Araştırma Makalesi
BibTex RIS Kaynak Göster

Mekanik otofretaj işleminde oluşan kalıntı gerilmelerin sayısal olarak incelenmesi

Yıl 2025, Cilt: 31 Sayı: 6, 939 - 955, 13.11.2025
https://doi.org/10.5505/pajes.2025.86727

Öz

Otofretaj, kalın cidarlı silindirlerin basınç taşıma kapasitelerini ve yorulma ömrünü artırmak için silindirin cidar kalınlığı boyunca kalıntı gerilme oluşturma işlemidir. Uygulamada birçok teknik olmasına rağmen, ağır silah namlusu üretim sürecinde en çok mekanik ve hidrolik otofretaj işlemleri kullanılmaktadır. Bu çalışmada, bir ağır silah namlusu üzerinde mekanik otofretaj işlemi sonunda oluşan gerilmeler, bir SEA (Sonlu Elemanlar Analizi) yazılımı kullanılarak sayısal olarak hesaplanmıştır. SEA analizinde iki boyutlu (2D) eksenel simetrik bir model kullanılmıştır. Otofretajsız namlu için çalışma basıncı altındaki Von Mises gerilmesi 1350,3 MPa olarak hesaplanmıştır. Otofretajlı namlu için Von Mises eşdeğer gerilmesi namlu et kalınlığının %63’ne denk gelen konumda 1122,3 MPa’dır. Bu gerilme değerinin, namlu akma mukavemeti olan 1195 MPa’ın altında olduğu görülmektedir. Sonuç olarak, çalışma basıncı altında otofretajlı namluda Von Mises eşdeğer gerilmesi %16,88 azalmıştır. Ayrıca, mekanik otofretaj işlemi sırasında oluşan mil kuvveti sayısal ve deneysel olarak hesaplanmıştır. Mil kuvveti SEA yazılımı ile 135,58 ton olarak hesaplanırken deneysel olarak yaklaşık 142 ton olarak ölçülmüştür Sayısal ve deneysel sonuçlar karşılaştırıldığında, iki sonuç arasında %4,52'lik bir hatanın olduğu görülmektedir. Bu hata oranının oldukça makul olduğu söylemek mümkündür. Sonuç olarak, sayısal çalışmanın gerçek durum şartlarını doğru bir şekilde yansıtması açısından oldukça başarılı olduğunu söylemek mümkündür.

