Araştırma Makalesi
BibTex RIS Kaynak Göster

Belirsiz ve dinamik kısıtlar altında sürü İHA formasyon kontrol probleminin optimizasyonu için yeni bir çözüm yaklaşımı: Crazyfly 2.0 uygulaması

Yıl 2025, Cilt: 31 Sayı: 7

Öz

Bu makalede, Homojen, Zaman Pencereli, Merkezi Kontrol Mimarili, Belirsiz, Dinamik Yapılı ve Lidersiz (HTUDL-S-İHA) Sürü İHA Formasyon Kontrol Problemi elde edilmiştir. Problemin çözümü için tavlama benzetim algoritmasına dayalı jenerik ve dinamik özelliklere sahip yeni bir çözüm algoritması geliştirilmiştir. Formasyon kontrol mimarisi 5 katman olarak belirlenmiş ve formasyonların oluşturulması için birim çember sistematiğine yeni bir geometrik yaklaşım geliştirilmiştir. Literatürde İHA'ların yörüngelerinin takibi ve çarpışmaların önlenmesi için Tra-Coll ve CCA algoritmaları önerilmiştir. Uygulama çalışması 9 farklı formasyon (Üçgen, Kare, Beşgen, V Şekli, Hilal, Yıldız, 4'lü ve 8'li Eşkenar Dörtgen Formasyonu, Çizgi) ve 7 farklı görev (Sürü Navigasyon Görevi, Formasyon Değiştirme Görevi, İHA'yı Sürüden Çıkarma Görevi, İHA'yı Sürüye Ekleme Görevi, Sürü Rotasyon Görevi, Sürü Bölme/Birleştirme Görevi, Sürü Olarak Yörünge Takip Görevi) üzerinde Crazfly 2.0 İHA'ları kullanılarak ROS simülasyon programında ve gerçek sistem üzerinde gerçekleştirilmiştir. Önerilen çözüm yaklaşımı tüm bu görevleri görevin kendine özgü koşulları doğrultusunda yerine getirmiş ve Teknofest-2021 Sürü İHA Yarışması'nda Türkiye 3.lüğü elde etmiştir. Ayrıca çalışma sayesinde stratejik ve kritik öneme sahip Sürü İHA görevlerinin ve diğer filo otonom sistemlerinin optimum başarısı için bir karar destek sistemi oluşturulması hedeflenmektedir.

Kaynakça

  • [1] He, L., Bai, P., Liang, X., Zhang, J., and Wang, W. “Feedback formation control of UAV swarm with multiple implicit leaders”. Aerospace Science and Technology, 72, 327-334, 2018.
  • [2] Oh, K. K., Park, M. C., and Ahn, H. S. “A survey of multi-agent formation control”. Automatica, 53, 424-440, 2015.
  • [3] Couceiro, M. S., Vargas, P. A., Rocha, R. P., and Ferreira, N. M. “Benchmark of swarm robotics distributed techniques in a search task”. Robotics and Autonomous Systems, 62(2), 200-213, 2014.
  • [4] Olfati-Saber, R. “Flocking for multi-agent dynamic systems: Algorithms and theory”. IEEE Transactions on Automatic Control, 51(3), 401-420, 2006.
  • [5] Toksöz, M. A., Oğuz, S., and Gazi, V. “Decentralized formation control of a swarm of quadrotor helicopters”. In 2019 IEEE 15th International Conference on Control and Automation (ICCA), 1006-1013, IEEE, July 2019.
  • [6] Turpin, M., Michael, N., and Kumar, V. “Concurrent assignment and planning of trajectories for large teams of interchangeable robots”. In 2013 IEEE International Conference on Robotics and Automation, 842-848, IEEE, May 2013.
  • [7] Olfati-Saber, R., Fax, J. A., and Murray, R. M. “Consensus and cooperation in networked multi-agent systems”. Proceedings of the IEEE, 95(1), 215-233, 2007.
  • [8] You, D. I., and Shim, D. H. “Autonomous formation flight test of multi-micro aerial vehicles”. Journal of Intelligent & Robotic Systems, 61(1), 321-337, 2011.
