Senjyu T. “Incremental conductance based particle swarm optimization algorithm for global maximum power tracking of solar-PV under nonuniform operating conditions”. Applied Sciences, 10(13), 1-16, 2020.
  • [37] Calvinho G, Pombo J, Mariano S, Calado MR. “Design and implementation of MPPT system based on PSO Algorithm”. International Conference on Intelligent Systems (IS), Funchal, Portugal, 25-27 September 2018.
  • [38] Ishaque K, Salam Z. “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition”. Renewable and Sustainable Energy Reviews, 19, 475-488, 2013.
  • [39] Salam Z, Ahmed J, Merugu BS. “The application of soft computing methods for MPPT of PV system: A technological and status review”. Applied Energy, 107, 135-148, 2013.
  • [40] Efendi MZ, Murdianto FD, Setiawan RE. “Modeling and simulation of MPPT sepie converter using modified PSO to overcome partial shading impact on DC microgrid system”. International Electronics Symposium on Engineering Technology and Applications (IES-ETA), Surabaya, Indonesia, 26-27 September 2017.
  • [41] Priyadarshi N, Padmanaban S, Kiran Maroti P, Sharma A. “An extensive practical ınvestigation of FPSO-based MPPT for grid ıntegrated PV system under variable operating conditions with anti-ıslanding protection”. IEEE Systems Journal, 13(2), 1861-1871, 2019.
  • [42] Mohanty S, Subudhi B, Ray PK. “A grey wolf-assisted perturb & observe MPPT algorithm for a PV system”. IEEE Transactions on Energy Conversion, 32(1), 340-347, 2017.
  • [43] Eltamaly AM, Farh HMH, Al-Saud MS. “Grade point average assessment for metaheuristic GMPP techniques of partial shaded PV systems”. IET Renewable Power Generation, 13(8), 1215-1231, 2019.
  • [44] Jiang L, Maskell DL. “A simple hybrid MPPT technique for photovoltaic systems under rapidly changing partial shading conditions”. IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, USA 08-13 June 2014.
  • [45] Özdemir A, Pamuk N. “Kısmi gölgelenme şartları altındaki kompleks yapılı fotovoltaik enerji sistemlerinde maksimum güç noktası takibinin metasezgisel algoritmalar kullanılarak incelenmesi”. Avrupa Bilim ve Teknoloji Dergisi, 31, 157-164, 2021.
  • [46] Karafil A. “Kısmi gölgelenme durumundaki seri bağlı fotovoltaik (FV) panellerde bypass diyotunun kullanılmasının sistem gücü üzerine etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(68), 621-630, 2021.
  • [47] Eltamaly AM, Abdelaziz AY. Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems. 1st ed. Switzerland, Springer Cham, 2020.
  • [48] Özsağlam MY, Çunkaş M. “Optimizasyon problemlerinin çözümü için parçaçık sürü optimizasyonu algoritması”. Politeknik Dergisi, 11(4), 299-305, 2008.
  • [49] Liu YH, Huang SC, Huang JW, Liang WC. “A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions”. IEEE Transactions on Energy Conversion, 27(4), 1027-1035, 2012.
  • [50] Mirjalili S, Lewis A. “The whale optimization algorithm”. Advances in Engineering Software, 95, 51-67, 2016.
  • [51] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf optimizer”. Advances in Engineering Software, 69, 46-61, 2014.
  • [52] Ghalambaz M, Yengejeh RJ, Davami AH. “Building energy optimization using Grey Wolf Optimizer (GWO)”. Case Studies in Thermal Engineering, 27, 1-16, 2021.

