Araştırma Makalesi
BibTex RIS Kaynak Göster

Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust

Yıl 2025, Cilt: 31 Sayı: 7

Öz

This paper aimed to upgrade the bio-oils with the catalytic co-pyrolysis of spruce sawdust. A bubble-fluidized bed pyrolysis reactor was used in the experiments. The effects of the different mixing ratios of spruce sawdust with glycerol (10, 20, and 30 wt%), the usage of different catalysts (HZSM-5 and dolomite), and pyrolysis temperatures (400°C, 450 °C, 500 °C, 550 °C and 600 °C) on the yields and quality of obtained bio-oils were examined. The experimental results revealed that the biooil yield improved with an additive of glycerol at all mixing ratios. The highest bio-oil yield (46.4 wt%) was received at a 20 wt% mixing ratio of glycerol and a pyrolysis temperature of 550 oC with a dolomite catalyst. The results of GC-MS indicated that the pyrolysis oil included a high proportion of ketones, phenols, and alcohols, which supported the potential of the catalytic co-pyrolysis of spruce sawdust with glycerol for bio-oil upgrading. The pyrolysis oil from spruce sawdust pyrolysis consisted of a ratio of 4.81% (GC-MS peak area) of unoxygenated hydrocarbons. Furthermore, the unoxygenated components were found to be 8.02% in the bio-oil produced by co-pyrolysis with glycerol. The number of unoxygenated hydrocarbons increased significantly during ex-situ catalytic co-pyrolysis. The unoxygenated hydrocarbons in the bio-oils produced by catalytic co-pyrolysis with HZSM-5 and dolomite were found to be 19.10% and 22.24%, respectively. The co-pyrolysis and catalytic co-pyrolysis results also revealed that the average carbon number of the compounds in the bio-oils depends on the chosen methods and catalysts. Using the catalyst in the reactor resulted in the formation of low-carbon number hydrocarbons. However, when used outside the reactor, the catalysts were observed to be more effective for deoxygenation.