  • [9] Zhi-wei, H., Jia-hong, L., Ling, C., and Bing, W. “A hierarchical architecture for formation control of multi-UAV”. Procedia Engineering, 29, 3846-3851, 2012.
  • [10] Li, S., Shao, X., Zhang, W., and Zhang, Q. “Distributed multicircular circumnavigation control for UAVs with desired angular spacing”. Defence Technology, 2023.
  • [11] Wang, J., Wu, Y. X., Chen, Y. Q., and Ju, S. “Multi-UAVs collaborative tracking of moving target with maximized visibility in urban environment”. Journal of the Franklin Institute, 359(11), 5512-5532, 2022.
  • [12] Chai, S., Yang, Z., Huang, J., Li, X., Zhao, Y., and Zhou, D. “Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios”. Defence Technology, 2023.
  • [13] Sürü İHA Sistemleri Modern Harp İçin Bir Gelecek Öngörüsü, Araştırma Raporu Şubat 2019. https://thinktech.stm.com.tr/uploads/docs/1608905682_stm-suru-iha-sistemleri.pdf ? Accessed: 02.02.2022
  • [14] Rout, R., and Subudhi, B. “A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader–follower strategy”. Journal of Marine Engineering & Technology, 15(1), 38-46, 2016.
  • [15] Wang, J., Wang, C., Wei, Y., and Zhang, C. “Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy”. Applied Ocean Research, 94, 101971, 2020.
  • [16] Gao, Z., and Guo, G. “Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications”. IEEE Access, 6, 27902-27911, 2018.
  • [17] Ghamry, K. A., and Zhang, Y. “Formation control of multiple quadrotors based on leader-follower method”. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 1037-1042, IEEE, June 2015.
  • [18] Han, Z., Guo, K., Xie, L., and Lin, Z. “Integrated relative localization and leader–follower formation control”. IEEE Transactions on Automatic Control, 64(1), 20-34, 2018.
  • [19] Raghuwaiya, K., Sharma, B., and Vanualailai, J. “Leader-follower based locally rigid formation control”. Journal of Advanced Transportation, 2018.
  • [20] Tong, W. U., Jie, W. A. N. G., and Bailing, T. I. A. N. “Periodic event-triggered formation control for multi-UAV systems with collision avoidance”. Chinese Journal of Aeronautics, 35(8), 193-203, 2022.
  • [21] Ullah, N., Mehmood, Y., Aslam, J., Shaoping, W. A. N. G., and Phoungthong, K. “Fractional order adaptive robust formation control of multiple quad-rotor UAVs with parametric uncertainties and wind disturbances”. Chinese Journal of Aeronautics, 35(8), 204-220, 2022.
  • [22] Dai, J., Hu, Q., Liu, X., Zhang, Y., and Zhu, J. “Cluster head selection method of multiple UAVs under COVID-19 situation”. Computer Communications, 196, 141-147, 2022.
  • [23] Cheng, W., Jiang, B., Zhang, K., and Ding, S. X. “Robust finite-time cooperative formation control of UGV-UAV with model uncertainties and actuator faults”. Journal of the Franklin Institute, 358(17), 8811-8837, 2021.
  • [24] Liu, H., Meng, Q., Peng, F., and Lewis, F. L. “Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning”. Neurocomputing, 412, 63-71, 2020.
  • [25] Xie, Y., Han, L., Dong, X., Li, Q., and Ren, Z. “Bioinspired adaptive formation tracking control for swarm systems with application to UAV swarm systems”. Neurocomputing, 453, 272-285, 2021.
  • [26] Jiaqi, S., Li, T., Hongtao, Z., Xiaofeng, L., and Tianying, X. “Adaptive multi-UAV path planning method based on improved gray wolf algorithm”. Computers and Electrical Engineering, 104, 108377, 2022.
  • [27] Hartley, J., Shum, H. P., Ho, E. S., Wang, H., & Ramamoorthy, S. “Formation control for UAVs using a Flux Guided approach”. Expert Systems with Applications, 205, 117665, 2022.
