Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeraltı sularından nitrat ve sülfatın denitrifikasyon membran-sülfidojenik yukarı akışlı kolon sıralı reaktör sisteminde giderimi

Yıl 2025, Cilt: 31 Sayı: 7

Öz

Kükürt ya da tiyosülfat bazlı ototrofik denitrifikasyon prosesleri, düşük organik madde konsantrasyonlarına sahip atıksu veya yeraltı suyundan nitrat giderimi için etkili ve ekonomik bir çözüm sunmaktadır. Ancak, yüksek sülfat üretimleri, özellikle halihazırda yüksek sülfat konsantrasyonlarına sahip atıksu veya yeraltı sularında, bu yöntemin yaygınlaşmasını sınırlayabilmektedir. Bu çalışmada, yeraltı suyundan hem nitratın hem de sülfatın giderimi için tasarlanmış ardışık iki farklı prosesten oluşan kombine bir sistemin performansı değerlendirilmiştir. Sistemde, bir membran biyoreaktörde (MBR) gerçekleşen ototrofik denitrifikasyon, yukarı akışlı kolon bir reaktörde gerçekleşen etanol bazlı sülfat indirgeme prosesiyle birleştirilmiştir. Sistemde, yukarı akışlı sülfidojenik kolon biyoreaktörde üretilen sülfürün denitrifikasyon işlemi için birincil elektron kaynağı olarak kullanılması amaçlanmıştır. Sistem, 25 ve 100 mg N/L nitrat içeren sentetik yeraltı suyu kullanılarak ardışık iki farklı işletme koşulu altında işletilmiştir. Sistem, her iki giriş nitrat konsantrasyonunda da neredeyse tam nitrat giderimi sağlamasına rağmen, düşük sülfat indirgeme performansı göstermiştir. Kolon biyoreaktöründe sülfat indirgemesiyle üretilen sülfürün yalnızca MBR'de nitrat giderimi için bir elektron kaynağı olarak kullanılması amaçlanmış olmasına rağmen, düşük sülfat giderim verimliliği, organik maddenin sülfidojenik kolon biyoreaktörden MBR'ye taşınmasına ve miksotrofik denitrifikasyon koşullarının oluşmasına neden olmuştur. Çalışma, kükürt bazlı kombine sistemlerin optimizasyonunun hem nitratın hem de sülfatın eş zamanlı ve etkin giderimi için kritik önem taşıdığını ortaya çıkarmıştır.