Kaynakça

  • [1] Majzoobi GH, Ghomi A. “Optimization of autofrettage in thick-walled cylinders”. Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2), 124-131, 2006.
  • [2] Ali ARM, Ghosh NC, Alam TE. “Optimum design of pressure vessel subjected to autofrettage process”. International Journal of Mechanical and Mechatronics Engineering, 4(10), 1040-1045, 2010.
  • [3] Shim WS, Kim JH, Lee YS, Cha KU, Hong SK. “A Study on hydraulic autofrettage of thick-walled cylinders incorporating bauschinger effect”. Experimental Mechanics, 50, 621-626, 2010.
  • [4] Bhatnagar RM. “Modelling, validation and design of autofrettage and compound cylinder”. European Journal of Mechanics A/Solids, 33(2), 94-100, 2005.
  • [5] Gibson MC, Hameed A, Hetherington JG. “Investigation of driving force variation during swage autofrettage, using finite element analysis”. Journal of Pressure Vessel Technology, 134(5), 051203, 2012.
  • [6] Gibson MC, Hameed A, Hetherington JG. “Investigation of residual stress development during swage autofrettage, using finite element analysis”. Journal of Pressure Vessel Technology, 136(2), 021206-1, 2014.
  • [7] Hu Z, Penumarthy C. “Computer modeling and optimization of swage autofrettage process of a thick-walled cylinder incorporating Bauschinger effect”. American Journal of Engineering and Applied Sciences, 3(1), 31-63, 2014.
  • [8] Hu Z. “Design of two-pass swage autofrettage processes of thick-walled cylinders by computer modeling”. Part C Proceedings of the Institution of Mechanical Engineers, Part C-Journal of Mechanical Engineering Science, 233(4), 1312-1333, 2019.
  • [9] Jain A, Khanwelkar S, Saurav SK, Landge A, Yadav U. “Design and performance of hydraulic autofrettage using universal testing machine”. International Journal of Mechanical Engineering Research and Technology, 6(2), 154-157, 2016.
  • [10] Trieb F, Schedelmaier J, Poelzl M. “Autofrettage - basic information and practical application on components for waterjet cutting”. Proceedings of WJTA American Waterjet Conference, United State of America, Houston, Texas, United State of America, 21-23 August 2005.
  • [11] Çandar H, Filiz H. “Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump”. Universal Journal of Engineering Science, 5(3), 44-55, 2017.
  • [12] Partovi A. Analysis of Autofrettaged High Pressure Components, MSc Thesis, Blekinge Institute of Technology, Department of Mechanical Engineering, Sweden, 2012.
  • [13] Kamal SM, Dixit US. “Feasibility study of thermal autofrettage of thick-walled cylinders”. Journal of Pressure Vessel Technology, 137, 061207, 2015.
  • [14] Majzoobi GH, Ghomi A. “Optimization of compound pressure cylinders”. Journal of Achievements in Materials and Manufacturing Engineering, 15(1-2), 135-145, 2006.
  • [15] Malik MA, Knushnood S, Khan M, Rashid B. “Analysis of autofrettaged metal tubes”. 15th International Conference on Nuclear Engineering, Nagoya, Japan, 22-26 April 2007.
  • [16] Alegre JM, Bravo P, Preciado M. “Design of an autofrettaged high-pressure vessel, considering the Bauschinger effect”. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 220(1), 7-16, 2006.
  • [17] Bektaş NB, Altan G, Ergun E, Demirdal G. “İç basınca maruz bir alüminyum diskin elastik-plastik ve artık gerilme analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 201-206, 2004.
  • [18] Lawton B. “Temperature and heat transfer at the commencement of rifling a 155 mm gun”. 19th International Symposium of Ballistics, Interlaken, Switzerland, 307-314, 7-11 May 2001.
  • [19] Putti A, Chopade MR, Chaudhari HE. “A review on gun barrel erosion”. International Journal of Current Engineering and Technology, 4, 231-235, 2015.
  • [20] O’hara GP. “Analysis of swage autofrettage process”. U.S. Army Armament Research, Development and Engineering Center, Close Combat Armaments Center, Benet Laboratories, Watervliet, New York, United State of America, Report No: ARCCB-TR-92016, 1992.
  • [21] Alinezhad P, Bihamta R. “A study on the tool geometry effects in the swage autofrettage”. Advanced Materials Research, 433-440, 2206-221, 2012.
  • [22] Chica CJ, Marìn MM, Rubio EM, Teti R, Segreto T. “Parametric analysis of the mandrel geometrical data in a cold expansion process of small holes drilled in thick plates”. Materials, 12(24), 4105, 2019.
  • [23] Hu Z, Gibson MC, Parker AP. “Swage autofrettage FEA incorporating a user function to model actual Bauschinger effect”. International Journal of Pressure Vessels and Piping, 191, 104372, 2021.
  • [24] Davidson TE, Barton CS, Reiner AN, Kendall DP. “New approach to the autofrettage of high-strength cylinders”. Experiment Mechanics, 2, 33–40, 1963.
  • [25] Gibson MC. Determination of Residual Stress Distributions in Autofrettaged Thick-Walled Cylinders. PhD Thesis, Department of Engineering Systems and Management, Cranfield University, Defence College of Management and Technology, Cranfield, United Kingdom, 2008.
  • [26] Iremonger MJ, Kalsi GS. “A numerical study of swage autofrettage”. Journal of Pressure Vessel Technology, 25(3), 347-351, 2003.
  • [27] Bihamta R, Movahhedy MR, Mashreghi AR. “A numerical study of swage autofrettage of thick-walled tubes”. Materials and Design, 28(3), 804-815, 2007.
  • [28] Troiano E, Parker AP, Underwood JH, Mossey C. “Experimental data, numerical fit and fatigue life calculations relating to bauschinger effect in high strength armament steels”. Journal of Pressure Vessel Technology, 125(3), 330-334, 2003.
  • [29] Kruczynski DL, Hewitt JR. “Temperature compensation techniques and technologies-an overview”. U.S. Army Laboratory Command, Ballistic Research Laboratory, Maryland, United State of America, Report No: BRL-TR-3283, 1991.
  • [30] Makine ve Kimya Endüstrisi Inc. “Product Catalogue”. https://www.mke.gov.tr/Kataloglar/Urun-Katalog-Products-Catalogue/2-(21.11.2024) .
  • [31] Abdelsalam O. Analysis and Optimization of Autofrettaged and Shrink-Fitted Compound Cylinders Under Thermo-Mechanical Loads. PhD Thesis, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, Canada, 2012.
  • [32] Çandar H, Filiz H. “Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump”. Universal Journal of Engineering Science, 5(3), 44-55, 2017.
  • [33] Zhu R, Yang J. “Autofrettage of thick cylinders”. International Journal of Pressure Vessels and Piping, 75, 443-446, 1998.
  • [34] Perl M, Perry J. “An experimental-numerical determination of the three-dimensional autofrettage residual stress field incorporating bauschinger effects”. Journal of Pressure Vessel Technology, 128(2), 173-178, 2006.
  • [35] Perry J, Perl M. “The effects of the material’s exact yield point and its plastic properties on the safe maximum pressure of gun barrels”. Journal of Pressure Vessel Technology, 139(5), 051401, 2017.
  • [36] Hill R. The Mathematical Theory of Plasticity. New York, USA, Oxford University Press, 1950.
  • [37] Shim WS, Kim JH, Lee YS, Cha KU, Hong SK. “A Study on hydraulic autofrettage of thick-walled cylinders incorporating bauschinger effect”. Experimental Mechanics, 50, 621-626, 2010.
  • [38] Perry J, Perl M. “The effects of the material’s exact yield point and its plastic properties on the safe maximum pressure of gun barrels”. Journal of Pressure Vessel Technology, 139(5), 051401, 2017.
  • [39] Perl M, Perry J. “The beneficial influence of bauschinger effect mitigation on the barrel’s safe maximum pressure”. Journal of Pressure Vessel Technology, 135(2), 021404, 2013.
  • [40] Çandar H, Filiz İH. “Experimental study on residual stresses in autofrettaged thick-walled high pressure cylinders”. High Pressure Research, 37(4), 516–528, 2017.
  • [41] Parker AP, Underwood JH. “Influence of the bauschinger effect on residual stress and fatigue lifetimes in autofrettaged thick-walled cylinders”. U.S. Army Armament Research, Development and Engineering Center, Close Combat Armaments Center, Benet Laboratories, Watervliet, New York, United State of America, Report No: ARCCB-TR-97020, 1997.
  • [42] Huang XP, Cui WC. “Effect of bauschinger effect and yield criterion on residual stress distribution of autofrettaged tube”. Journal of Pressure Vessel Technology, 128(2), 212–216, 2006.

