Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation

Yıl 2025, Cilt: 31 Sayı: 7

Öz

The increasing prevalence of synthetic dyes in industrial wastewater presents significant environmental challenges because of the toxicity and lack of effectiveness of conventional treatment methods. Methyl red, a widely used azo dye, is particularly problematic due to its high chemical stability. In this study, manganese tungstate (MnWO₄) was synthesized using a coprecipitation method and evaluated for its photocatalytic activity in methyl red degradation through UV-C exposure. The synthesized MnWO₄ was characterized using several techniques, including Fourier transform infrared spectroscopy (FTIR), ultraviolet-diffuse reflectance spectroscopy (UV-DRS), and scanning electron microscopy (SEM). SEM analysis revealed the formation of needle-like, nanometer-sized MnWO₄ particles with high aspect ratios, which are expected to enhance photocatalytic efficiency. XRD confirmed the development of a highly crystalline pure MnWO₄ phase, and FTIR spectra showed characteristic peaks corresponding to Mn–O and W–O bonds. The UV-DRS results revealed that the material possesses a direct band gap of 3.18 eV, suitable for UV-C light absorption. Photocatalytic experiments demonstrated that MnWO₄ effectively degraded methyl red, with the removal efficiency reaching nearly 60% after 180 minutes of irradiation. These findings suggest that MnWO₄ is a promising photocatalyst for environmental remediation, offering a simple, costeffective solution for dye degradation in wastewater.