Kaynakça

  • [1] Zhao B, Sun Z, Liu Y. “An overview of in-situ remediation for nitrate in groundwater”. Science of The Total Environment, 804, 149981, 2022.
  • [2] Yakamercan E, Uçar D. “Environmental effects of sulfur-based autotrophic and methanol based heterotrophic denitrification processes." Pamukkale University Journal of Engineering Science, 28(6), 912-919, 2022.
  • [3] Asik G, Yilmaz T, Di Capua F, Ucar D, Esposito G, Sahinkaya E. “Sequential sulfur-based denitrification/denitritation and nanofiltration processes for drinking water treatment”. Journal of Environmental Management, 295, 113083, 2021.
  • [4] Sahinkaya E, Dursun N. “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement”. Chemosphere, 89(2), 144–9, 2012.
  • [5] Ucar D, Cokgor EU, Sahinkaya E, Cetin U, Bereketoglu C, Calimlioglu B, Goncu B, Yurtsever A. “Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system”. International Biodeterioration & Biodegradation, 116, 83–90, 2017.
  • [6] Yılmaz T, Sahinkaya E. “Performance of sulfur-based autotrophic denitrification process for nitrate removal from permeate of an MBR treating textile wastewater and concentrate of a real scale reverse osmosis process”. Journal of Environmental Management, 326, 116827, 2023.
  • [7] Di Capua, F. Sulfur-based denitrification of organic-deficient, acidic, low temperature and nickel contaminated waters in fluidized-bed reactors. PhD Thesis, University of Paris-Est, Paris, France, 2016.
  • [8] Oh SE, Yoo YB, Young JC, Kim IS. “Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions”. Journal of Biotechnology, 92, 1-8, 2001.
  • [9] Ucar D, Cokgor EU, Sahinkaya E. “Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal”. Environmental Technology, 37(2), 2016.
  • [10] Kodama Y, Watanabe K. “Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats”. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2297–300, 2004.
  • [11] Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG. “Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats”. International Journal of Systematic and Evolutionary Microbiology, 58(12), 2890–7, 2008.
  • [12] Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gómez J, Field JA. “Sulfide oxidation under chemolithoautotrophic denitrifying conditions”. Biotechnology and Bioengineering, 95(6), 1148–57, 2006.
  • [13] Van den Hove A, Baeten JE, Decru SO, Volcke EIP. “Potential of sulfide-based denitrification for municipal wastewater treatment”. Journal of Water Process Engineering, 35, 101206, 2020.
  • [14] Liu Y, Peng L, Ngo HH, Guo W, Wang D, Pan Y, et al. “Evaluation of nitrous oxide emission from sulfide-and sulfur-based autotrophic denitrification processes”. Environmental Science & Technology Journal, 50(17), 9407–15, 2016.
  • [15] Yang W, Zhao Q, Lu H, Ding Z, Meng L, Chen GH. “Sulfide-driven autotrophic denitrification significantly reduces N2O emissions”. Water Research, 90, 176–84, 2016.
  • [16] Andreides D, Varga Z, Pokorna D, Zabranska J. “Performance evaluation of sulfide-based autotrophic denitrification for petrochemical industry wastewater”. Journal Water Process Engineering, 40, 101834, 2021.
  • [17] Yildiz M, Yilmaz T, Arzum CS, Yurtsever A, Kaksonen AH, Ucar D. “Sulfate reduction in acetate- and ethanol-fed bioreactors: Acidic mine drainage treatment and selective metal recovery”. Mineral Engineering, 133, 2019.
  • [18] Chen C, Yin G, Li Q, Gu Y, Sun D, An S, et al. “Effects of microplastics on denitrification and associated N2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers”. Water Research, 245, 120590, 2023.
  • [19] Veshareh MJ, Kjeldsen KU, Findlay AJ, Nick HM, Røy H, Marietou A. “Nitrite is a more efficient inhibitor of microbial sulfate reduction in oil reservoirs compared to nitrate and perchlorate: A laboratory and field-scale simulation study”. International Biodeterioration & Biodegradation, 157, 105154, 2021.
  • [20] Zhang Z, Zhang C, Yang Y, Zhang Z, Tang Y, Su P, Lin Z. “A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment”. Journal of Cleaner Production, 376, 134109, 2022.
  • [21] Zhang M, Zhang T, Shao MF, Fang HHP. “Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria”. Chemosphere, 76(5), 677–82, 2009.
  • [22] Shao M, Zhang T, Fang HHP. “Autotrophic denitrification and its effect on metal speciation during marine sediment remediation”. Water Research, 43(12), 2961–8, 2009.
  • [23] Liang N, Qaisar M, Zhang K, Zhu X, Cai J, Zheng P. “Phosphorus removal performance of Sulfide-Based autotrophic denitrification process”. Chemical Engineering Journal, 501, 157217, 2024.
  • [24] Jadhav, S. V., Marathe, K. V., & Rathod, V. K. (2016). A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach. Journal of Water Process Engineering, 13, 153–167.
  • [25] Gu, B., Ku, Y.-K., & Jardine, P. M. (2004). Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environmental Science & Technology, 38, 3184–3188.
  • [26] Bijmans, M. F. M., De Vries, E., Yang, C., Buisman, C. J. N., Lens, P. N. L., & Dopson, M. (2010). Sulfate reduction at pH 4.0 for treatment of process and wastewaters. Biotechnology Progress, 26, 1029–1037.
  • [27] Myhr, S., Lillebø, B.-L., Sunde, E., Beeder, J., & Torsvik, T. (2002). Inhibition of microbial H₂S production in an oil reservoir model column by nitrate injection. Applied Microbiology and Biotechnology, 58, 400–408.
  • [28] Ju, X., Sierra-Alvarez, R., Field, J. A., Byrnes, D. J., Bentley, H., & Bentley, R. (2008). Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere, 71, 114–122.
  • [29] Yapıcı CŞA, Toprak D, Yıldız M, Uyanık S, Karaaslan Y, Uçar D. “A combo technology of autotrophic and heterotrophic denitrification processes for groundwater treatment”. Chinese Journal of Chemical Engineering, 37, 121–7, 2021.

Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System

Yıl 2025, Cilt: 31 Sayı: 7

Öz

Sulfur- or thiosulfate- based autotrophic denitrification presents an effective and economical solution for nitrate removal from wastewater or groundwater with low concentrations of organic matter. However, the substantial production of sulfate can limit its wider application, particularly in groundwater that already exhibits high sulfate concentrations. This study evaluated the performance of a sequential system engineered for the effective removal of both nitrate and sulfate from groundwater. The system integrates autotrophic denitrification, which occurs within a membrane bioreactor (MBR), with ethanol-based sulfate reduction. A key design feature of this system is the utilization of sulfide, generated in a sulfidogenic column bioreactor, as the primary electron source for the denitrification process. The system was operated using synthetic groundwater containing nitrate at concentrations of 25 and 100 mg N/L in successive phases. While the system achieved nearcomplete nitrate removal across both influent nitrate concentrations, it demonstrated poor sulfate reduction performance. The original design intended for the sulfide produced from sulfate reduction in the column bioreactor to be used solely as an electron source for nitrate removal in the MBR. However, the observed low sulfate removal efficiency resulted in the carryover of organic matter from the sulfidogenic column bioreactor to the MBR, thereby fostering mixotrophic denitrification conditions. The study underscores that optimizing sulfur-based combined systems is crucial for achieving the simultaneous and efficient removal of both nitrate and sulfate.

Kaynakça

  • [1] Zhao B, Sun Z, Liu Y. “An overview of in-situ remediation for nitrate in groundwater”. Science of The Total Environment, 804, 149981, 2022.
  • [2] Yakamercan E, Uçar D. “Environmental effects of sulfur-based autotrophic and methanol based heterotrophic denitrification processes." Pamukkale University Journal of Engineering Science, 28(6), 912-919, 2022.
  • [3] Asik G, Yilmaz T, Di Capua F, Ucar D, Esposito G, Sahinkaya E. “Sequential sulfur-based denitrification/denitritation and nanofiltration processes for drinking water treatment”. Journal of Environmental Management, 295, 113083, 2021.
  • [4] Sahinkaya E, Dursun N. “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement”. Chemosphere, 89(2), 144–9, 2012.
  • [5] Ucar D, Cokgor EU, Sahinkaya E, Cetin U, Bereketoglu C, Calimlioglu B, Goncu B, Yurtsever A. “Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system”. International Biodeterioration & Biodegradation, 116, 83–90, 2017.
  • [6] Yılmaz T, Sahinkaya E. “Performance of sulfur-based autotrophic denitrification process for nitrate removal from permeate of an MBR treating textile wastewater and concentrate of a real scale reverse osmosis process”. Journal of Environmental Management, 326, 116827, 2023.
  • [7] Di Capua, F. Sulfur-based denitrification of organic-deficient, acidic, low temperature and nickel contaminated waters in fluidized-bed reactors. PhD Thesis, University of Paris-Est, Paris, France, 2016.
  • [8] Oh SE, Yoo YB, Young JC, Kim IS. “Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions”. Journal of Biotechnology, 92, 1-8, 2001.
  • [9] Ucar D, Cokgor EU, Sahinkaya E. “Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal”. Environmental Technology, 37(2), 2016.
  • [10] Kodama Y, Watanabe K. “Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats”. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2297–300, 2004.
  • [11] Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG. “Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats”. International Journal of Systematic and Evolutionary Microbiology, 58(12), 2890–7, 2008.
  • [12] Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gómez J, Field JA. “Sulfide oxidation under chemolithoautotrophic denitrifying conditions”. Biotechnology and Bioengineering, 95(6), 1148–57, 2006.
  • [13] Van den Hove A, Baeten JE, Decru SO, Volcke EIP. “Potential of sulfide-based denitrification for municipal wastewater treatment”. Journal of Water Process Engineering, 35, 101206, 2020.
  • [14] Liu Y, Peng L, Ngo HH, Guo W, Wang D, Pan Y, et al. “Evaluation of nitrous oxide emission from sulfide-and sulfur-based autotrophic denitrification processes”. Environmental Science & Technology Journal, 50(17), 9407–15, 2016.
  • [15] Yang W, Zhao Q, Lu H, Ding Z, Meng L, Chen GH. “Sulfide-driven autotrophic denitrification significantly reduces N2O emissions”. Water Research, 90, 176–84, 2016.
  • [16] Andreides D, Varga Z, Pokorna D, Zabranska J. “Performance evaluation of sulfide-based autotrophic denitrification for petrochemical industry wastewater”. Journal Water Process Engineering, 40, 101834, 2021.
  • [17] Yildiz M, Yilmaz T, Arzum CS, Yurtsever A, Kaksonen AH, Ucar D. “Sulfate reduction in acetate- and ethanol-fed bioreactors: Acidic mine drainage treatment and selective metal recovery”. Mineral Engineering, 133, 2019.
  • [18] Chen C, Yin G, Li Q, Gu Y, Sun D, An S, et al. “Effects of microplastics on denitrification and associated N2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers”. Water Research, 245, 120590, 2023.
  • [19] Veshareh MJ, Kjeldsen KU, Findlay AJ, Nick HM, Røy H, Marietou A. “Nitrite is a more efficient inhibitor of microbial sulfate reduction in oil reservoirs compared to nitrate and perchlorate: A laboratory and field-scale simulation study”. International Biodeterioration & Biodegradation, 157, 105154, 2021.
  • [20] Zhang Z, Zhang C, Yang Y, Zhang Z, Tang Y, Su P, Lin Z. “A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment”. Journal of Cleaner Production, 376, 134109, 2022.
  • [21] Zhang M, Zhang T, Shao MF, Fang HHP. “Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria”. Chemosphere, 76(5), 677–82, 2009.
  • [22] Shao M, Zhang T, Fang HHP. “Autotrophic denitrification and its effect on metal speciation during marine sediment remediation”. Water Research, 43(12), 2961–8, 2009.
  • [23] Liang N, Qaisar M, Zhang K, Zhu X, Cai J, Zheng P. “Phosphorus removal performance of Sulfide-Based autotrophic denitrification process”. Chemical Engineering Journal, 501, 157217, 2024.
  • [24] Jadhav, S. V., Marathe, K. V., & Rathod, V. K. (2016). A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach. Journal of Water Process Engineering, 13, 153–167.
  • [25] Gu, B., Ku, Y.-K., & Jardine, P. M. (2004). Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environmental Science & Technology, 38, 3184–3188.
  • [26] Bijmans, M. F. M., De Vries, E., Yang, C., Buisman, C. J. N., Lens, P. N. L., & Dopson, M. (2010). Sulfate reduction at pH 4.0 for treatment of process and wastewaters. Biotechnology Progress, 26, 1029–1037.
  • [27] Myhr, S., Lillebø, B.-L., Sunde, E., Beeder, J., & Torsvik, T. (2002). Inhibition of microbial H₂S production in an oil reservoir model column by nitrate injection. Applied Microbiology and Biotechnology, 58, 400–408.
  • [28] Ju, X., Sierra-Alvarez, R., Field, J. A., Byrnes, D. J., Bentley, H., & Bentley, R. (2008). Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere, 71, 114–122.
  • [29] Yapıcı CŞA, Toprak D, Yıldız M, Uyanık S, Karaaslan Y, Uçar D. “A combo technology of autotrophic and heterotrophic denitrification processes for groundwater treatment”. Chinese Journal of Chemical Engineering, 37, 121–7, 2021.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Amine Yücel 0000-0002-7571-3078