Numerical investigation of residual stress formation during swage autofrettage process

Yıl 2025, Cilt: 31 Sayı: 6, 939 - 955, 13.11.2025
https://doi.org/10.5505/pajes.2025.86727

Öz

Autofrettage is the process of developing residual stress through the wall thickness of the cylinder to increase the pressure carrying capacity and fatigue life of thick-walled cylinders. Although there are many techniques in practice, swage and hydraulic autofrettage processes have been mostly used in heavy gun barrel production process. In this study, the stresses developed at the end of the swage autofrettage process on a heavy gun barrel are numerically calculated by using an FEA (Finite Element Analysis) software. In FEA, a two-dimensional (2D) axisymmetric model has been used. The Von Mises stress under working pressure for non-autofrettaged barrel is calculated as 1350.3 MPa. The Von Mises equivalent stress for the autofrettaged barrel is 1122.3 MPa at 63% barrel thickness. It is seen that this stress is below the barrel yield strength of 1195 MPa. As a result, there is 16.88% reduction of Von Mises equivalent stress for autofrettaged barrel under the working pressure. In addition, the pushing force generated during the mechanical autofrettage process has been calculated numerically and experimentally. The pushing force is calculated with FEA software as 135.58T while it is empirically measured as about 142T. When the numerical and experimental results are compared, it is seen that there is an error of 4.52% between the two results. It is possible to say that this percentage error is quite reasonable. Finally, it is possible to say that the numerical study is quite successful in terms of accurately reflecting the real-world conditions.