Comparative performance analysis of metaheuristic algorithms for maximum power point tracking under partial shading conditions in PV systems

Yıl 2024, Cilt: 30 Sayı: 7, 891 - 905, 28.12.2024

Öz

Photovoltaic systems are one of the renewable energy systems that
convert solar radiation directly into electricity. The relationship
between current and voltage of PV system is nonlinear and it has only
one point where power efficiency is greatest. Power efficiency mainly
depends on atmospheric conditions such as irradiance and
temperature. Therefore, various maximum power point tracking
algorithms have been proposed in the literature to obtain maximum
efficiency. The proposed traditional methods show high performance
for maximum power point tracking under uniform irradiance and
constant temperature. But another situation that affects the power
efficiency is the partial shading condition and there are more maximum
points on the output power curve in the partial shading conditions. For
this reason, traditional methods are insufficient to reach global
maximum power points. Metaheuristic algorithms have been proposed
to solve this problem. In this paper, particle swarm optimization, gray
wolf optimization and whale optimization algorithms were selected
among the metaheuristic algorithms and comparative performance
analysis were made in terms of convergence rate and efficiency under
partial shading conditions. Obtained results were compared both
graphically and numerically.

Kaynakça

  • [1] Walker HA, Desai JD, Heimiller DM. “Performance of Photovoltaic Systems Recorded by Open Solar Performance and Reliability Clearinghouse (oSPARC)”. National Renewable Energy Lab. (NREL), Golden, CO, USA, 2020.
  • [2] Sulukan E. “İstanbul’da bir fotovoltaik sistemin tekno ekonomik ve çevresel analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 127-132, 2020.
  • [3] Amalathas AP, Alkaisi MM “Nanostructures for light trapping in thin film solar cells”. Micromachines, 10(9), 1-18, 2019.
  • [4] Kurtz S, Newmiller J, Kimber A, Flottemesch R, Riley E, Dierauf T, McKee J, Krishnani P. “Analysis of Photovoltaic System Energy Performance Evaluation Method”. National Renewable Energy Lab. (NREL), Golden, CO, USA, 2013.
  • [5] Eltawil MA, Zhao Z. “MPPT techniques for photovoltaic applications”. Renewable and Sustainable Energy Reviews, 25, 793-813, 2013.
  • [6] Elgendy MA, Zahawi B, Atkinson DJ. “Analysis of the performance of DC photovoltaic pumping systems with maximum power point tracking”. in 2008 4th IET Conference on Power Electronics, Machines and Drives, York, England, 02-04 April 2008.
  • [7] Elgendy MA, Zahawi B, Atkinson DJ. “Assessment of perturb and observe MPPT algorithm ımplementation techniques for PV pumping applications”. IEEE Transactions on Sustainable Energy, 3(1), 21-33, 2012.
  • [8] Suwannatrai P, Liutanakul P, Wipasuramonton P. “Maximum power point tracking by incremental conductance method for photovoltaic systems with phase shifted full-bridge dc-dc converter”. in The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand- Conference, Thailand , 17-19 May 2011.
  • [9] Lasheen M, Rahman AKA., Abdel-Salam M, Ookawara S. “Performance enhancement of constant voltage based MPPT for photovoltaic applications using genetic algorithm”. Energy Procedia, 100, 217-222, 2016.
  • [10] Saxena AR, Gupta SM. “Performance analysis of P&O and ıncremental conductance MPPT algorithms under rapidly changing weather conditions”. Journal of Electrical Systems, 10(3), 292-304, 2014.
  • [11] Kahoul N, Mekki M. “Adaptive P&O MPPT Technique for photovoltaic buck-boost converter system”. International Journal of Computer Applications, 112(12), 23-27, 2015.
  • [12] Yüksek G, Mete AN. “A P&O based variable step size MPPT algorithm for photovoltaic applications”. Gazi University Journal of Science, 36(2), 608-622, 2023.
  • [13] Belkaid A, Colak I, Kayisli K. “Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions”. Electrical Engineering, 99, 839-846, 2017.
  • [14] Patel H, Agarwal V. “Maximum power point tracking scheme for PV systems operating under partially shaded conditions”. IEEE Transactions on Industrial Electronics, 55(4), 1689-1698, 2008.
  • [15] Ji YH, Jung DY, Won CY, Lee BK, Kim JW. “Maximum power point tracking method for PV array under partially shaded condition”. IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20-24 September 2009.
