Araştırma Makalesi
BibTex RIS Kaynak Göster

Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu

Yıl 2024, Cilt: 30 Sayı: 7, 924 - 933, 28.12.2024

Öz

Panoramik diş röntgeni, diş problemlerinin teşhisi için kullanılan yaygın bir görüntüleme yöntemidir. Ancak, bu görüntüleme ile elde edilen panoramik diş röntgen görüntülerinin çözünürlüğü nispeten düşüktür. Bu nedenle, dişte oluşan problemler gözden kaçabilmektedir. Bu amaçla, bu çalışmada panoramik diş röntgen görüntülerinden bilgisayar destekli klinik karar destek sistemlerinde diş segmentasyonu için görüntü önişlem yöntemi ve evrişimsel sinir ağı (ESA) içeren bir yöntem önerilmiş ve bu önerilen yöntemin performans değerlendirmesi için Güneybatı Bahia Eyalet Üniversitesi (UESB) veri seti kullanılmıştır. İlk olarak, U-Net, SegNet ve DeepLabv3+ mimarileri UESB veri seti üzerinde eğitilmiş ve ardından test edilmiştir. Sonrasında, UESB veri setine sırasıyla Histogram Eşitleme (HE), Kontrast Germe (KG) ve Kontrast Sınırlı Uyarlanabilir Histogram Eşitleme (KSUHE) görüntü önişlemleri uygulanmıştır. Görüntü önişlem yöntemlerinin performansa etkisini ölçmek için, elde edilen önişlemli veri setleri U-Net, SegNet ve DeepLabv3+ mimarileri üzerinde tekrar eğitilmiş ve test edilmiştir. Elde edilen test sonuçlarına göre KG, bu çalışmada kullanılan diğer önişlemlere kıyasla DeepLabv3+ ve SegNet mimarilerinde en fazla performansı iyileştiren önişlem yöntemi olmuştur. En yüksek performansı ise, KG önişlemli veri seti ile eğitilmiş SegNet mimarisi elde etmiş ve diş segmentasyonu için önerilmiştir. Karşılaştırmalı performans analizinde KG hem panoramik diş görüntülerinin iyileştirilmesinde hem de ESA mimarileri üzerinde performans artırıcı yönde etkiye sahip olduğunu göstermiştir. Ayrıca, önerilen yöntemden elde edilen bulgular, UESB veri setinde yapılan önceki çalışmalarla karşılaştırılmış ve bu yöntem, literatürdeki benzer geliştirilen en son teknoloji yöntemlere göre kayda değer bir performans gösteren yöntemlerden birisi olmuştur. Sonuç olarak, önerilen yöntemin diş segmentasyonu için geliştirilecek bilgisayar destekli karar destek sistemlerinde güçlü bir araç olarak kullanılabileceği görülmüştür.

