Araştırma Makalesi
BibTex RIS Kaynak Göster

Serbest gezen araba paylaşım sistemi için kullanıcı temelli yer değiştirme stratejisi: Bir İstanbul örneği

Yıl 2024, Cilt: 30 Sayı: 7, 934 - 943, 28.12.2024

Öz

Sınırlı kaynaklara sahip bir dünyada, bireylerin paylaşımlı sistemleri kullanma ve kullanımlarını optimize etmek için stratejiler geliştirmesi hayati öneme sahiptir. Bu duruma cevap olarak, ‘hizmetleştirme’ özellikle araç paylaşım sistemlerinde hızla büyüyen umut verici bir çözüm olarak ortaya çıkmıştır. Bu sistemler ikiye ayrılmaktadır; istasyon tabanlı ve serbest dolaşan. Serbest dolaşan sistemlerin belirlenmiş operasyonel bölgeler içinde araçları herhangi bir yerden alıp bırakmaya izin verdiği bilindiği için müşterilere daha fazla esneklik sunar. Bu esneklik, talep ile arz arasındaki potansiyel bir dengesizlik getirerek ek bir maliyete neden olabilmektedir. Bu çalışmada, serbest dolaşan araç paylaşım sisteminin dengesizlik problemi ele alınmıştır. Bu problemi çözmek için serbest dolaşan araç paylaşım sistemleri için bir karma tamsayılı doğrusal programlama modeli geliştirilmiş ve gerçek verilerle test edilmiştir. Önerilen sistem dört modülden oluşmaktadır: kümeleme, tahmin, optimizasyon modeli ve yeniden konumlandırma stratejisi. Sonuçlara göre, sistemin %9 daha fazla talebi karşılayarak daha dengeli ve %6 daha fazla kazanç sağlayarak daha karlı olduğu gözlemlenmiştir. Çalışma İstanbul merkezli bir araç paylaşım şirketi üzerinde gerçekleştirilmiştir, ancak sonuçlar herhangi bir serbest dolaşan araç paylaşım sistemine uygulanabilir. Bu, talebi karşılayarak ve sistemi dengeleyerek müşteri memnuniyetini sağlamaktadır.