Kaynakça

  • [1] Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. ‘‘Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies’’. Environmental Pollution, 341, 122889-122921, 2024
  • [2] Goswami D, Mukherjee J, Mondal C, Bhunia B. ‘‘Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects’’. Science of The Total Environment, 954, 176426-176445, 2024.
  • [3] Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. ‘‘Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation’’. Journal of Environmental Management, 353, 120103-120125, 2024.
  • [4] Sahu A, Poler JC. ‘‘Removal and degradation of dyes from textile industry wastewater: Benchmarking recent advancements, toxicity assessment and cost analysis of treatment processes’’. Journal of Environmental Chemical Engineering, 12(5), 113754-113786, 2024.
  • [5] Khandelwal D, Rana I, Mishra V, Ranjan KR, Singh P. ‘‘Unveiling the impact of dyes on aquatic ecosystems through zebrafish – A comprehensive review’’. Environmental Research, 261, 119684-119699, 2024.
  • [6] Kayhan M, Aksoy M, Kayhan E. ‘‘A Facile Synthesis of Photocatalytic Fe(OH)3 Nanoparticles for Degradation of Phenol’’. ChemistrySelect, 9(23), e202401367-202401373, 2024.
  • [7] Kütük N, Çetinkaya S. “Green synthesis of copper oxide nanoparticles using black, green and tarragon tea and investigation of their photocatalytic activity for methylene blue”. Pamukkale University Journal of Engineering Sciences, 28(7), 954-962, 2022.
  • [8] Sma-Air S, Ritchie RJ. ‘‘Methyl red dye decolourization by the photosynthetic bacteria, Rhodopseudomonas palustris and Afifella marina’’. International Biodeterioration & Biodegradation, 196, 105915-105924, 2025.
  • [9] Sargazi S, Ghaneian MT, Rahmani M, Ebrahimi AA. “Application of cloud point extraction coupled with derivative spectrophotometry to remove binary mixture of Cresol Red and Methyl Orange dyes from aqueous solutions: Box–behnken design optimization.” Heliyon, 10(21), e39628-39645, 2024.
  • [10] Riaz U, Farooq A, Alam J. “Microwave-assisted rapid degradation of Methyl red dye using Polyfuran/Polythiophene and its Co-oligomers as catalysts.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 302, 123106-123114, 2023.
  • [11] Sharma S, Sharma S, Sharma KP. “Identification of a sensitive index during fish bioassay of an azo dye methyl red (untreated and treated)”. Journal of Environmental Biology, 27(3), 551–555, 2006.
  • [12] Sharma S, Sharma S, Pathak S, Sharma KP. “Toxicity of the Azo Dye Methyl Red to the Organisms in Microcosms, with Special Reference to the Guppy (Poecilia reticulata Peters)”. Bulletin of Environmental Contamination and Toxicology, 70(4), 0753–0760, 2003.
  • [13] Sharma S, Sharma S, Upreti N, Sharma KP. “Monitoring toxicity of an azo dye methyl red and a heavy metal Cu, using plant and animal bioassays”. Toxicology and Environmental Chemistry, 91(1), 109–120, 2009.
  • [14] Sievers M. - 4.13, Advanced Oxidation Processes. in P. Wilderer, ed., Treatise on Water Science. Oxford: Elsevier, 377–408, 2011
  • [15] Ghangrekar MM. Advanced Oxidation Processes. in M.M. Ghangrekar, ed., Wastewater to Water: Principles, Technologies and Engineering Design. Singapore: Springer Nature Singapore, 733–794, 2022.
  • [16] Bopape DA, Ntsendwana B, Mabasa FD. “Photocatalysis as a pre-discharge treatment to improve the effect of textile dyes on human health: A critical review”. Heliyon, 10(20), e39316-39347 2024.
  • [17] Lanjwani MF, Tuzen M, Khuhawar MY, Saleh TA. “Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review”. Inorganic Chemistry Communications, 159, 111613- 111630, 2024.
  • [18] Zailan SN, Mahmed N, Bouaissi A, Mubarokah ZR, Norizan MN, Mohamad IS, Yudasari N, Shirajuddin SSM. “Adsorption efficiency and photocatalytic activity of silver sulphide-activated carbon (Ag2S-AC) composites”. Inorganic Chemistry Communications, 171, 113633-113646, 2025.
  • [19] Zheng X, Shao Z, Lin J, Gao Q, Ma Z, Song Y, Chen Z, Shi X, Li J, Liu W, Tian X, Liu Y. “Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation”. Chinese Chemical Letters, 36, 110533-110548, 2024.
  • [20] Krishnapuram P, Choudhary J, Kagola UK, Jakka SK. Photocatalytic and sensing properties of rare-earth doped tungstate upconverting host materials. in V.B. Pawade, S.J. Dhoble, K.N. Shinde, and H.C. Swart, eds., Upconversion Nanocrystals for Sustainable Technology. Woodhead Publishing, 179–204, 2025.
  • [21] Abubakar HL, Tijani JO, Abdulkareem AS, Egbosiuba TC, Abdullahi M, Mustapha S, Ajiboye EA. “Effective removal of malachite green from local dyeing wastewater using zinc-tungstate based materials”. Heliyon, 9(9), e19167-19193, 2023.
  • [22] Wu H, Peng J, Sun H, Ruan Q, Dong H, Jin Y, Sun Z, Hu Y. “Surface activation of calcium tungstate by europium doping for improving photocatalytic performance: Towards lanthanide site photocatalysis”. Chemical Engineering Journal, 432, 134339-134349, 2022.