Kaynakça

  • [1] Mendonça EA. “Clinical decision support systems: perspectives in dentistry”. Journal of dental education, 68(6), 589-597, 2004.
  • [2] Terlemez A, Tassoker M, Kizilcakaya M, Gulec M. “Comparison of cone-beam computed tomography and panoramic radiography in the evaluation of maxillary sinus pathology related to maxillary posterior teeth: Do apical lesions increase the risk of maxillary sinus pathology?”. Imaging Science in Dentistry, 49(2), 115-122, 2019.
  • [3] Muresan MP, Barbura AR, Nedevschi S. “Teeth detection and dental problem classification in panoramic X-ray images using deep learning and image processing techniques”. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 03-05 September 2020.
  • [4] Ward IR, Laga H, Bennamoun M. RGB-D Image-Based Object Detection: From Traditional Methods to Deep Learning Techniques. Editors: Rosin P, Lai YK, Shao L, Liu Y. RGB-D Image Analysis and Processing, 169-201, Springer Cham, 2019.
  • [5] Ongsulee P. “Artificial intelligence, machine learning and deep learning”. In 2017 15th international conference on ICT and knowledge engineering (ICT&KE), Bangkok, Thailand, 22-24 November 2017.
  • [6] LeCun Y, Bengio Y, Hinton G. “Deep learning”. Nature, 521(7553), 436-444, 2015.
  • [7] Uysal E, Güraksin GE. “Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks”. Multimedia Tools and Applications, 80, 3505-3528, 2021.
  • [8] Kayadibi I, Güraksın GE. “An early retinal disease diagnosis system using OCT images via CNN-based stacking ensemble learning”. International Journal for Multiscale Computational Engineering, 21(1), 1-15, 2023.
  • [9] Şener E, Gürses B. “Diş hekimliği pratiğinde yapay zekânın ilk basamağı: Segmentasyon uygulamaları”. Current research in dental sciences, 33(1), 40-49, 2023.
  • [10] Estai M, Tennant M, Gebauer D, Brostek A, Vignarajan J, Mehdizadeh M, Saha S. “Deep learning for automated detection and numbering of permanent teeth on panoramic images”. Dentomaxillofacial Radiology, 51(2), 1-8, 2022.
  • [11] Lee JH, Kim DH, Jeong SN. “Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network”. Oral diseases, 26(1), 152-158, 2020.
  • [12]Silva G, Oliveira L, Pithon M. “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives”. Expert Systems with Applications, 107, 15-31, 2018.
  • [13] Zhu H, Cao Z, Lian, L, Ye G, Gao H, Wu J. “CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image”. Neural Computing and Applications, 35, 16051-16059, 2022.
  • [14] Muresan MP, Barbura AR, Nedevschi, S. “Teeth detection and dental problem classification in panoramic X-ray images using deep learning and image processing techniques”. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3-5 September 2020.
  • [15] Kayadibi İ, Güraksın GE, Ergün U. “ESA tabanlı göz durumu tespitinde görüntü önişlem yöntemlerinin etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (3), 496-505, 2022.
  • [16] Kayadibi İ, Güraksın GE. “An explainable fully dense fusion neural network with deep support vector machine for retinal disease determination”. International Journal of Computational Intelligence Systems, 16(1), 1-20, 2023.
  • [17] Deperlioglu O, Kose U, Gupta D, Khanna A, Giampaolo F, Fortino G. “Explainable framework for Glaucoma diagnosis by image processing and convolutional neural network synergy: analysis with doctor evaluation”. Future Generation Computer Systems, 129, 152-169, 2022.
  • [18] Vasuki P, Kanimozhi J, Devi MB. “A survey on image preprocessing techniques for diverse fields of medical imagery”. In 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), Karur, Tamilnadu, India, 27-28 April 2017.
  • [19] Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN. “Approaches for automated detection and classification of masses in mammograms”. Pattern Recognition, 39(4), 646-668, 2006.
  • [20] Annadurai S. Fundamentals of Digital Image Processing. 1nd ed. Tamil Nadu, India, Pearson Education, 2007.
  • [21] Pisano ED, Zong S, Hemminger BM, DeLuca M, Johnston R E, Muller K, Pizer SM. “Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms”. Journal of Digital imaging, 11, 193-200, 1998.
  • [22] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on pure and applied mathematics, 41(7), 909-996, 1988.
  • [23] Sheba KU, Raj SG. “Objective quality assessment of image enhancement methods in digital mammography–a comparative study”. Signal & Image processing: An International Journal, 7(4), 1-13, 2016.
  • [24] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Sánchez CI. “A survey on deep learning in medical image analysis”. Medical Image Analysis, 42, 60-88, 2017.
  • [25] Ronneberger O, Fischer P, Brox T. “U-net: Convolutional networks for biomedical image segmentation”. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5-9 October 2015.
  • [26] Badrinarayanan V, Kendall A, Cipolla R. “Segnet: A deep convolutional encoder-decoder architecture for image segmentation”. IEEE Transactions on Pattern Analysis and Machine İntelligence, 39(12), 2481-2495, 2017.
  • [27] Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. “Encoder-decoder with atrous separable convolution for semantic image segmentation”, In Proceedings of the 15th European conference on computer vision (ECCV), Munich, Germany, 8-14 September 2018.
  • [28] Goutte C, Gaussier E. “A probabilistic interpretation of precision, recall and F-score, with implication for evaluation”. In Advances in Information Retrieval: 27th European Conference on IR Research, Santiago de Compostela, Spain, 21-23 March 2005.
  • [29] Eelbode T, Bertels J, Berman M, Vandermeulen D, Maes F, Bisschops R, Blaschko MB. “Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index”. IEEE Transactions on Medical Imaging, 39(11), 3679-3690, 2020.
  • [30] Akalın F, Yumusak N. “Derin öğrenme tabanlı topluluk sınıflandırıcı yaklaşımı ile gastrointestinal anomalilerin tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 366-373, 2024.
  • [31] Koch TL, Perslev M, Igel C, Brandt SS. “Accurate segmentation of dental panoramic radiographs with U-Nets”. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8-11 April 2019.
  • [32] Zhao Y, Li P, Gao C, Liu Y, Chen Q, Yang F, Meng D. “TSASNet: Tooth segmentation on dental panoramic X-ray images by two-stage attention segmentation network”. Knowledge-Based Systems, 206, 1-10, 2020.
  • [33] Lee JH, Han SS, Kim YH, Lee C, Kim I. “Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs”. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 129(6), 635-642, 2020.
  • [34] da Silva Rocha É, Endo PT. “A comparative study of deep learning models for dental segmentation in panoramic radiograph”. Applied Sciences, 12(6), 1-12, 2022.
  • [35] Lin S, Hao X, Liu Y, Yan D, Liu J, Zhong M. “Lightweight deep learning methods for panoramic dental X-ray image segmentation”. Neural Computing and Applications, 35(11), 8295-8306, 2023.
  • [36] Kayadibi İ, Güraksın GE, Köse U. “A hybrid R-FTCNN based on principal component analysis for retinal disease detection from OCT images”. Expert Systems with Applications, 230, 1-15, 2023.