Kaynakça

  • [1] Çetin BK, Pratas NK. “Resource sharing and scheduling in device-to-device communication underlying cellular network”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(5), 604-609, 2021.
  • [2] Yıldız B. “Crowd-shipping service network design problem”. Pamukkale University Journal of Engineering Sciences, 28(1), 104-116, 2022.
  • [3] Agatz N, Erera A, Savelsbergh M, Wang X. “Optimization for dynamic ride-sharing: A review”. European Journal of Operational Research, 223(2), 295-303, 2012.
  • [4] Qin ZT, Zhu H, Ye J. “Reinforcement learning for ridesharing: A survey”. IEEE Intelligent Transportation Systems Conference, Indianapolis, USA, 19-22 September 2021.
  • [5] Alencar VA, Rooke F, Cocca M, Vassio L, Almeida J, Vieira AB. “Characterizing client usage patterns and service demand for car-sharing systems”. Information Systems, 98, 101448-101457, 2021.
  • [6] Boyacı B, Zografos KG, Geroliminis N. “An optimization framework for the development of efficient one-way car-sharing systems”. European Journal of Operational Research, 240(3), 718-733, 2015.
  • [7] Boyacı B, Zografos KG, Geroliminis N. “An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations”. Transportation Research Part B: Methodological, 95, 214-237, 2017.
  • [8] Bruglieri M, Colorni A, Luè A. “The relocation problem for the one‐way electric vehicle sharing”. Networks, 64(4), 292-305, 2014.
  • [9] Bruglieri M, Colorni A, Lue A. “The vehicle relocation problem for the one-way electric vehicle sharing: an application to the Milan case”. Procedia-Social and Behavioral Sciences, 111, 18-27, 2014.
  • [10] Bruglieri M, Pezzella F, Pisacane O. “Heuristic algorithms for the operator-based relocation problem in one-way electric carsharing systems”. Discrete Optimization, 23, 56-80, 2017.
  • [11] Bruglieri M, Pezzella F, Pisacane O. “An adaptive large neighborhood search for relocating vehicles in electric carsharing services”. Discrete Applied Mathematics, 253, 185-200, 2019.
  • [12] Jorge D, Correia GH, Barnhart C. “Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems”. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1667-1675, 2014.
  • [13] Barth M, Todd M, Xue L. “User-based vehicle relocation techniques for multiple-station shared-use vehicle systems”. Transportation Research Record, 1887(1), 137-144, 2004.
  • [14] Clemente M, Fanti MP, Mangini AM, Ukovich W. “The vehicle relocation problem in car sharing systems: Modeling and simulation in a petri net framework”. Application and Theory of Petri Nets and Concurrency: 34th International Conference, Milan, Italy, 24-28 June 2013.
  • [15] Di Febbraro A, Sacco N, Saeednia M. “One-way carsharing: solving the relocation problem”. Transportation Research Record, 2319(1), 113-120, 2012.
  • [16] Di Febbraro A, Sacco N, Saeednia M. “One-way car-sharing profit maximization by means of user-based vehicle relocation”. IEEE Transactions on Intelligent Transportation Systems, 20(2), 628-641, 2018.
  • [17] Weikl S, Bogenberger K. “Integrated relocation model for free-floating carsharing systems: Field trial results”. Transportation Research Record, 2563(1), 19-27, 2015.
  • [18] Herbawi W, Knoll M, Kaiser M, Gruel W. “An evolutionary algorithm for the vehicle relocation problem in free floating carsharing”. IEEE Congress on Evolutionary Computation, Vancouver, Canada, 24-29 July 2016.
  • [19] Jorge D, Molnar G, de Almeida Correia GH. “Trip pricing of one-way station-based carsharing networks with zone and time of day price variations”. Transportation Research Part B: Methodological, 81, 461-482, 2015.
  • [20] Ren S, Luo F, Lin L, Hsu SC, Li XI. “A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration”. International Journal of Production Economics, 218, 339-351, 2019.
  • [21] Xu M, Meng Q, Liu Z. “Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment”. Transportation Research Part B: Methodological, 111, 60-82, 2018.
  • [22] Reiss S, Bogenberger K. “Validation of a relocation strategy for Munich's bike sharing system”. Transportation Research Procedia, 19, 341-349, 2016.
  • [23] Cagliero L, Chiusano S, Daraio E, Garza P. “CarPredictor: forecasting the number of free floating car sharing vehicles within restricted urban areas”. IEEE International Congress on Big Data, Milan, Italy, 8-13 July 2019.
  • [24] Ferrero F, Perboli G, Rosano M, Vesco A. “Car-sharing services: An annotated review”. Sustainable Cities and Society, 37, 501-518, 2018.
  • [25] Hardt C, Bogenberger K. “Empirical analysis of demand patterns and availability in free-floating carsharing systems”. 21st International Conference on Intelligent Transportation Systems, Hawaii, USA, 4-7 November 2018.
  • [26] Martínez LM, Correia GHDA, Moura F, Mendes Lopes M. “Insights into carsharing demand dynamics: Outputs of an agent-based model application to Lisbon, Portugal”. International Journal of Sustainable Transportation, 11(2), 148-159, 2017.
  • [27] Kotler P, Armstrong G. Principles of Marketing. 14th ed. Essex, England, Pearson Education, 2012.