  • [23] Wei J, Chen Z, Tong Z. “Engineering Z-scheme silver oxide/bismuth tungstate heterostructure incorporated reduced graphene oxide with superior visible-light photocatalytic activity”. Journal of Colloid and Interface Science, 596, 22–33, 2021.
  • [24] Wang J, Tang L, Zeng G, Zhou Y, Deng Y, Fan C, Gong J, Liu Y. “Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light”. Transactions of Nonferrous Metals Society of China, 27(8), 1794–1803, 2017.
  • [25] Ahmed AI, Kospa DA, Gamal S, Samra SE, Salah AA, El-Hakam SA, Awad Ibrahim A. “Fast and simple fabrication of reduced graphene oxide-zinc tungstate nanocomposite with enhanced photoresponse properties as a highly efficient indirect sunlight driven photocatalyst and antibacterial agent”. Journal of Photochemistry and Photobiology A: Chemistry, 429, 13907-13919, 2022.
  • [26] Rao L, Xu J, Ao Y, Wang P. “Photocatalytic degradation of methyl orange over bismuth tungstate under visible light”. Applied Surface Science, 315, 191–196. 2014.
  • [27] Husain M, Rahman N, Azzouz-Rached A, Sfina N, Asad M, Hussain A, Ahmad R, Hamza RD, Humayun Q, Samreen A, Belhachi S, Uzair M, Abualnaja KM, Alosaimi G. “Investigating structural, optoelectronic, and mechanical properties of novel Tungsten-based oxides double-perovskites compounds Sr2XWO6 (X = Mn, Fe): A DFT approach”. Optik, 315, 172045-172055, 2024.
  • [28] Harichandran G, Divya P, Radha S, Yesuraj J. “Facile and controllable CTAB-assisted sonochemical synthesis of one-dimensional MnWO4 nanorods for supercapacitor application”. Journal of Molecular Structure, 1199, 126931-126941 , 2020.
  • [29] Trung DD, Cuong ND, Trung KQ, Nguyen TD, Van Toan N, Hung CM, Hieu NV. “Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor”. Journal of Alloys and Compounds, 735, 787–794, 2018.
  • [30] Jiang YN, Liu BD, Yang WJ, Yang B, Liu XY, Zhang XL, Mohsin MA, Jiang X. “New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants”. CrystEngComm, 18(10), 1832–1841, 2016.
  • [31] Zhu S, Ho SH, Jin C, Duan X, Wang S. “Nanostructured manganese oxides: natural/artificial formation and their induced catalysis for wastewater remediation”. Environmental Science: Nano, 7(2), 68–396, 2020.
  • [32] Islam MA, Morton DW, Johnson BB, Mainali B, Angove MJ. “Manganese oxides and their application to metal ion and contaminant removal from wastewater”. Journal of Water Process Engineering, 26, 264–280. 2018.
  • [33] Ishfaq A, Shahid M, Nawaz M, Ibrar D, Hussain S, Shahzad T, Mahmood F, Rais A, Gul S, Gaafar AZ, Hodhod MS, Khan S. “Remediation of wastewater by biosynthesized manganese oxide nanoparticles and its effects on development of wheat seedlings”. Frontiers in Plant Science, 14, 1263813-1263828, 2023.
  • [34] Pirhashemi M, Habibi-Yangjeh A. “Fabrication of novel ZnO/MnWO4 nanocomposites with p-n heterojunction: Visible-light-induced photocatalysts with substantially improved activity and durability”. Journal of Materials Science & Technology, 34(10), 1891–1901, 2018.
  • [35] Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu X, Liu Y. “A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area”. Nanoscale Research Letters, 8(1), 166-173, 2013.
  • [36] Muthamizh S, Suresh R, Giribabu K, Manigandan R, Praveen Kumar S, Munusamy S, Narayanan V. “MnWO4 nanocapsules: Synthesis, characterization and its electrochemical sensing property”. Journal of Alloys and Compounds, 619, 601–609, 2015.
  • [37] Nogami A, Suzuki T, Katsufuji T. “Second Harmonic Generation from Multiferroic MnWO4”. Journal of the Physical Society of Japan, 77(11), 115001-115003, 2008.
  • [38] Van Hanh P, Hoang LH, Hai PV, Minh NV, Chen XB, Yang IS. “Crystal quality and optical property of MnWO4 nanoparticles synthesized by microwave-assisted method”. Journal of Physics and Chemistry of Solids, 74(3), 426–430, 2013.
  • [39] Chakraborty AK, Ganguli S, Kebede MA. “Photocatalytic degradation of 2-propanol and phenol using Au-loaded MnWO4 nanorod under visible light irradiation”. Journal of Cluster Science, 23(2), 437–448, 2012.
  • [40] Almeida MAP, Cavalcante LS, Varela JA, Li MS, Longo E. “Effect of different surfactants on the shape, growth, and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method”. Advances in Powder Technology, 23(1), 124–128, 2012.
  • [41] Kayhan E. “Graphene: Synthesis, Characterization, Properties and Functional Behavior as Catalyst Support and Gas Sensor”. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2013.
  • [42] Jafarova VN, Orudzhev GS. “Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods”. Solid State Communications, 325, 114166, 2021.
  • [43] Bilal M, Wang L, Ur Rehman Z, Zheng K, Hou J, Butt FK, Hussain A, Ahmad J, Ullah S, Jrar JA, Ali S, Wang X. “Hydrogen production using g-C3N4 based photocatalysts: A review”. International Journal of Hydrogen Energy, 96, 456-473, 2024.
  • [44] Kamble GS, Natarajan TS, Patil SS, Thomas M, Chougale RK, Sanadi PD, Siddharth US, Ling YC. “BiVO4 As a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency”. Nanomaterials (Basel), 13(9), 1528, 2023.