Kaynakça

  • [1] Majzoobi GH, Ghomi A. “Optimization of autofrettage in thick-walled cylinders”. Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2), 124-131, 2006.
  • [2] Ali ARM, Ghosh NC, Alam TE. “Optimum design of pressure vessel subjected to autofrettage process”. International Journal of Mechanical and Mechatronics Engineering, 4(10), 1040-1045, 2010.
  • [3] Shim WS, Kim JH, Lee YS, Cha KU, Hong SK. “A Study on hydraulic autofrettage of thick-walled cylinders incorporating bauschinger effect”. Experimental Mechanics, 50, 621-626, 2010.
  • [4] Bhatnagar RM. “Modelling, validation and design of autofrettage and compound cylinder”. European Journal of Mechanics A/Solids, 33(2), 94-100, 2005.
  • [5] Gibson MC, Hameed A, Hetherington JG. “Investigation of driving force variation during swage autofrettage, using finite element analysis”. Journal of Pressure Vessel Technology, 134(5), 051203, 2012.
  • [6] Gibson MC, Hameed A, Hetherington JG. “Investigation of residual stress development during swage autofrettage, using finite element analysis”. Journal of Pressure Vessel Technology, 136(2), 021206-1, 2014.
  • [7] Hu Z, Penumarthy C. “Computer modeling and optimization of swage autofrettage process of a thick-walled cylinder incorporating Bauschinger effect”. American Journal of Engineering and Applied Sciences, 3(1), 31-63, 2014.
  • [8] Hu Z. “Design of two-pass swage autofrettage processes of thick-walled cylinders by computer modeling”. Part C Proceedings of the Institution of Mechanical Engineers, Part C-Journal of Mechanical Engineering Science, 233(4), 1312-1333, 2019.
  • [9] Jain A, Khanwelkar S, Saurav SK, Landge A, Yadav U. “Design and performance of hydraulic autofrettage using universal testing machine”. International Journal of Mechanical Engineering Research and Technology, 6(2), 154-157, 2016.
  • [10] Trieb F, Schedelmaier J, Poelzl M. “Autofrettage - basic information and practical application on components for waterjet cutting”. Proceedings of WJTA American Waterjet Conference, United State of America, Houston, Texas, United State of America, 21-23 August 2005.
  • [11] Çandar H, Filiz H. “Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump”. Universal Journal of Engineering Science, 5(3), 44-55, 2017.
  • [12] Partovi A. Analysis of Autofrettaged High Pressure Components, MSc Thesis, Blekinge Institute of Technology, Department of Mechanical Engineering, Sweden, 2012.
  • [13] Kamal SM, Dixit US. “Feasibility study of thermal autofrettage of thick-walled cylinders”. Journal of Pressure Vessel Technology, 137, 061207, 2015.
  • [14] Majzoobi GH, Ghomi A. “Optimization of compound pressure cylinders”. Journal of Achievements in Materials and Manufacturing Engineering, 15(1-2), 135-145, 2006.
  • [15] Malik MA, Knushnood S, Khan M, Rashid B. “Analysis of autofrettaged metal tubes”. 15th International Conference on Nuclear Engineering, Nagoya, Japan, 22-26 April 2007.
  • [16] Alegre JM, Bravo P, Preciado M. “Design of an autofrettaged high-pressure vessel, considering the Bauschinger effect”. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 220(1), 7-16, 2006.
  • [17] Bektaş NB, Altan G, Ergun E, Demirdal G. “İç basınca maruz bir alüminyum diskin elastik-plastik ve artık gerilme analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 201-206, 2004.
  • [18] Lawton B. “Temperature and heat transfer at the commencement of rifling a 155 mm gun”. 19th International Symposium of Ballistics, Interlaken, Switzerland, 307-314, 7-11 May 2001.
  • [19] Putti A, Chopade MR, Chaudhari HE. “A review on gun barrel erosion”. International Journal of Current Engineering and Technology, 4, 231-235, 2015.
  • [20] O’hara GP. “Analysis of swage autofrettage process”. U.S. Army Armament Research, Development and Engineering Center, Close Combat Armaments Center, Benet Laboratories, Watervliet, New York, United State of America, Report No: ARCCB-TR-92016, 1992.
  • [21] Alinezhad P, Bihamta R. “A study on the tool geometry effects in the swage autofrettage”. Advanced Materials Research, 433-440, 2206-221, 2012.