Tülay Yılmaz 0000-0003-2416-9890

Deniz Uçar 0000-0002-0536-6250

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Gönderilme Tarihi 24 Aralık 2024
Kabul Tarihi 16 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 7

Kaynak Göster

APA Yücel, A., Yılmaz, T., & Uçar, D. (2025). Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.83404
AMA Yücel A, Yılmaz T, Uçar D. Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(7). doi:10.5505/pajes.2025.83404
Chicago Yücel, Amine, Tülay Yılmaz, ve Deniz Uçar. “Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 7 (Kasım 2025). https://doi.org/10.5505/pajes.2025.83404.
EndNote Yücel A, Yılmaz T, Uçar D (01 Kasım 2025) Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE A. Yücel, T. Yılmaz, ve D. Uçar, “Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi: 10.5505/pajes.2025.83404.
ISNAD Yücel, Amine vd. “Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (Kasım2025). https://doi.org/10.5505/pajes.2025.83404.
JAMA Yücel A, Yılmaz T, Uçar D. Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.83404.
MLA Yücel, Amine vd. “Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi:10.5505/pajes.2025.83404.
Vancouver Yücel A, Yılmaz T, Uçar D. Reduction of Nitrate by Biogenic Sulfide in Denitrifying Membrane – Sulfidogenic Up Flow Column Reactor System. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).