  • [28] Li, J., Liu, J., Huangfu, S., Cao, G., & Yu, D. “Leader-follower formation of light-weight UAVs with novel active disturbance rejection control”. Applied Mathematical Modelling, 117, 577-591, 2023.
  • [29] Do, H. T., Hua, H. T., Nguyen, M. T., Nguyen, C. V., Nguyen, H. T., Nguyen, H. T., & Nguyen, N. T. “Formation control algorithms for multiple UAVs: a comprehensive survey”. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 8(27), e3-e3, 2021.
  • [30] Zheng, X., Zong, C., Cheng, J., Xu, J., Xin, S., Tu, C., ... and Wang, W. “Visually smooth multi-UAV formation transformation”. Graphical Models, 116, 101111, 2021.
  • [31] Hartley, J., Shum, H. P., Ho, E. S., Wang, H., & Ramamoorthy, S. “Formation control for UAVs using a Flux Guided approach”. Expert Systems with Applications, 205, 117665, 2022.
  • [32] Qiang, F. E. N. G., Xingshuo, H. A. I., Bo, S. U. N., Yi, R. E. N., Zili, W. A. N. G., Dezhen, Y. A. N. G., ... and Ronggen, F. E. N. G. “Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization”. Chinese Journal of Aeronautics, 35(1), 110-123, 2022.
  • [33] Yan, Z., Han, L., Li, X., Dong, X., Li, Q., and Ren, Z. “Event-Triggered formation control for time-delayed discrete-Time multi-Agent system applied to multi-UAV formation flying”. Journal of the Franklin Institute, 360(5), 3677-3699, 2023.
  • [34] Wu, Y., Gou, J., Ji, H., & Deng, J. “Hierarchical mission replanning for multiple UAV formations performing tasks in dynamic situation”. Computer Communications, 2023.
  • [35] Zear, A., Ranga, V., and Bhushan, K. “Coordinated network partition detection and bi-connected inter-partition topology creation in damaged sensor networks using multiple UAVs”. Computer Communications, 203, 15-29, 2023.
  • [36] Dou, L., Cai, S., Zhang, X., Su, X., and Zhang, R. “Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV”. Journal of the Franklin Institute, 359(8), 3671-3691, 2022.
  • [37] Zhao, T., Yu, X., Liu, P., and Liu, L. “Ultraviolet anticollision and localization algorithm in UAV formation network”. Optik, 192, 162919, 2019.
  • [38] Trujillo, M. A., Becerra, H. M., Gómez-Gutiérrez, D., Ruiz-León, J., and Ramírez-Treviño, A. “Hierarchical task-based formation control and collision avoidance of UAVs in finite time”. European Journal of Control, 60, 48-64, 2021.
  • [39] Alam, M. M., & Moh, S. “Joint topology control and routing in a UAV swarm for crowd surveillance”. Journal of Network and Computer Applications, 204, 103427, 2022.
  • [40] Huang, J., and Sun, W. “A method of feasible trajectory planning for UAV formation based on bidirectional fast search tree”. Optik, 221, 165213, 2020.
  • [41] Xu, J., Deng, Z., Ren, X., Xu, L., and Liu, D. “Invulnerability optimization of UAV formation based on super wires adding strategy”. Chaos, Solitons & Fractals, 140, 110185, 2020.
  • [42] Li, Y., Xu, Y., Xue, X., Liu, X., & Liu, X. “Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution”. Biosystems Engineering, 214, 177-192, 2022.
  • [43] Jiaqi, S., Li, T., Hongtao, Z., Xiaofeng, L., & Tianying, X. “Adaptive multi-UAV path planning method based on improved gray wolf algorithm”. Computers and Electrical Engineering, 104, 108377, 2022.
  • [44] Pang, B., Low, K. H., & Lv, C. “Adaptive conflict resolution for multi-UAV 4D routes optimization using stochastic fractal search algorithm”. Transportation Research Part C: Emerging Technologies, 139, 103666, 2022.
  • [45] Do, H. T., Hua, H. T., Nguyen, M. T., Nguyen, C. V., Nguyen, H. T., Nguyen, H. T., & Nguyen, N. T. “Formation control algorithms for multiple-UAVs: a comprehensive survey”. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 8(27), e3-e3, 2021.