Computer-aided tooth segmentation using image processing techniques and convolutional neural network

Yıl 2024, Cilt: 30 Sayı: 7, 924 - 933, 28.12.2024

Öz

Panoramic dental radiography is a common imaging technique used to diagnose dental problems. However, the resolution of panoramic dental radiographs taken with this imaging method is relatively low. As a result, dental problems may be missed. Against this background, this study proposes a method involving image preprocessing techniques and a convolutional neural network (CNN) for tooth segmentation in computer-aided clinical decision support systems using panoramic dental radiographs. The performance of the proposed method is evaluated using the dataset of the Southwest Bahia State University (UESB). First, the U-Net, SegNet and DeepLabv3+ architectures are trained and then tested on the UESB dataset. Then, pre-processing methods such as Histogram Equalisation (HE), Contrast Stretching (CS), and Contrast Limited Adaptive Histogram Equalisation (CLAHE) are applied to the UESB dataset. To evaluate the impact of these pre-processing methods on the performance, the pre-processed datasets are retrained and tested on the U-Net, SegNet and DeepLabv3+ architectures. Based on the test results obtained, it is evident that CS is the preprocessing method that significantly improves the performance of the DeepLabv3+ and SegNet architectures compared to the other preprocessing methods used in this study. The best performance is achieved by the SegNet architecture trained on the CS preprocessed dataset and is subsequently proposed for tooth segmentation. The comparative performance analysis shows that CS has a performance-enhancing effect on both panoramic dental images and ESA architectures. Furthermore, the results obtained from the proposed method are compared with previous studies on the UESB dataset and this method is one of the methods that performs remarkably well compared to similar state-of-the-art methods in the literature. In conclusion, the proposed method can be used as a powerful tool in computer-aided decision support systems that can be developed for tooth segmentation.