  • [16] Dorofte C, Borup U, Blaabjerg F. “A combined two-method MPPT control scheme for grid-connected photovoltaic systems”. European Conference on Power Electronics and Applications, Dresden, Germany, 11-14 September 2005.
  • [17] Yafoui A, Wu B, Cheung R. “Implementation of maximum power point tracking algorithm for residential photovoltaic systems”. 2nd Canadian Solar Buildings Conference, Calgary, 10-14 June 2007.
  • [18] Lee JH, Bae H, Cho BH. “Advanced ıncremental conductance MPPT algorithm with a variable step size”. 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August-01 September 2006.
  • [19] Ahmed J, Salam Z. “A maximum power point tracking (MPPT) for PV system using Cuckoo Search with partial shading capability”. Applied Energy, 119, 118-130, 2014.
  • [20] Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L. “Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition”. Journal of Cleaner Production, 215, 1203-1222, 2019.
  • [21] Patel H, Agarwal V. “MATLAB-Based modeling to study the effects of partial shading on PV array characteristics”. IEEE Transactions on Energy Conversion, 23(1), 302-310, 2008.
  • [22] Shi J, Zhang W, Zhang Y, Xue F, Yang T. “MPPT for PV systems based on a dormant PSO algorithm”. Electric Power Systems Research, 123, 100-107, 2015.
  • [23] Koutroulis E, Blaabjerg F. “A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions”. IEEE Journal of Photovoltaics, 2(2), 184-190, 2012.
  • [24] Spertino F, Ahmad J, Ciocia A, Di Leo P, Murtaza AF, Chiaberge M. “Capacitor charging method for I-V curve tracer and MPPT in photovoltaic systems”. Solar Energy, 119, 461-473, 2015.
  • [25] Álvarez-Alvarado JM, Ríos-Moreno JG, Obregón-Biosca SA, Ronquillo-Lomelí G, Ventura-Ramos E, Trejo-Perea M. “Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: a review”. Applied Sciences, 11(3), 1-16, 2021.
  • [26] Nivetha V, Gowri GV. “Maximum power point tracking of photovoltaic system using ant colony and particle swam optimization algorithms”. 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26-27 February 2015.
  • [27] Sundareswaran K, Vigneshkumar V, Sankar P, Simon SP, Nayak PSR, Palani S. “Development of an Improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV System”. IEEE Transactions on Industrial Informatics, 12(1), 187-200, 2016.
  • [28] Nugraha DA, Lian KL, Suwarno. “A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system”. Canadian Journal of Electrical and Computer Engineering, 42(3), 173-182, 2019.
  • [29] Eltamaly AM. “An ımproved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial 14(4), 1-25 2021. shading conditions”. Energies, 14(4), 1-25 2021.
  • [30] Zhang M, Chen Z, Wei L. “An ımmune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions”. Energies, 12(16), 1-15, 2019.
  • [31] Teshome DF, Lee CH, Lin YW, Lian KL. “A Modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 661-671, 2017.
  • [32] Kumar C, Rao R. “A novel global MPP tracking of photovoltaic system based on whale optimization algorithm”. International Journal of Renewable Energy Development, 5(3), 225-232, 2016.
  • [33] Mohamed AA, Haridy AL, Hemeida AM. “The Whale Optimization Algorithm based controller for PMSG wind energy generation system”. International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 02-04 February 2019.
  • [34] Guo K, Cui L, Mao M, Zhou L, Zhang Q. “An ımproved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading”. IEEE Access, 8, 103476-103490, 2020.
  • [35] Motamarri R, Bhookya N, Chitti Babu B. “Modified grey wolf optimization for global maximum power point tracking under partial shading conditions in photovoltaic system”. International Journal of Circuit Theory and Applications, 49(7), 1884-1901, 2021.
  • [36] Singh Chawda G, Prakash Mahela O, Gupta N, Khosravy M, Senjyu T. “Incremental conductance based particle swarm optimization algorithm for global maximum power tracking of solar-PV under nonuniform operating conditions”. Applied Sciences, 10(13), 1-16, 2020.
  • [37] Calvinho G, Pombo J, Mariano S, Calado MR. “Design and implementation of MPPT system based on PSO Algorithm”. International Conference on Intelligent Systems (IS), Funchal, Portugal, 25-27 September 2018.