User-based relocation strategy for free floating car-sharing system: An Istanbul case

Yıl 2024, Cilt: 30 Sayı: 7, 934 - 943, 28.12.2024

Öz

In a world with limited resources, it is crucial for individuals to utilise shared systems and develop strategies to optimise their usage. To cope with this, 'servicizing' has emerged as a rapidly growing promising solution, especially in car-sharing systems. These systems can be split into two: station-based and free-floating. The latter introduces more flexibility to the customers as free-floating systems allow users to pick up and drop off vehicles anywhere within predetermined operational zones. This flexibility may come with an additional cost by bringing a potential imbalance between demand and supply. This imbalance can harm the company's profitability and customer satisfaction. In this study, the imbalance problem of the system of free-floating car sharing is considered. A mixed integer linear programming model is developed and tested with real data for free floating car sharing systems to solve this problem. The proposed system consists of four modules: clustering, forecasting, optimization model, and relocation strategy. According to the results, it is observed that the system is more balanced with satisfying 9% more demand and more profitable with earning 6% more. The study was conducted on a car-sharing company that is based in Istanbul, but the results can be applied to any free-floating car-sharing system. This ensures customer satisfaction by meeting demand and balancing the system.

Kaynakça

  • [1] Çetin BK, Pratas NK. “Resource sharing and scheduling in device-to-device communication underlying cellular network”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(5), 604-609, 2021.
  • [2] Yıldız B. “Crowd-shipping service network design problem”. Pamukkale University Journal of Engineering Sciences, 28(1), 104-116, 2022.
  • [3] Agatz N, Erera A, Savelsbergh M, Wang X. “Optimization for dynamic ride-sharing: A review”. European Journal of Operational Research, 223(2), 295-303, 2012.
  • [4] Qin ZT, Zhu H, Ye J. “Reinforcement learning for ridesharing: A survey”. IEEE Intelligent Transportation Systems Conference, Indianapolis, USA, 19-22 September 2021.
  • [5] Alencar VA, Rooke F, Cocca M, Vassio L, Almeida J, Vieira AB. “Characterizing client usage patterns and service demand for car-sharing systems”. Information Systems, 98, 101448-101457, 2021.
  • [6] Boyacı B, Zografos KG, Geroliminis N. “An optimization framework for the development of efficient one-way car-sharing systems”. European Journal of Operational Research, 240(3), 718-733, 2015.
  • [7] Boyacı B, Zografos KG, Geroliminis N. “An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations”. Transportation Research Part B: Methodological, 95, 214-237, 2017.
  • [8] Bruglieri M, Colorni A, Luè A. “The relocation problem for the one‐way electric vehicle sharing”. Networks, 64(4), 292-305, 2014.
  • [9] Bruglieri M, Colorni A, Lue A. “The vehicle relocation problem for the one-way electric vehicle sharing: an application to the Milan case”. Procedia-Social and Behavioral Sciences, 111, 18-27, 2014.
  • [10] Bruglieri M, Pezzella F, Pisacane O. “Heuristic algorithms for the operator-based relocation problem in one-way electric carsharing systems”. Discrete Optimization, 23, 56-80, 2017.
  • [11] Bruglieri M, Pezzella F, Pisacane O. “An adaptive large neighborhood search for relocating vehicles in electric carsharing services”. Discrete Applied Mathematics, 253, 185-200, 2019.
  • [12] Jorge D, Correia GH, Barnhart C. “Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems”. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1667-1675, 2014.
  • [13] Barth M, Todd M, Xue L. “User-based vehicle relocation techniques for multiple-station shared-use vehicle systems”. Transportation Research Record, 1887(1), 137-144, 2004.
  • [14] Clemente M, Fanti MP, Mangini AM, Ukovich W. “The vehicle relocation problem in car sharing systems: Modeling and simulation in a petri net framework”. Application and Theory of Petri Nets and Concurrency: 34th International Conference, Milan, Italy, 24-28 June 2013.
  • [15] Di Febbraro A, Sacco N, Saeednia M. “One-way carsharing: solving the relocation problem”. Transportation Research Record, 2319(1), 113-120, 2012.
  • [16] Di Febbraro A, Sacco N, Saeednia M. “One-way car-sharing profit maximization by means of user-based vehicle relocation”. IEEE Transactions on Intelligent Transportation Systems, 20(2), 628-641, 2018.
  • [17] Weikl S, Bogenberger K. “Integrated relocation model for free-floating carsharing systems: Field trial results”. Transportation Research Record, 2563(1), 19-27, 2015.
  • [18] Herbawi W, Knoll M, Kaiser M, Gruel W. “An evolutionary algorithm for the vehicle relocation problem in free floating carsharing”. IEEE Congress on Evolutionary Computation, Vancouver, Canada, 24-29 July 2016.
  • [19] Jorge D, Molnar G, de Almeida Correia GH. “Trip pricing of one-way station-based carsharing networks with zone and time of day price variations”. Transportation Research Part B: Methodological, 81, 461-482, 2015.
  • [20] Ren S, Luo F, Lin L, Hsu SC, Li XI. “A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration”. International Journal of Production Economics, 218, 339-351, 2019.
  • [21] Xu M, Meng Q, Liu Z. “Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment”. Transportation Research Part B: Methodological, 111, 60-82, 2018.
  • [22] Reiss S, Bogenberger K. “Validation of a relocation strategy for Munich's bike sharing system”. Transportation Research Procedia, 19, 341-349, 2016.
  • [23] Cagliero L, Chiusano S, Daraio E, Garza P. “CarPredictor: forecasting the number of free floating car sharing vehicles within restricted urban areas”. IEEE International Congress on Big Data, Milan, Italy, 8-13 July 2019.
  • [24] Ferrero F, Perboli G, Rosano M, Vesco A. “Car-sharing services: An annotated review”. Sustainable Cities and Society, 37, 501-518, 2018.
  • [25] Hardt C, Bogenberger K. “Empirical analysis of demand patterns and availability in free-floating carsharing systems”. 21st International Conference on Intelligent Transportation Systems, Hawaii, USA, 4-7 November 2018.
  • [26] Martínez LM, Correia GHDA, Moura F, Mendes Lopes M. “Insights into carsharing demand dynamics: Outputs of an agent-based model application to Lisbon, Portugal”. International Journal of Sustainable Transportation, 11(2), 148-159, 2017.
  • [27] Kotler P, Armstrong G. Principles of Marketing. 14th ed. Essex, England, Pearson Education, 2012.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Makale
Yazarlar