Kaynakça

  • [1] Mendonça EA. “Clinical decision support systems: perspectives in dentistry”. Journal of dental education, 68(6), 589-597, 2004.
  • [2] Terlemez A, Tassoker M, Kizilcakaya M, Gulec M. “Comparison of cone-beam computed tomography and panoramic radiography in the evaluation of maxillary sinus pathology related to maxillary posterior teeth: Do apical lesions increase the risk of maxillary sinus pathology?”. Imaging Science in Dentistry, 49(2), 115-122, 2019.
  • [3] Muresan MP, Barbura AR, Nedevschi S. “Teeth detection and dental problem classification in panoramic X-ray images using deep learning and image processing techniques”. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 03-05 September 2020.
  • [4] Ward IR, Laga H, Bennamoun M. RGB-D Image-Based Object Detection: From Traditional Methods to Deep Learning Techniques. Editors: Rosin P, Lai YK, Shao L, Liu Y. RGB-D Image Analysis and Processing, 169-201, Springer Cham, 2019.
  • [5] Ongsulee P. “Artificial intelligence, machine learning and deep learning”. In 2017 15th international conference on ICT and knowledge engineering (ICT&KE), Bangkok, Thailand, 22-24 November 2017.
  • [6] LeCun Y, Bengio Y, Hinton G. “Deep learning”. Nature, 521(7553), 436-444, 2015.
  • [7] Uysal E, Güraksin GE. “Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks”. Multimedia Tools and Applications, 80, 3505-3528, 2021.
  • [8] Kayadibi I, Güraksın GE. “An early retinal disease diagnosis system using OCT images via CNN-based stacking ensemble learning”. International Journal for Multiscale Computational Engineering, 21(1), 1-15, 2023.
  • [9] Şener E, Gürses B. “Diş hekimliği pratiğinde yapay zekânın ilk basamağı: Segmentasyon uygulamaları”. Current research in dental sciences, 33(1), 40-49, 2023.
  • [10] Estai M, Tennant M, Gebauer D, Brostek A, Vignarajan J, Mehdizadeh M, Saha S. “Deep learning for automated detection and numbering of permanent teeth on panoramic images”. Dentomaxillofacial Radiology, 51(2), 1-8, 2022.
  • [11] Lee JH, Kim DH, Jeong SN. “Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network”. Oral diseases, 26(1), 152-158, 2020.
  • [12]Silva G, Oliveira L, Pithon M. “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives”. Expert Systems with Applications, 107, 15-31, 2018.
  • [13] Zhu H, Cao Z, Lian, L, Ye G, Gao H, Wu J. “CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image”. Neural Computing and Applications, 35, 16051-16059, 2022.
  • [14] Muresan MP, Barbura AR, Nedevschi, S. “Teeth detection and dental problem classification in panoramic X-ray images using deep learning and image processing techniques”. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3-5 September 2020.
  • [15] Kayadibi İ, Güraksın GE, Ergün U. “ESA tabanlı göz durumu tespitinde görüntü önişlem yöntemlerinin etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11 (3), 496-505, 2022.
  • [16] Kayadibi İ, Güraksın GE. “An explainable fully dense fusion neural network with deep support vector machine for retinal disease determination”. International Journal of Computational Intelligence Systems, 16(1), 1-20, 2023.
  • [17] Deperlioglu O, Kose U, Gupta D, Khanna A, Giampaolo F, Fortino G. “Explainable framework for Glaucoma diagnosis by image processing and convolutional neural network synergy: analysis with doctor evaluation”. Future Generation Computer Systems, 129, 152-169, 2022.
  • [18] Vasuki P, Kanimozhi J, Devi MB. “A survey on image preprocessing techniques for diverse fields of medical imagery”. In 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), Karur, Tamilnadu, India, 27-28 April 2017.
  • [19] Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN. “Approaches for automated detection and classification of masses in mammograms”. Pattern Recognition, 39(4), 646-668, 2006.
  • [20] Annadurai S. Fundamentals of Digital Image Processing. 1nd ed. Tamil Nadu, India, Pearson Education, 2007.
  • [21] Pisano ED, Zong S, Hemminger BM, DeLuca M, Johnston R E, Muller K, Pizer SM. “Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms”. Journal of Digital imaging, 11, 193-200, 1998.
  • [22] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on pure and applied mathematics, 41(7), 909-996, 1988.
  • [23] Sheba KU, Raj SG. “Objective quality assessment of image enhancement methods in digital mammography–a comparative study”. Signal & Image processing: An International Journal, 7(4), 1-13, 2016.
  • [24] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Sánchez CI. “A survey on deep learning in medical image analysis”. Medical Image Analysis, 42, 60-88, 2017.
  • [25] Ronneberger O, Fischer P, Brox T. “U-net: Convolutional networks for biomedical image segmentation”. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5-9 October 2015.
  • [26] Badrinarayanan V, Kendall A, Cipolla R. “Segnet: A deep convolutional encoder-decoder architecture for image segmentation”. IEEE Transactions on Pattern Analysis and Machine İntelligence, 39(12), 2481-2495, 2017.
  • [27] Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. “Encoder-decoder with atrous separable convolution for semantic image segmentation”, In Proceedings of the 15th European conference on computer vision (ECCV), Munich, Germany, 8-14 September 2018.
  • [28] Goutte C, Gaussier E. “A probabilistic interpretation of precision, recall and F-score, with implication for evaluation”. In Advances in Information Retrieval: 27th European Conference on IR Research, Santiago de Compostela, Spain, 21-23 March 2005.
  • [29] Eelbode T, Bertels J, Berman M, Vandermeulen D, Maes F, Bisschops R, Blaschko MB. “Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index”. IEEE Transactions on Medical Imaging, 39(11), 3679-3690, 2020.
  • [30] Akalın F, Yumusak N. “Derin öğrenme tabanlı topluluk sınıflandırıcı yaklaşımı ile gastrointestinal anomalilerin tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 366-373, 2024.
  • [31] Koch TL, Perslev M, Igel C, Brandt SS. “Accurate segmentation of dental panoramic radiographs with U-Nets”. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8-11 April 2019.
  • [32] Zhao Y, Li P, Gao C, Liu Y, Chen Q, Yang F, Meng D. “TSASNet: Tooth segmentation on dental panoramic X-ray images by two-stage attention segmentation network”. Knowledge-Based Systems, 206, 1-10, 2020.
  • [33] Lee JH, Han SS, Kim YH, Lee C, Kim I. “Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs”. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 129(6), 635-642, 2020.
  • [34] da Silva Rocha É, Endo PT. “A comparative study of deep learning models for dental segmentation in panoramic radiograph”. Applied Sciences, 12(6), 1-12, 2022.
  • [35] Lin S, Hao X, Liu Y, Yan D, Liu J, Zhong M. “Lightweight deep learning methods for panoramic dental X-ray image segmentation”. Neural Computing and Applications, 35(11), 8295-8306, 2023.
  • [36] Kayadibi İ, Güraksın GE, Köse U. “A hybrid R-FTCNN based on principal component analysis for retinal disease detection from OCT images”. Expert Systems with Applications, 230, 1-15, 2023.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Görüşü ve Çoklu Ortam Hesaplama (Diğer)
Bölüm Makale
Yazarlar