  • [46] Wu, X., Yang, Z., Huo, J., & Zhang, J. “UAV formation control based on consistency”. In 2015 7th International Conference on Modelling, Identification and Control (ICMIC), 1-5, IEEE, December 2015.
  • [47] Dong, X., Yu, B., Shi, Z., & Zhong, Y. “Time-varying formation control for unmanned aerial vehicles: Theories and applications”. IEEE Transactions on Control Systems Technology, 23(1), 340-348, 2014.
  • [48] Liang, Y., Dong, Q., & Zhao, Y. “Adaptive leader–follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances”. Chinese Journal of Aeronautics, 33(11), 2972-2988, 2020.
  • [49] Guo, K., Li, X., & Xie, L. “Simultaneous cooperative relative localization and distributed formation control for multiple UAVs”. Science China Information Sciences, 63(1), 1-3, 2020.
  • [50] Fu, X., Pan, J., Wang, H., & Gao, X. “A formation maintenance and reconstruction method of UAV swarm based on distributed control”. Aerospace Science and Technology, 104, 105981, 2020.
  • [51] Yu, B., Dong, X., Shi, Z., & Zhong, Y. “Formation control for quadrotor swarm systems: Algorithms and experiments”. In Proceedings of the 32nd Chinese Control Conference, 7099-7104, IEEE, July 2013.
  • [52] Speck, C., & Bucci, D. J. “Distributed UAV swarm formation control via object-focused, multiobjective SARSA”. In 2018 Annual American Control Conference (ACC), 6596-6601, IEEE, June 2018.
  • [53] Zhu, C., Liang, X., He, L., & Liu, L. “Demonstration and verification system for UAV formation control”. In 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 56-60, IEEE, August 2017.
  • [54] Ali, Z. A., Han, Z., & Masood, R. J. “Collective motion and self-organization of a swarm of UAVs: A cluster-based architecture”. Sensors, 21(11), 3820, 2021.
  • [55] Yang, F., Wang, P., Zhang, Y., Zheng, L., & Lu, J. “Survey of swarm intelligence optimization algorithms”. In 2017 IEEE International Conference on Unmanned Systems (ICUS), 544-549, IEEE, October 2017.
  • [56] Fu, X., Pan, J., Wang, H., & Gao, X. “A formation maintenance and reconstruction method of UAV swarm based on distributed control”. Aerospace Science and Technology, 104, 105981, 2020.
  • [57] Wu, Y., Gou, J., Hu, X., & Huang, Y. “A new consensus theory-based method for formation control and obstacle avoidance of UAVs”. Aerospace Science and Technology, 107, 106332, 2020.
  • [58] Wang, J., Han, L., Dong, X., Li, Q., & Ren, Z. “Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader”. Aerospace Science and Technology, 111, 106549, 2021.
  • [59] Li, S., & Fang, X. “A modified adaptive formation of UAV swarm by pigeon flock behavior within local visual field”. Aerospace Science and Technology, 114, 106736, 2021.
  • [60] Liu, B., Li, A., Guo, Y., & Wang, C. “Adaptive distributed finite-time formation control for multi-UAVs under input saturation without collisions”. Aerospace Science and Technology, 120, 107252, 2022.
  • [61] Shen, J., Wang, S., & Zhan, X. “Multi-UAV cluster-based cooperative navigation with fault detection and exclusion capability”. Aerospace Science and Technology, 124, 107570, 2022.
  • [62] Chen, L., & Duan, H. “Collision-free formation-containment control for a group of UAVs with unknown disturbances”. Aerospace Science and Technology, 126, 107618, 2022.
  • [63] Shen, Y., & Wei, C. “Multi-UAV flocking control with individual properties inspired by bird behavior”. Aerospace Science and Technology, 130, 107882, 2022.
  • [64] An, B., Wang, B., Fan, H., Liu, L., Hu, H., & Wang, Y. “Fully distributed prescribed performance formation control for UAVs with unknown maneuver of leader”. Aerospace Science and Technology, 130, 107886, 2022.