Mısra Şimşir

Umman Mahir Yıldırım

Doruk Şen

Yayımlanma Tarihi 28 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 7

Kaynak Göster

APA Şimşir, M., Yıldırım, U. M., & Şen, D. (2024). User-based relocation strategy for free floating car-sharing system: An Istanbul case. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(7), 934-943.
AMA Şimşir M, Yıldırım UM, Şen D. User-based relocation strategy for free floating car-sharing system: An Istanbul case. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2024;30(7):934-943.
Chicago Şimşir, Mısra, Umman Mahir Yıldırım, ve Doruk Şen. “User-Based Relocation Strategy for Free Floating Car-Sharing System: An Istanbul Case”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 7 (Aralık 2024): 934-43.
EndNote Şimşir M, Yıldırım UM, Şen D (01 Aralık 2024) User-based relocation strategy for free floating car-sharing system: An Istanbul case. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 7 934–943.
IEEE M. Şimşir, U. M. Yıldırım, ve D. Şen, “User-based relocation strategy for free floating car-sharing system: An Istanbul case”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, ss. 934–943, 2024.
ISNAD Şimşir, Mısra vd. “User-Based Relocation Strategy for Free Floating Car-Sharing System: An Istanbul Case”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/7 (Aralık 2024), 934-943.
JAMA Şimşir M, Yıldırım UM, Şen D. User-based relocation strategy for free floating car-sharing system: An Istanbul case. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:934–943.
MLA Şimşir, Mısra vd. “User-Based Relocation Strategy for Free Floating Car-Sharing System: An Istanbul Case”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 7, 2024, ss. 934-43.
Vancouver Şimşir M, Yıldırım UM, Şen D. User-based relocation strategy for free floating car-sharing system: An Istanbul case. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(7):934-43.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.