İsmail Kayadibi

Utku Köse

Gür Emre Güraksın

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Kayadibi, İ., Köse, U., & Güraksın, G. E. (2024). Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 924-933.
AMA Kayadibi İ, Köse U, Güraksın GE. Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):924-933.
Chicago Kayadibi, İsmail, Utku Köse, ve Gür Emre Güraksın. “Görüntü işleme Teknikleri Ve evrişimsel Sinir ağı kullanılarak Bilgisayar Destekli Diş Segmentasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 924-33.
EndNote Kayadibi İ, Köse U, Güraksın GE (01 Aralık 2024) Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 924–933.
IEEE İ. Kayadibi, U. Köse, ve G. E. Güraksın, “Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 924–933, 2024.
ISNAD Kayadibi, İsmail vd. “Görüntü işleme Teknikleri Ve evrişimsel Sinir ağı kullanılarak Bilgisayar Destekli Diş Segmentasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 924-933.
JAMA Kayadibi İ, Köse U, Güraksın GE. Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:924–933.
MLA Kayadibi, İsmail vd. “Görüntü işleme Teknikleri Ve evrişimsel Sinir ağı kullanılarak Bilgisayar Destekli Diş Segmentasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 924-33.
Vancouver Kayadibi İ, Köse U, Güraksın GE. Görüntü işleme teknikleri ve evrişimsel sinir ağı kullanılarak bilgisayar destekli diş segmentasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):924-33.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.