  • [65] Shao, X., Liu, H., Zhang, W., Zhao, J., & Zhang, Q. “Path driven formation-containment control of multiple UAVs: A path-following framework”. Aerospace Science and Technology, 135, 108168, 2023.
  • [66] Yu, B., Dong, X., Shi, Z., & Zhong, Y. “Formation control for quadrotor swarm systems: Algorithms and experiments”. In Proceedings of the 32nd Chinese Control Conference, 7099-7104, IEEE, July 2013.
  • [67] Xiaoning, Z. “Analysis of military application of UAV swarm technology”. In 2020 3rd International Conference on Unmanned Systems (ICUS), 1200-1204, IEEE, November 2020.
  • [68] Cevik, P., Kocaman, I., Akgul, A. S., & Akca, B. “The small and silent force multiplier: a swarm UAV—electronic attack”. Journal of Intelligent & Robotic Systems, 70(1), 595-608, 2013.
  • [69] Xiong, F., Li, A., Wang, H., & Tang, L. “An SDN-MQTT based communication system for battlefield UAV swarms”. IEEE Communications Magazine, 57(8), 41-47, 2019.
  • [70] Gulosh, N. J. “Employment of intelligence, surveillance, and reconnaissance drone swarms to enhance ground combat operations”. Naval Postgraduate School Monterey United States, 2018.
  • [71] Li, R., & Ma, H. “Research on UAV swarm cooperative reconnaissance and combat technology”. In 2020 3rd International Conference on Unmanned Systems (ICUS), 996-999, IEEE, November 2020.
  • [72] Ju, C., & Son, H. I. “Multiple UAV systems for agricultural applications: Control, implementation, and evaluation”. Electronics, 7(9), 162, 2018.
  • [73] Mukherjee, A., Misra, S., & Raghuwanshi, N. S. “A survey of unmanned aerial sensing solutions in precision agriculture”. Journal of Network and Computer Applications, 148, 102461, 2019.
  • [74] Thornton, S., & Gallasch, G. E. “Swarming logistics for tactical last-mile delivery”. In International Conference on Science and Innovation for Land Power Vol., 2018, September 2018.
  • [75] Kuru, K., Ansell, D., Khan, W., & Yetgin, H. “Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform”. IEEE Access, 7, 15804-15831, 2019.
  • [76] Ghamry, K. A., Kamel, M. A., & Zhang, Y. “Multiple UAVs in forest fire fighting mission using particle swarm optimization”. In 2017 International Conference On Unmanned Aircraft Systems (ICUAS), 1404-1409, IEEE, June 2017.
  • [77] Brust, M. R., & Strimbu, B. M. “A networked swarm model for UAV deployment in the assessment of forest environments”. In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 1-6, IEEE, April 2015.
  • [78] Zhi-wei, H., Jia-hong, L., Ling, C., & Bing, W. “A hierarchical architecture for formation control of multi-UAV”. Procedia Engineering, 29, 3846-3851, 2012.
  • [79] Shuttleworth, R., Golden, B. L., Smith, S., & Wasil, E. “Advances In Meter Reading: Heuristic Solution Of The Close Enough Traveling Salesman Problem Over A Street Network”. In The Vehicle Routing Problem: Latest Advances and New Challenges, 487-501, United States of America, 2008.
  • [80] Erdoğan Akbulut, H., Özçelik, F., & Saraç, T. “Fakülte seviyesinde üniversite ders çizelgeleme problemi için bir tavlama benzetimi algoritması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 17-30, 2024.
  • [81] Özden, G., & Sarıçiçek, İ. “Çapraz sevkiyatta kamyon çizelgeleme problemi için çözüm yaklaşımları”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 82-88, 2019.
  • [82] Tanyeri, B., Bayrak, Z. U., & Uçar, U. U. “The Experimental Study of Attitude Stabilization Control for Programmable Nano Quadcopter”. Journal of Aviation, 6(1), 1-11, 2022.
  • [83] Sürü İnsansız Hava Aracı (İHA) Yarışması Teknik Şartnamesi, Teknofest, 2021.