Kaynakça

  • [1] Bhoi P, Ouedraogo A, Soloiu V, Quirino R. “Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis”. Renewable and Sustainable Energy Reviews, 121, 2020.
  • [2] Chia SR, Kit Wayne C, Show P-L, Ong HC, Phang S-M, Ling T, Nagarajan D, Lee D-J, Chang J-S. “Sustainable approaches for algae utilization in bioenergy production”. Renewable Energy, 2017.
  • [3] Leong YK, Show PL, Ooi CW, Ling TC, Lan JC. “Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli”. Journal of Biotechnology, 180, 52-65, 2014.
  • [4] Koyande A, Kit Wayne C, K R, Tao Y, Show P-L. “Microalgae: A potential alternative to health supplementation for humans”. Food Science and Human Wellness, 8, 2019.
  • [5] Tan S, Zhang Z, Sun J, Wang Q. “Recent progress of catalytic pyrolysis of biomass by HZSM-5”. Chinese Journal of Catalysis, 34, 641-650, 2013.
  • [6] Panwar NL, Paul A. “An overview of recent development in bio-oil upgrading and separation techniques”. Environmental Engineering Research, 26, 2020.
  • [7] Gupta S, Mondal P. “Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review”. Environmental Technology & Innovation, 21, 2021.
  • [8] Gayathiri M, Pulingam T, Lee KT, Sudesh K. “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism”. Chemosphere, 294, 133-764, 2022.
  • [9] Kapluhan E. “Enerji coğrafyası açısından bir inceleme: biyokütle enerjisinin dünyadaki ve türkiye’deki kullanım durumu”. Marmara coğrafya dergisi, 30, 97-125, 2014.
  • [10] Bridgwater AV. “Review of fast pyrolysis of biomass and product upgrading”. Biomass and Bioenergy, 38, 68-94, 2012.
  • [11] Han Y, Gholizadeh M, Tran C-C, Kaliaguine S, Li C-Z, Olarte M, Garcia-Perez M. “Hydrotreatment of pyrolysis bio-oil: A review”. Fuel Processing Technology, 195, 106140, 2019.
  • [12] Taşar Ş, Kaya F, Özer A. “A Study on the Pyrolysis of Peanut Shells at Different Isothermal Conditions and Determination of the Kinetic Parameters”. Pamukkale University Journal of Engineering Sciences, 21, 7, 306-313,2015.
  • [13] Merdun H, Sezgin Vİ, Güzelçiftçi B. “Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis”. Pamukkale University Journal of Engineering Sciences, 25, 3, 297-303, 2019.
  • [14] Özdemir A, Özkan A, Günkaya Z, Banar M. “Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu”. Pamukkale University Journal of Engineering Sciences, 28, 6, 920-928, 2022.
  • [15] Rotliwala Y, Parikh P. “Thermal Coprocessing of High Density Polyethylene with Coal, Fly Ashes, and Biomass: Characterization of Liquid Products”. Energy Sources Part A-recovery Utilization and Environmental Effects, 34, 1055-1066, 2012
  • [16] Solak A, Rutkowski P. “Bio-oil production by fast pyrolysis of cellulose/polyethylene mixtures in the presence of metal chloride”. Journal of Material Cycles and Waste Management, 16, 2013.
  • [17] Solak A, Rutkowski P. “The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene”. Waste management, 34, 2013.
  • [18] Brebu M, Uçar S, Vasile C, Yanik J. “Co-pyrolysis of pine cone with synthetic polymers”. Fuel, 89, 1911-1918, 2010.
  • [19] Brebu M, Spiridon I. “Co-pyrolysis of LignoBoost Ò lignin with synthetic polymers”. Polymer Degradation and Stability, 97, 2104-2109, 2012.
  • [20] David J. Mihalcik, Charles A. Mullen, Akwasi A. Boateng. “ Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components”. Journal of Analytical and Applied Pyrolysis, 92, 224-232, 2011.
  • [21] Pan Pan, Changwei Hu, Wenyan Yang, Yuesong Li, Linlin Dong, Liangfang Zhu, Dongmei Tong, Renwei Qing, Yong Fan. “The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils”. Bioresource Technology, 101, 4593-4599, 2010.
  • [22] Carmines E, Gaworski CL. “Toxicological evaluation of glycerin as a cigarette ingredient”. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 43, 1521-1539, 2005.
  • [23] Skoulou V, Manara P, Zabaniotou A. “H2 enriched fuels from co-pyrolysis of crude glycerol with biomass”. Journal of Analytical and Applied Pyrolysis, 97, 198–204, 2012.
  • [24] Kumar P, Singh VP, Tagade A, Sawarkar AN. “Thermochemical characterization of post-phytoremediated vetiver (Vetiveria zizanioides (L.) Nash) root and shoot for their prospective bioenergy potential”. Industrial Crops and Products, 191, 115964, 2023.
  • [25] Uçar S, Karagöz S. “Co-pyrolysis of pine nut shells with scrap tires”. Fuel, 137, 85-93, 2014.
  • [26] Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK. “A review on pyrolysis of plastic wastes”. Energy Conversion and Management, 115, 308-326, 2016.
  • [27] Uzoejinwa BB, He X, Wang S, El-Fatah Abomohra A, Hu Y, Wang Q. “Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide”. Energy Conversion and Management, 163, 468-492, 2018.