  • [38] Ishaque K, Salam Z. “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition”. Renewable and Sustainable Energy Reviews, 19, 475-488, 2013.
  • [39] Salam Z, Ahmed J, Merugu BS. “The application of soft computing methods for MPPT of PV system: A technological and status review”. Applied Energy, 107, 135-148, 2013.
  • [40] Efendi MZ, Murdianto FD, Setiawan RE. “Modeling and simulation of MPPT sepie converter using modified PSO to overcome partial shading impact on DC microgrid system”. International Electronics Symposium on Engineering Technology and Applications (IES-ETA), Surabaya, Indonesia, 26-27 September 2017.
  • [41] Priyadarshi N, Padmanaban S, Kiran Maroti P, Sharma A. “An extensive practical ınvestigation of FPSO-based MPPT for grid ıntegrated PV system under variable operating conditions with anti-ıslanding protection”. IEEE Systems Journal, 13(2), 1861-1871, 2019.
  • [42] Mohanty S, Subudhi B, Ray PK. “A grey wolf-assisted perturb & observe MPPT algorithm for a PV system”. IEEE Transactions on Energy Conversion, 32(1), 340-347, 2017.
  • [43] Eltamaly AM, Farh HMH, Al-Saud MS. “Grade point average assessment for metaheuristic GMPP techniques of partial shaded PV systems”. IET Renewable Power Generation, 13(8), 1215-1231, 2019.
  • [44] Jiang L, Maskell DL. “A simple hybrid MPPT technique for photovoltaic systems under rapidly changing partial shading conditions”. IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, USA 08-13 June 2014.
  • [45] Özdemir A, Pamuk N. “Kısmi gölgelenme şartları altındaki kompleks yapılı fotovoltaik enerji sistemlerinde maksimum güç noktası takibinin metasezgisel algoritmalar kullanılarak incelenmesi”. Avrupa Bilim ve Teknoloji Dergisi, 31, 157-164, 2021.
  • [46] Karafil A. “Kısmi gölgelenme durumundaki seri bağlı fotovoltaik (FV) panellerde bypass diyotunun kullanılmasının sistem gücü üzerine etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(68), 621-630, 2021.
  • [47] Eltamaly AM, Abdelaziz AY. Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems. 1st ed. Switzerland, Springer Cham, 2020.
  • [48] Özsağlam MY, Çunkaş M. “Optimizasyon problemlerinin çözümü için parçaçık sürü optimizasyonu algoritması”. Politeknik Dergisi, 11(4), 299-305, 2008.
  • [49] Liu YH, Huang SC, Huang JW, Liang WC. “A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions”. IEEE Transactions on Energy Conversion, 27(4), 1027-1035, 2012.
  • [50] Mirjalili S, Lewis A. “The whale optimization algorithm”. Advances in Engineering Software, 95, 51-67, 2016.
  • [51] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf optimizer”. Advances in Engineering Software, 69, 46-61, 2014.
  • [52] Ghalambaz M, Yengejeh RJ, Davami AH. “Building energy optimization using Grey Wolf Optimizer (GWO)”. Case Studies in Thermal Engineering, 27, 1-16, 2021.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Emrah Gürkan Bu kişi benim

Ahmet Güner

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Gürkan, E., & Güner, A. (2024). FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 891-905.
AMA Gürkan E, Güner A. FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):891-905.
Chicago Gürkan, Emrah, ve Ahmet Güner. “FV Sistemlerde kısmi gölgeleme koşullarında Maksimum güç Noktası Takibi için Metasezgisel algoritmaların karşılaştırmalı Performans Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 891-905.
EndNote Gürkan E, Güner A (01 Aralık 2024) FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 891–905.
IEEE E. Gürkan ve A. Güner, “FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 891–905, 2024.
ISNAD Gürkan, Emrah - Güner, Ahmet. “FV Sistemlerde kısmi gölgeleme koşullarında Maksimum güç Noktası Takibi için Metasezgisel algoritmaların karşılaştırmalı Performans Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 891-905.
JAMA Gürkan E, Güner A. FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:891–905.
MLA Gürkan, Emrah ve Ahmet Güner. “FV Sistemlerde kısmi gölgeleme koşullarında Maksimum güç Noktası Takibi için Metasezgisel algoritmaların karşılaştırmalı Performans Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 891-05.
Vancouver Gürkan E, Güner A. FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):891-905.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.