  • [84] Golmisheh, F. M., & Shamaghdari, S. (2024). Heterogeneous optimal formation control of nonlinear multi-agent systems with unknown dynamics by safe reinforcement learning. Applied Mathematics and Computation, 460, 128302.
  • [85] Du, Z., Qu, X., Shi, J., & Lu, J. (2024). Formation control of fixed-wing UAVs with communication delay. ISA Transactions, 146, 154-164.
  • [86] Peng, H., Huang, B., Jin, M., Zhu, C., & Zhuang, J. (2024). Distributed finite-time bearing-based formation control for underactuated surface vessels with Levant differentiator. ISA Transactions, 147, 239-251.
  • [87] Zhu, Y., Li, S., Guo, G., Yuan, P., & Bai, J. (2024). Formation control of UAV–USV based on distributed event-triggered adaptive MPC with virtual trajectory restriction. Ocean Engineering, 294, 116850.
  • [88] Li, X., Qin, H., Li, L., & Xue, Y. (2024). Adaptive fixed-time fuzzy formation control for multiple AUV systems considering time-varying tracking error constraints and asymmetric actuator saturation. Ocean Engineering, 297, 116936.
  • [89] Shi, J., Ye, M., Ding, L., & Xu, S. (2024). Distributed least-distance formation control for Euler–Lagrange systems: A game-based approach. Control Engineering Practice, 142, 105743.
  • [90] Rai, A., & Mou, S. (2024). Safe region multi-agent formation control with velocity tracking. Systems & Control Letters, 186, 105776.
  • [91] Fei, Y., Shi, P., Li, Y., Liu, Y., & Qu, X. (2024). Formation control of multi-agent systems with actuator saturation via neural-based sliding mode estimators. Knowledge-Based Systems, 284, 111292.
  • [92] Xi, J., Wang, C., Wang, L., Qin, M., Xia, K., & Zheng, Y. (2024). Optimal formation strategy for interconnected quadrotor drones: Theory and experiment. Aerospace Science and Technology, 144, 108771.
  • [93] Qi, X. (2024). Event-Triggered Predictive Control Algorithm for Multi-AUV Formation Modeling. Informatica, 48(9).
  • [94] Yıldız, B. (2024). İnsansız Hava Aracı (İHA) sürüsünün akıllı yol planlaması. Doktora Tezi, Konya Teknik Üniversitesi, Konya, Türkiye.
  • [95] Lee, J., Ji, D., Cho, H., Baeg, S., & Jeong, S. (2024). Fault-coping algorithm for improving leader–follower swarm-control algorithm of unmanned surface vehicles. Applied Sciences, 14(8), 3444.
  • [96] Yiğit, A., Kalaycı, A. O., & Akdemir, E. (2024, May). Autonomous TDOA localization via swarm UAV concept. In 2024 32nd Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • [97] Huang, Y., Meng, Z., & Dimarogonas, D. V. (2024). Prescribed performance formation control for second-order multi-agent systems with connectivity and collision constraints. Automatica, 160, 111412.
  • [98] Yu, K., Li, Y., Lv, M., & Tong, S. (2024). Distributed optimal formation control of multiple unmanned surface vehicles with Stackelberg differential graphical game. IEEE Transactions on Artificial Intelligence.
  • [99] Imran, I. H., Kurtulus, D. F., Memon, A. M., Goli, S., Kouser, T., & Alhems, L. M. (2024). Distributed robust formation control of heterogeneous multi-UAVs with disturbance rejection. IEEE Access.
  • [100] Bu, Y., Yan, Y., & Yang, Y. (2024). Advancement challenges in UAV swarm formation control: A comprehensive review. Drones, 8(7), 320.
  • [101] Li, M., Liu, H., Xie, F., & Huang, H. (2024). Adaptive distributed control for leader–follower formation based on a recurrent SAC algorithm. Electronics, 13(17), 3513.
  • [102] Wu, J., Luo, C., Min, G., & McClean, S. (2024). Formation control algorithms for multi-UAV systems with unstable topologies and hybrid delays. IEEE Transactions on Vehicular Technology.