Mangan Tungstat’ın Sentezi, karakterizasyonu ve metil kırmızı boya giderimi için fotokatalitik performans değerlendirmesi

Yıl 2025, Cilt: 31 Sayı: 7

Öz

Sentezlenen sentetik boyaların sanayi atıksularındaki artan yaygınlığı, toksisiteleri ve geleneksel arıtma yöntemlerine karşı dirençleri nedeniyle önemli çevresel zorluklar yaratmaktadır. Yaygın olarak kullanılan bir azo boyası olan metil kırmızı, yüksek kimyasal kararlılığı nedeniyle özellikle sorun teşkil eder. Bu çalışmada, manganez tungstat (MnWO₄), ko-precipitasyon yöntemi kullanılarak sentezlenmiş ve UV-C ışınımı altında metil kırmızının fotokatalitik bozunumu için değerlendirilmiştir. Sentezlenen MnWO₄, X-ışını kırınımı (XRD), Fourier dönüşüm infrared spektroskopisi (FTIR), Ultraviyole-difüz reflektans spektroskopisi (UV-DRS) ve Taramalı elektron mikroskobu (SEM) gibi çeşitli tekniklerle karakterize edilmiştir. SEM analizi, yüksek açısal oranlara sahip iğne benzeri, nanometre boyutlarında MnWO₄ parçacıklarının oluşumunu ortaya koymuştur, bu da fotokatalitik verimliliği artırması beklenen bir özelliktir. XRD, yüksek kristal yapıda saf bir MnWO₄ fazının oluşumunu doğrulamış ve FTIR spektrumları, Mn–O ve W–O bağlarına karşılık gelen karakteristik pikleri göstermiştir. UV-DRS sonuçları, malzemenin UV-C ışığı emme için uygun olan 3.18 eV'lik bir direk bant aralığına sahip olduğunu göstermektedir. Fotokatalitik deneyler, MnWO₄'ün metil kırmızıyı etkin bir şekilde bozduğunu ve 180 dakika sonra bozunma verimliliğinin neredeyse %60'a ulaştığını göstermiştir. Bu bulgular, MnWO₄'ün çevresel iyileştirme için umut verici bir fotokatalizör olduğunu ve atıksulardaki boya bozulması için basit ve maliyet etkin bir çözüm sunduğunu göstermektedir.