  • [28] Prakash R, Siddharth R, Gunasekar N. “Chapter 10 - Cracking of Toxic Waste. In: Barik D (ed) Energy from Toxic Organic Waste for Heat and Power Generation”. Woodhead Publishing, 139-149, 2019.
  • [29] Kuppens T, Cornelissen T, Carleer R, Yperman J, Schreurs S, Jans M, Thewys T. “Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams”. Journal of Environmental Management, 91 , 2736-2747, 2010.
  • [30] Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q. “Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 115, 227-235, 2014.
  • [31] Yaman E, Ulusal A, Uzun BB. “Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics”. Applied Sciences, 3, 97, 2021.
  • [32] Slopiecka K, Bartocci P, Fantozzi F. “Thermogravimetric analysis and Kinetic study of poplar wood pyrolysis”. Applied Energy, 97, 491–497, 2012.
  • [33] Fantozzi F, Frassoldati A, Bartocci P, Cinti G, Quagliarini F, Bidini G, Ranzi EM. “An experimental and kinetic modeling study of glycerol pyrolysis”. Applied Energy, 184, 68-76, 2016.
  • [34] de Lucas A, Canizares P, Durán A, Carrero A. “Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity”. Applied Catalysis A: General, 154, 221-240, 1997.
  • [35] Adjaye JD, Sharma RK, Bakhshi NN. “Catalytic Upgrading of Wood Derived Bio-Oil over HZSM-5 Catalyst: Effect of Co-Feeding Steam”. Advances in Thermochemical Biomass Conversion, 1032-1046, 1993.
  • [36] Valle B, Gayubo AG, Alonso A, Aguayo AT, Bilbao J. “Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons”. Applied Catalysis B: Environmental, 100, 318-327, 2010.
  • [37] Oudejans JC, Van Den Oosterkamp PF, Van Bekkum H. “Conversion of ethanol over zeolite h-zsm-5 in the presence of water”. Applied Catalysis, 3, 109-115, 1982.
  • [38] Sharma RK, Bakhshi NN. “Catalytic conversion of crude tall oil to fuels and chemicals over HZSM-5: Effect of co-feeding steam”. Fuel Processing Technology, 27, 113-130, 1991.
  • [39] Katikaneni SPR, Adjaye JD, Bakhshi NN. “Studies on the Catalytic Conversion of Canola Oil to Hydrocarbons: Influence of Hybrid Catalysts and Steam”. Energy & Fuels, 9, 599-609, 1995.
  • [40] Al-Obaidi MM, Ishak NS, Ali S, Arifin NA, Raja Shahruzzaman RM, Wan Abdul Karim Ghani WA, Yun Hin T-Y, Shamsuddin AH. “H2-Rich and Tar-Free Downstream Gasification Reaction of EFB by Using the Malaysian Dolomite as a Secondary Catalyst”. Catalysts, 11, 2021.
  • [41] Harith N, Hafriz RSRM, Arifin NA, Tan ES, Salmiaton A, Shamsuddin AH. “Catalytic co-pyrolysis of blended biomass – plastic mixture using synthesized metal oxide(MO)-dolomite based catalyst”. Journal of Analytical and Applied Pyrolysis, 168, 105776, 2022.
  • [42] Charusiri W, Vitidsant T. “Upgrading bio-oil produced from the catalytic pyrolysis of sugarcane (Saccharum officinarum L) straw using calcined dolomite”. Sustainable Chemistry and Pharmacy, 6, 114-123, 2017.
  • [43] Islam MW. “A review of dolomite catalyst for biomass gasification tar removal”. Fuel, 267, 117095, 2020.
  • [44] Wu Q, Ke L, Wang Y, Zhou N, Li H, Yang Q, Xu J, Dai L, Zou R, Liu Y, Ruan R. “Pulse pyrolysis of waste cooking oil over CaO: Exploration of catalyst deactivation pathway based on feedstock characteristics”. Applied Catalysis B: Environmental, 304, 120968, 2022.
  • [45] Valle B, García-Gómez N, Remiro A, Gayubo AG, Bilbao J. “Cost-effective upgrading of biomass pyrolysis oil using activated dolomite as a basic catalyst”. Fuel Processing Technology, 195, 106142, 2019.
  • [46] Chen X, Chen Y, Yang H, Wang X, Che Q, Chen W, Chen H. “Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil”. Bioresource Technology, 273, 153-158, 2019.
  • [47] Onay O, Koçkar O. “Fixed-bed pyrolysis of rapeseed (Brassica napus L.)”. Biomass & Bioenergy, 26, 289-299, 2004.
  • [48] Zhou L, Yang H, Wu H, Wang M, Cheng D. “Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior”. Fuel Processing Technology, 106, 385–391, 2013.
  • [49] Nuttapan P, Nuwong C, Adisak P. “Effect of low-temperature hydrothermal treatment of HZSM-5 extrudates on the production of deeply-deoxygenated bio-oil via ex-situ catalytic fast pyrolysis of biomass”. Fuel, 324, 124627, 2022.
  • [50] Praserttaweeporn K,Vitidsant T, Charusiri W. “Ni-modified dolomite for the catalytic deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil”. Results in Engineering, 14, 100461, 2022.
  • [51] Raja Shahruzzaman RMH, Ali S, Yunus R, Yun-Hin TY. “Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst”. Bulletin of chemical reactıon engineering and catalysis, 13, 2018.
  • [52] Hafriz RSRM, Nor Shafizah I, Arifin NA, Maisarah AH, Salmiaton A, Shamsuddin AH. “Comparative, reusability and regeneration study of potassium oxide-based catalyst in deoxygenation reaction of WCO”. Energy Conversion and Management, 13, 100173, 2022.