  • [22] Chica CJ, Marìn MM, Rubio EM, Teti R, Segreto T. “Parametric analysis of the mandrel geometrical data in a cold expansion process of small holes drilled in thick plates”. Materials, 12(24), 4105, 2019.
  • [23] Hu Z, Gibson MC, Parker AP. “Swage autofrettage FEA incorporating a user function to model actual Bauschinger effect”. International Journal of Pressure Vessels and Piping, 191, 104372, 2021.
  • [24] Davidson TE, Barton CS, Reiner AN, Kendall DP. “New approach to the autofrettage of high-strength cylinders”. Experiment Mechanics, 2, 33–40, 1963.
  • [25] Gibson MC. Determination of Residual Stress Distributions in Autofrettaged Thick-Walled Cylinders. PhD Thesis, Department of Engineering Systems and Management, Cranfield University, Defence College of Management and Technology, Cranfield, United Kingdom, 2008.
  • [26] Iremonger MJ, Kalsi GS. “A numerical study of swage autofrettage”. Journal of Pressure Vessel Technology, 25(3), 347-351, 2003.
  • [27] Bihamta R, Movahhedy MR, Mashreghi AR. “A numerical study of swage autofrettage of thick-walled tubes”. Materials and Design, 28(3), 804-815, 2007.
  • [28] Troiano E, Parker AP, Underwood JH, Mossey C. “Experimental data, numerical fit and fatigue life calculations relating to bauschinger effect in high strength armament steels”. Journal of Pressure Vessel Technology, 125(3), 330-334, 2003.
  • [29] Kruczynski DL, Hewitt JR. “Temperature compensation techniques and technologies-an overview”. U.S. Army Laboratory Command, Ballistic Research Laboratory, Maryland, United State of America, Report No: BRL-TR-3283, 1991.
  • [30] Makine ve Kimya Endüstrisi Inc. “Product Catalogue”. https://www.mke.gov.tr/Kataloglar/Urun-Katalog-Products-Catalogue/2-(21.11.2024) .
  • [31] Abdelsalam O. Analysis and Optimization of Autofrettaged and Shrink-Fitted Compound Cylinders Under Thermo-Mechanical Loads. PhD Thesis, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, Canada, 2012.
  • [32] Çandar H, Filiz H. “Optimum autofrettage pressure for a high pressure cylinder of a waterjet intensifier pump”. Universal Journal of Engineering Science, 5(3), 44-55, 2017.
  • [33] Zhu R, Yang J. “Autofrettage of thick cylinders”. International Journal of Pressure Vessels and Piping, 75, 443-446, 1998.
  • [34] Perl M, Perry J. “An experimental-numerical determination of the three-dimensional autofrettage residual stress field incorporating bauschinger effects”. Journal of Pressure Vessel Technology, 128(2), 173-178, 2006.
  • [35] Perry J, Perl M. “The effects of the material’s exact yield point and its plastic properties on the safe maximum pressure of gun barrels”. Journal of Pressure Vessel Technology, 139(5), 051401, 2017.
  • [36] Hill R. The Mathematical Theory of Plasticity. New York, USA, Oxford University Press, 1950.
  • [37] Shim WS, Kim JH, Lee YS, Cha KU, Hong SK. “A Study on hydraulic autofrettage of thick-walled cylinders incorporating bauschinger effect”. Experimental Mechanics, 50, 621-626, 2010.
  • [38] Perry J, Perl M. “The effects of the material’s exact yield point and its plastic properties on the safe maximum pressure of gun barrels”. Journal of Pressure Vessel Technology, 139(5), 051401, 2017.
  • [39] Perl M, Perry J. “The beneficial influence of bauschinger effect mitigation on the barrel’s safe maximum pressure”. Journal of Pressure Vessel Technology, 135(2), 021404, 2013.
  • [40] Çandar H, Filiz İH. “Experimental study on residual stresses in autofrettaged thick-walled high pressure cylinders”. High Pressure Research, 37(4), 516–528, 2017.
  • [41] Parker AP, Underwood JH. “Influence of the bauschinger effect on residual stress and fatigue lifetimes in autofrettaged thick-walled cylinders”. U.S. Army Armament Research, Development and Engineering Center, Close Combat Armaments Center, Benet Laboratories, Watervliet, New York, United State of America, Report No: ARCCB-TR-97020, 1997.
  • [42] Huang XP, Cui WC. “Effect of bauschinger effect and yield criterion on residual stress distribution of autofrettaged tube”. Journal of Pressure Vessel Technology, 128(2), 212–216, 2006.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Doğan Baran Bu kişi benim