Kaynakça

  • [1] Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. ‘‘Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies’’. Environmental Pollution, 341, 122889-122921, 2024
  • [2] Goswami D, Mukherjee J, Mondal C, Bhunia B. ‘‘Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects’’. Science of The Total Environment, 954, 176426-176445, 2024.
  • [3] Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. ‘‘Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation’’. Journal of Environmental Management, 353, 120103-120125, 2024.
  • [4] Sahu A, Poler JC. ‘‘Removal and degradation of dyes from textile industry wastewater: Benchmarking recent advancements, toxicity assessment and cost analysis of treatment processes’’. Journal of Environmental Chemical Engineering, 12(5), 113754-113786, 2024.
  • [5] Khandelwal D, Rana I, Mishra V, Ranjan KR, Singh P. ‘‘Unveiling the impact of dyes on aquatic ecosystems through zebrafish – A comprehensive review’’. Environmental Research, 261, 119684-119699, 2024.
  • [6] Kayhan M, Aksoy M, Kayhan E. ‘‘A Facile Synthesis of Photocatalytic Fe(OH)3 Nanoparticles for Degradation of Phenol’’. ChemistrySelect, 9(23), e202401367-202401373, 2024.
  • [7] Kütük N, Çetinkaya S. “Green synthesis of copper oxide nanoparticles using black, green and tarragon tea and investigation of their photocatalytic activity for methylene blue”. Pamukkale University Journal of Engineering Sciences, 28(7), 954-962, 2022.
  • [8] Sma-Air S, Ritchie RJ. ‘‘Methyl red dye decolourization by the photosynthetic bacteria, Rhodopseudomonas palustris and Afifella marina’’. International Biodeterioration & Biodegradation, 196, 105915-105924, 2025.
  • [9] Sargazi S, Ghaneian MT, Rahmani M, Ebrahimi AA. “Application of cloud point extraction coupled with derivative spectrophotometry to remove binary mixture of Cresol Red and Methyl Orange dyes from aqueous solutions: Box–behnken design optimization.” Heliyon, 10(21), e39628-39645, 2024.
  • [10] Riaz U, Farooq A, Alam J. “Microwave-assisted rapid degradation of Methyl red dye using Polyfuran/Polythiophene and its Co-oligomers as catalysts.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 302, 123106-123114, 2023.
  • [11] Sharma S, Sharma S, Sharma KP. “Identification of a sensitive index during fish bioassay of an azo dye methyl red (untreated and treated)”. Journal of Environmental Biology, 27(3), 551–555, 2006.
  • [12] Sharma S, Sharma S, Pathak S, Sharma KP. “Toxicity of the Azo Dye Methyl Red to the Organisms in Microcosms, with Special Reference to the Guppy (Poecilia reticulata Peters)”. Bulletin of Environmental Contamination and Toxicology, 70(4), 0753–0760, 2003.
  • [13] Sharma S, Sharma S, Upreti N, Sharma KP. “Monitoring toxicity of an azo dye methyl red and a heavy metal Cu, using plant and animal bioassays”. Toxicology and Environmental Chemistry, 91(1), 109–120, 2009.
  • [14] Sievers M. - 4.13, Advanced Oxidation Processes. in P. Wilderer, ed., Treatise on Water Science. Oxford: Elsevier, 377–408, 2011
  • [15] Ghangrekar MM. Advanced Oxidation Processes. in M.M. Ghangrekar, ed., Wastewater to Water: Principles, Technologies and Engineering Design. Singapore: Springer Nature Singapore, 733–794, 2022.
  • [16] Bopape DA, Ntsendwana B, Mabasa FD. “Photocatalysis as a pre-discharge treatment to improve the effect of textile dyes on human health: A critical review”. Heliyon, 10(20), e39316-39347 2024.
  • [17] Lanjwani MF, Tuzen M, Khuhawar MY, Saleh TA. “Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review”. Inorganic Chemistry Communications, 159, 111613- 111630, 2024.
  • [18] Zailan SN, Mahmed N, Bouaissi A, Mubarokah ZR, Norizan MN, Mohamad IS, Yudasari N, Shirajuddin SSM. “Adsorption efficiency and photocatalytic activity of silver sulphide-activated carbon (Ag2S-AC) composites”. Inorganic Chemistry Communications, 171, 113633-113646, 2025.