Ladin talaşının katalitik kopiroliziyle geliştirilmiş biyo-yağ üretimi

Yıl 2025, Cilt: 31 Sayı: 7

Öz

Bu makale, ladin talaşının katalitik ko-pirolizi ile biyo-yağların yükseltilmesini amaçlamaktadır. Deneylerde kabarcıklı akışkan yataklı piroliz reaktörü kullanılmıştır. Ladin talaşının gliserol ile farklı karıştırma oranlarının (%10, 20 ve 30 ağırlık), farklı katalizörlerin (HZSM-5 ve dolomit) kullanımının ve piroliz sıcaklıklarının (400 °C, 450 °C, 500 °C, 550 °C ve 600 °C) elde edilen biyo-yağların verimi ve kalitesi üzerindeki etkileri incelenmiştir. Deneysel sonuçlar, biyo-yağ veriminin tüm karıştırma oranlarında gliserol katkı maddesiyle arttığını ortaya koymuştur. En yüksek biyo-yağ verimi (%46.4 ağırlıkça), %20 gliserol karıştırma oranında ve dolomit katalizörüyle 550 oC'lik bir piroliz sıcaklığında elde edilmiştir. GC-MS sonuçları, piroliz yağının yüksek oranda keton, fenol ve alkol içerdiğini göstermiştir; bu da biyo-yağ iyileştirmesi için gliserol ile ladin talaşının katalitik eş-pirolizinin potansiyelini desteklemektedir. Ladin talaşı pirolizinden elde edilen piroliz yağı, %4.81 oranında (GC-MS pik alanı) oksijensiz hidrokarbonlardan oluşmuştur. Ayrıca, gliserol ile eşpirolizle üretilen biyo-yağda oksijensiz bileşenlerin %8.02 olduğu bulunmuştur. Ex-situ katalitik eş-piroliz sırasında oksijensiz hidrokarbonların sayısı önemli ölçüde arttı. HZSM-5 ve dolomit ile katalitik eş-pirolizle üretilen biyo-yağlardaki oksijensiz hidrokarbonların sırasıyla %19.10 ve %22.24 olduğu bulundu. Eşpiroliz ve katalitik eş-piroliz sonuçları ayrıca biyo-yağlardaki bileşiklerin ortalama karbon sayısının seçilen yöntem ve katalizörlere bağlı olduğunu ortaya koydu. Reaktörde katalizörün kullanılması düşük karbon sayılı hidrokarbonların oluşumuyla sonuçlandı. Ancak katalizörlerin reaktör dışında kullanıldığında oksijensizleştirme için daha etkili olduğu görülmüştür.