Osman Bican

Yahya Doğu Bu kişi benim

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Gönderilme Tarihi 28 Kasım 2024
Kabul Tarihi 7 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 6

Kaynak Göster

APA Baran, D., Bican, O., & Doğu, Y. (2025). Numerical investigation of residual stress formation during swage autofrettage process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 939-955. https://doi.org/10.5505/pajes.2025.86727
AMA Baran D, Bican O, Doğu Y. Numerical investigation of residual stress formation during swage autofrettage process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(6):939-955. doi:10.5505/pajes.2025.86727
Chicago Baran, Doğan, Osman Bican, ve Yahya Doğu. “Numerical investigation of residual stress formation during swage autofrettage process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 6 (Kasım 2025): 939-55. https://doi.org/10.5505/pajes.2025.86727.
EndNote Baran D, Bican O, Doğu Y (01 Kasım 2025) Numerical investigation of residual stress formation during swage autofrettage process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 6 939–955.
IEEE D. Baran, O. Bican, ve Y. Doğu, “Numerical investigation of residual stress formation during swage autofrettage process”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, ss. 939–955, 2025, doi: 10.5505/pajes.2025.86727.
ISNAD Baran, Doğan vd. “Numerical investigation of residual stress formation during swage autofrettage process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/6 (Kasım2025), 939-955. https://doi.org/10.5505/pajes.2025.86727.
JAMA Baran D, Bican O, Doğu Y. Numerical investigation of residual stress formation during swage autofrettage process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:939–955.
MLA Baran, Doğan vd. “Numerical investigation of residual stress formation during swage autofrettage process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, 2025, ss. 939-55, doi:10.5505/pajes.2025.86727.
Vancouver Baran D, Bican O, Doğu Y. Numerical investigation of residual stress formation during swage autofrettage process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(6):939-55.