  • [19] Zheng X, Shao Z, Lin J, Gao Q, Ma Z, Song Y, Chen Z, Shi X, Li J, Liu W, Tian X, Liu Y. “Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation”. Chinese Chemical Letters, 36, 110533-110548, 2024.
  • [20] Krishnapuram P, Choudhary J, Kagola UK, Jakka SK. Photocatalytic and sensing properties of rare-earth doped tungstate upconverting host materials. in V.B. Pawade, S.J. Dhoble, K.N. Shinde, and H.C. Swart, eds., Upconversion Nanocrystals for Sustainable Technology. Woodhead Publishing, 179–204, 2025.
  • [21] Abubakar HL, Tijani JO, Abdulkareem AS, Egbosiuba TC, Abdullahi M, Mustapha S, Ajiboye EA. “Effective removal of malachite green from local dyeing wastewater using zinc-tungstate based materials”. Heliyon, 9(9), e19167-19193, 2023.
  • [22] Wu H, Peng J, Sun H, Ruan Q, Dong H, Jin Y, Sun Z, Hu Y. “Surface activation of calcium tungstate by europium doping for improving photocatalytic performance: Towards lanthanide site photocatalysis”. Chemical Engineering Journal, 432, 134339-134349, 2022.
  • [23] Wei J, Chen Z, Tong Z. “Engineering Z-scheme silver oxide/bismuth tungstate heterostructure incorporated reduced graphene oxide with superior visible-light photocatalytic activity”. Journal of Colloid and Interface Science, 596, 22–33, 2021.
  • [24] Wang J, Tang L, Zeng G, Zhou Y, Deng Y, Fan C, Gong J, Liu Y. “Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light”. Transactions of Nonferrous Metals Society of China, 27(8), 1794–1803, 2017.
  • [25] Ahmed AI, Kospa DA, Gamal S, Samra SE, Salah AA, El-Hakam SA, Awad Ibrahim A. “Fast and simple fabrication of reduced graphene oxide-zinc tungstate nanocomposite with enhanced photoresponse properties as a highly efficient indirect sunlight driven photocatalyst and antibacterial agent”. Journal of Photochemistry and Photobiology A: Chemistry, 429, 13907-13919, 2022.
  • [26] Rao L, Xu J, Ao Y, Wang P. “Photocatalytic degradation of methyl orange over bismuth tungstate under visible light”. Applied Surface Science, 315, 191–196. 2014.
  • [27] Husain M, Rahman N, Azzouz-Rached A, Sfina N, Asad M, Hussain A, Ahmad R, Hamza RD, Humayun Q, Samreen A, Belhachi S, Uzair M, Abualnaja KM, Alosaimi G. “Investigating structural, optoelectronic, and mechanical properties of novel Tungsten-based oxides double-perovskites compounds Sr2XWO6 (X = Mn, Fe): A DFT approach”. Optik, 315, 172045-172055, 2024.
  • [28] Harichandran G, Divya P, Radha S, Yesuraj J. “Facile and controllable CTAB-assisted sonochemical synthesis of one-dimensional MnWO4 nanorods for supercapacitor application”. Journal of Molecular Structure, 1199, 126931-126941 , 2020.
  • [29] Trung DD, Cuong ND, Trung KQ, Nguyen TD, Van Toan N, Hung CM, Hieu NV. “Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor”. Journal of Alloys and Compounds, 735, 787–794, 2018.
  • [30] Jiang YN, Liu BD, Yang WJ, Yang B, Liu XY, Zhang XL, Mohsin MA, Jiang X. “New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants”. CrystEngComm, 18(10), 1832–1841, 2016.
  • [31] Zhu S, Ho SH, Jin C, Duan X, Wang S. “Nanostructured manganese oxides: natural/artificial formation and their induced catalysis for wastewater remediation”. Environmental Science: Nano, 7(2), 68–396, 2020.
  • [32] Islam MA, Morton DW, Johnson BB, Mainali B, Angove MJ. “Manganese oxides and their application to metal ion and contaminant removal from wastewater”. Journal of Water Process Engineering, 26, 264–280. 2018.
  • [33] Ishfaq A, Shahid M, Nawaz M, Ibrar D, Hussain S, Shahzad T, Mahmood F, Rais A, Gul S, Gaafar AZ, Hodhod MS, Khan S. “Remediation of wastewater by biosynthesized manganese oxide nanoparticles and its effects on development of wheat seedlings”. Frontiers in Plant Science, 14, 1263813-1263828, 2023.