Kaynakça

  • [1] Bhoi P, Ouedraogo A, Soloiu V, Quirino R. “Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis”. Renewable and Sustainable Energy Reviews, 121, 2020.
  • [2] Chia SR, Kit Wayne C, Show P-L, Ong HC, Phang S-M, Ling T, Nagarajan D, Lee D-J, Chang J-S. “Sustainable approaches for algae utilization in bioenergy production”. Renewable Energy, 2017.
  • [3] Leong YK, Show PL, Ooi CW, Ling TC, Lan JC. “Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli”. Journal of Biotechnology, 180, 52-65, 2014.
  • [4] Koyande A, Kit Wayne C, K R, Tao Y, Show P-L. “Microalgae: A potential alternative to health supplementation for humans”. Food Science and Human Wellness, 8, 2019.
  • [5] Tan S, Zhang Z, Sun J, Wang Q. “Recent progress of catalytic pyrolysis of biomass by HZSM-5”. Chinese Journal of Catalysis, 34, 641-650, 2013.
  • [6] Panwar NL, Paul A. “An overview of recent development in bio-oil upgrading and separation techniques”. Environmental Engineering Research, 26, 2020.
  • [7] Gupta S, Mondal P. “Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review”. Environmental Technology & Innovation, 21, 2021.
  • [8] Gayathiri M, Pulingam T, Lee KT, Sudesh K. “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism”. Chemosphere, 294, 133-764, 2022.
  • [9] Kapluhan E. “Enerji coğrafyası açısından bir inceleme: biyokütle enerjisinin dünyadaki ve türkiye’deki kullanım durumu”. Marmara coğrafya dergisi, 30, 97-125, 2014.
  • [10] Bridgwater AV. “Review of fast pyrolysis of biomass and product upgrading”. Biomass and Bioenergy, 38, 68-94, 2012.
  • [11] Han Y, Gholizadeh M, Tran C-C, Kaliaguine S, Li C-Z, Olarte M, Garcia-Perez M. “Hydrotreatment of pyrolysis bio-oil: A review”. Fuel Processing Technology, 195, 106140, 2019.
  • [12] Taşar Ş, Kaya F, Özer A. “A Study on the Pyrolysis of Peanut Shells at Different Isothermal Conditions and Determination of the Kinetic Parameters”. Pamukkale University Journal of Engineering Sciences, 21, 7, 306-313,2015.
  • [13] Merdun H, Sezgin Vİ, Güzelçiftçi B. “Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis”. Pamukkale University Journal of Engineering Sciences, 25, 3, 297-303, 2019.
  • [14] Özdemir A, Özkan A, Günkaya Z, Banar M. “Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu”. Pamukkale University Journal of Engineering Sciences, 28, 6, 920-928, 2022.
  • [15] Rotliwala Y, Parikh P. “Thermal Coprocessing of High Density Polyethylene with Coal, Fly Ashes, and Biomass: Characterization of Liquid Products”. Energy Sources Part A-recovery Utilization and Environmental Effects, 34, 1055-1066, 2012
  • [16] Solak A, Rutkowski P. “Bio-oil production by fast pyrolysis of cellulose/polyethylene mixtures in the presence of metal chloride”. Journal of Material Cycles and Waste Management, 16, 2013.
  • [17] Solak A, Rutkowski P. “The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene”. Waste management, 34, 2013.
  • [18] Brebu M, Uçar S, Vasile C, Yanik J. “Co-pyrolysis of pine cone with synthetic polymers”. Fuel, 89, 1911-1918, 2010.
  • [19] Brebu M, Spiridon I. “Co-pyrolysis of LignoBoost Ò lignin with synthetic polymers”. Polymer Degradation and Stability, 97, 2104-2109, 2012.
  • [20] David J. Mihalcik, Charles A. Mullen, Akwasi A. Boateng. “ Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components”. Journal of Analytical and Applied Pyrolysis, 92, 224-232, 2011.
  • [21] Pan Pan, Changwei Hu, Wenyan Yang, Yuesong Li, Linlin Dong, Liangfang Zhu, Dongmei Tong, Renwei Qing, Yong Fan. “The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils”. Bioresource Technology, 101, 4593-4599, 2010.
  • [22] Carmines E, Gaworski CL. “Toxicological evaluation of glycerin as a cigarette ingredient”. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 43, 1521-1539, 2005.
  • [23] Skoulou V, Manara P, Zabaniotou A. “H2 enriched fuels from co-pyrolysis of crude glycerol with biomass”. Journal of Analytical and Applied Pyrolysis, 97, 198–204, 2012.
  • [24] Kumar P, Singh VP, Tagade A, Sawarkar AN. “Thermochemical characterization of post-phytoremediated vetiver (Vetiveria zizanioides (L.) Nash) root and shoot for their prospective bioenergy potential”. Industrial Crops and Products, 191, 115964, 2023.
  • [25] Uçar S, Karagöz S. “Co-pyrolysis of pine nut shells with scrap tires”. Fuel, 137, 85-93, 2014.
  • [26] Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK. “A review on pyrolysis of plastic wastes”. Energy Conversion and Management, 115, 308-326, 2016.
  • [27] Uzoejinwa BB, He X, Wang S, El-Fatah Abomohra A, Hu Y, Wang Q. “Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide”. Energy Conversion and Management, 163, 468-492, 2018.
  • [28] Prakash R, Siddharth R, Gunasekar N. “Chapter 10 - Cracking of Toxic Waste. In: Barik D (ed) Energy from Toxic Organic Waste for Heat and Power Generation”. Woodhead Publishing, 139-149, 2019.
  • [29] Kuppens T, Cornelissen T, Carleer R, Yperman J, Schreurs S, Jans M, Thewys T. “Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams”. Journal of Environmental Management, 91 , 2736-2747, 2010.
  • [30] Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q. “Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 115, 227-235, 2014.
  • [31] Yaman E, Ulusal A, Uzun BB. “Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics”. Applied Sciences, 3, 97, 2021.
  • [32] Slopiecka K, Bartocci P, Fantozzi F. “Thermogravimetric analysis and Kinetic study of poplar wood pyrolysis”. Applied Energy, 97, 491–497, 2012.
  • [33] Fantozzi F, Frassoldati A, Bartocci P, Cinti G, Quagliarini F, Bidini G, Ranzi EM. “An experimental and kinetic modeling study of glycerol pyrolysis”. Applied Energy, 184, 68-76, 2016.
  • [34] de Lucas A, Canizares P, Durán A, Carrero A. “Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity”. Applied Catalysis A: General, 154, 221-240, 1997.
  • [35] Adjaye JD, Sharma RK, Bakhshi NN. “Catalytic Upgrading of Wood Derived Bio-Oil over HZSM-5 Catalyst: Effect of Co-Feeding Steam”. Advances in Thermochemical Biomass Conversion, 1032-1046, 1993.
  • [36] Valle B, Gayubo AG, Alonso A, Aguayo AT, Bilbao J. “Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons”. Applied Catalysis B: Environmental, 100, 318-327, 2010.
  • [37] Oudejans JC, Van Den Oosterkamp PF, Van Bekkum H. “Conversion of ethanol over zeolite h-zsm-5 in the presence of water”. Applied Catalysis, 3, 109-115, 1982.
  • [38] Sharma RK, Bakhshi NN. “Catalytic conversion of crude tall oil to fuels and chemicals over HZSM-5: Effect of co-feeding steam”. Fuel Processing Technology, 27, 113-130, 1991.
  • [39] Katikaneni SPR, Adjaye JD, Bakhshi NN. “Studies on the Catalytic Conversion of Canola Oil to Hydrocarbons: Influence of Hybrid Catalysts and Steam”. Energy & Fuels, 9, 599-609, 1995.
  • [40] Al-Obaidi MM, Ishak NS, Ali S, Arifin NA, Raja Shahruzzaman RM, Wan Abdul Karim Ghani WA, Yun Hin T-Y, Shamsuddin AH. “H2-Rich and Tar-Free Downstream Gasification Reaction of EFB by Using the Malaysian Dolomite as a Secondary Catalyst”. Catalysts, 11, 2021.
  • [41] Harith N, Hafriz RSRM, Arifin NA, Tan ES, Salmiaton A, Shamsuddin AH. “Catalytic co-pyrolysis of blended biomass – plastic mixture using synthesized metal oxide(MO)-dolomite based catalyst”. Journal of Analytical and Applied Pyrolysis, 168, 105776, 2022.