  • [34] Pirhashemi M, Habibi-Yangjeh A. “Fabrication of novel ZnO/MnWO4 nanocomposites with p-n heterojunction: Visible-light-induced photocatalysts with substantially improved activity and durability”. Journal of Materials Science & Technology, 34(10), 1891–1901, 2018.
  • [35] Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu X, Liu Y. “A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area”. Nanoscale Research Letters, 8(1), 166-173, 2013.
  • [36] Muthamizh S, Suresh R, Giribabu K, Manigandan R, Praveen Kumar S, Munusamy S, Narayanan V. “MnWO4 nanocapsules: Synthesis, characterization and its electrochemical sensing property”. Journal of Alloys and Compounds, 619, 601–609, 2015.
  • [37] Nogami A, Suzuki T, Katsufuji T. “Second Harmonic Generation from Multiferroic MnWO4”. Journal of the Physical Society of Japan, 77(11), 115001-115003, 2008.
  • [38] Van Hanh P, Hoang LH, Hai PV, Minh NV, Chen XB, Yang IS. “Crystal quality and optical property of MnWO4 nanoparticles synthesized by microwave-assisted method”. Journal of Physics and Chemistry of Solids, 74(3), 426–430, 2013.
  • [39] Chakraborty AK, Ganguli S, Kebede MA. “Photocatalytic degradation of 2-propanol and phenol using Au-loaded MnWO4 nanorod under visible light irradiation”. Journal of Cluster Science, 23(2), 437–448, 2012.
  • [40] Almeida MAP, Cavalcante LS, Varela JA, Li MS, Longo E. “Effect of different surfactants on the shape, growth, and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method”. Advances in Powder Technology, 23(1), 124–128, 2012.
  • [41] Kayhan E. “Graphene: Synthesis, Characterization, Properties and Functional Behavior as Catalyst Support and Gas Sensor”. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2013.
  • [42] Jafarova VN, Orudzhev GS. “Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods”. Solid State Communications, 325, 114166, 2021.
  • [43] Bilal M, Wang L, Ur Rehman Z, Zheng K, Hou J, Butt FK, Hussain A, Ahmad J, Ullah S, Jrar JA, Ali S, Wang X. “Hydrogen production using g-C3N4 based photocatalysts: A review”. International Journal of Hydrogen Energy, 96, 456-473, 2024.
  • [44] Kamble GS, Natarajan TS, Patil SS, Thomas M, Chougale RK, Sanadi PD, Siddharth US, Ling YC. “BiVO4 As a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency”. Nanomaterials (Basel), 13(9), 1528, 2023.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atıksu Arıtma Süreçleri
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Kayhan 0000-0002-4581-2657

Emine Kayhan 0000-0002-3015-4188

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 11 Kasım 2025
Gönderilme Tarihi 17 Ocak 2025
Kabul Tarihi 19 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 7

Kaynak Göster

APA Kayhan, M., & Kayhan, E. (2025). Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.27723
AMA Kayhan M, Kayhan E. Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(7). doi:10.5505/pajes.2025.27723
Chicago Kayhan, Mehmet, ve Emine Kayhan. “Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 7 (Kasım 2025). https://doi.org/10.5505/pajes.2025.27723.
EndNote Kayhan M, Kayhan E (01 Kasım 2025) Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE M. Kayhan ve E. Kayhan, “Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi: 10.5505/pajes.2025.27723.
ISNAD Kayhan, Mehmet - Kayhan, Emine. “Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (Kasım2025). https://doi.org/10.5505/pajes.2025.27723.
JAMA Kayhan M, Kayhan E. Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.27723.
MLA Kayhan, Mehmet ve Emine Kayhan. “Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi:10.5505/pajes.2025.27723.
Vancouver Kayhan M, Kayhan E. Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.