  • [42] Charusiri W, Vitidsant T. “Upgrading bio-oil produced from the catalytic pyrolysis of sugarcane (Saccharum officinarum L) straw using calcined dolomite”. Sustainable Chemistry and Pharmacy, 6, 114-123, 2017.
  • [43] Islam MW. “A review of dolomite catalyst for biomass gasification tar removal”. Fuel, 267, 117095, 2020.
  • [44] Wu Q, Ke L, Wang Y, Zhou N, Li H, Yang Q, Xu J, Dai L, Zou R, Liu Y, Ruan R. “Pulse pyrolysis of waste cooking oil over CaO: Exploration of catalyst deactivation pathway based on feedstock characteristics”. Applied Catalysis B: Environmental, 304, 120968, 2022.
  • [45] Valle B, García-Gómez N, Remiro A, Gayubo AG, Bilbao J. “Cost-effective upgrading of biomass pyrolysis oil using activated dolomite as a basic catalyst”. Fuel Processing Technology, 195, 106142, 2019.
  • [46] Chen X, Chen Y, Yang H, Wang X, Che Q, Chen W, Chen H. “Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil”. Bioresource Technology, 273, 153-158, 2019.
  • [47] Onay O, Koçkar O. “Fixed-bed pyrolysis of rapeseed (Brassica napus L.)”. Biomass & Bioenergy, 26, 289-299, 2004.
  • [48] Zhou L, Yang H, Wu H, Wang M, Cheng D. “Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior”. Fuel Processing Technology, 106, 385–391, 2013.
  • [49] Nuttapan P, Nuwong C, Adisak P. “Effect of low-temperature hydrothermal treatment of HZSM-5 extrudates on the production of deeply-deoxygenated bio-oil via ex-situ catalytic fast pyrolysis of biomass”. Fuel, 324, 124627, 2022.
  • [50] Praserttaweeporn K,Vitidsant T, Charusiri W. “Ni-modified dolomite for the catalytic deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil”. Results in Engineering, 14, 100461, 2022.
  • [51] Raja Shahruzzaman RMH, Ali S, Yunus R, Yun-Hin TY. “Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst”. Bulletin of chemical reactıon engineering and catalysis, 13, 2018.
  • [52] Hafriz RSRM, Nor Shafizah I, Arifin NA, Maisarah AH, Salmiaton A, Shamsuddin AH. “Comparative, reusability and regeneration study of potassium oxide-based catalyst in deoxygenation reaction of WCO”. Energy Conversion and Management, 13, 100173, 2022.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katalitik Aktivite
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Rasim Girişen 0000-0002-1201-7614

Hakan Özcan 0000-0002-7848-3650

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 11 Kasım 2025
Gönderilme Tarihi 6 Eylül 2024
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 7

Kaynak Göster

APA Girişen, A. R., & Özcan, H. (2025). Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.01679
AMA Girişen AR, Özcan H. Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(7). doi:10.5505/pajes.2025.01679
Chicago Girişen, Ahmet Rasim, ve Hakan Özcan. “Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 7 (Kasım 2025). https://doi.org/10.5505/pajes.2025.01679.
EndNote Girişen AR, Özcan H (01 Kasım 2025) Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE A. R. Girişen ve H. Özcan, “Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi: 10.5505/pajes.2025.01679.
ISNAD Girişen, Ahmet Rasim - Özcan, Hakan. “Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (Kasım2025). https://doi.org/10.5505/pajes.2025.01679.
JAMA Girişen AR, Özcan H. Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.01679.
MLA Girişen, Ahmet Rasim ve Hakan Özcan. “Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi:10.5505/pajes.2025.01679.
Vancouver Girişen AR, Özcan H. Upgraded bio-oil production with catalytic co-pyrolysis of spruce sawdust. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.