  • [103] Nguyen, K., Dang, V. T., Pham, D. D., & Dao, P. N. (2024). Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. International Journal of Robust and Nonlinear Control, 34(3), 2252–2279.
  • [104] Liu, Y., Liu, J., He, Z., Li, Z., Zhang, Q., & Ding, Z. (2024). A survey of multi-agent systems on distributed formation control. Unmanned Systems, 12(05), 913–926.
  • [105] Okutan, H. E., & Baykara, M. (2024, October). OptiRoute: Operational routing algorithm for swarm robots. In 2024 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1–6). IEEE.
  • [106] Li, H., Hu, J., Zhou, Q., & Ghosh, B. K. (2024). Safe formation control of multiple unmanned aerial vehicles: Control design and safety-stability analysis. Control Theory and Technology, 1–13.
  • [107] Wang, D., Ge, S. S., Liang, X., & Li, D. (2024). Time-synchronized formation control of unmanned surface vehicles. IEEE Transactions on Intelligent Vehicles.

A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application

Yıl 2025, Cilt: 31 Sayı: 7

Öz

In this article, Swarm UAV Formation Control Problem which is Homogeneous, Time-Window, Central Control Architecture, Uncertain, Dynamic Structure, and Leaderless (HTUDL-S-UAV) are obtained. For the solution of the problem, a new solution algorithm with generic and dynamic properties based on the annealing simulation algorithm is developed. The formation control architecture is determined as 5 layers and a new geometric approach to unit circle systematics has been developed to create formations. Tra-Coll and CCA algorithms are proposed in the literature for tracking the trajectories of UAVs and preventing collisions. The application study is carried out on 9 different formations (Triangle, Square, Pentagon, V Shape, Crescent, Star, Rhombus Formation with 4 and 8, Line) and 7 different missions (Swarm Navigation Mission, Formation-Switching Mission, The mission to Remove UAV from the Swarm, The mission of adding UAV to the Swarm, Swarm Rotation Mission, Swarm Division/Unification Mission, Trajectory Tracking Mission as a Swarm) using Crazfly 2.0 drones in a ROS simulation program and on the real system. The proposed solution approach carried out all of these tasks in line with the specific conditions of the mission and achieved 3rd place in the Teknofest-2021 Swarm UAV Competition in Turkey. Furthermore, thanks to the study, it is aimed to create a decision support system for the optimal success of strategic and critically important Swarm UAV missions and other fleet autonomous systems.

Kaynakça

  • [1] He, L., Bai, P., Liang, X., Zhang, J., and Wang, W. “Feedback formation control of UAV swarm with multiple implicit leaders”. Aerospace Science and Technology, 72, 327-334, 2018.
  • [2] Oh, K. K., Park, M. C., and Ahn, H. S. “A survey of multi-agent formation control”. Automatica, 53, 424-440, 2015.
  • [3] Couceiro, M. S., Vargas, P. A., Rocha, R. P., and Ferreira, N. M. “Benchmark of swarm robotics distributed techniques in a search task”. Robotics and Autonomous Systems, 62(2), 200-213, 2014.
  • [4] Olfati-Saber, R. “Flocking for multi-agent dynamic systems: Algorithms and theory”. IEEE Transactions on Automatic Control, 51(3), 401-420, 2006.
  • [5] Toksöz, M. A., Oğuz, S., and Gazi, V. “Decentralized formation control of a swarm of quadrotor helicopters”. In 2019 IEEE 15th International Conference on Control and Automation (ICCA), 1006-1013, IEEE, July 2019.
  • [6] Turpin, M., Michael, N., and Kumar, V. “Concurrent assignment and planning of trajectories for large teams of interchangeable robots”. In 2013 IEEE International Conference on Robotics and Automation, 842-848, IEEE, May 2013.
  • [7] Olfati-Saber, R., Fax, J. A., and Murray, R. M. “Consensus and cooperation in networked multi-agent systems”. Proceedings of the IEEE, 95(1), 215-233, 2007.
  • [8] You, D. I., and Shim, D. H. “Autonomous formation flight test of multi-micro aerial vehicles”. Journal of Intelligent & Robotic Systems, 61(1), 321-337, 2011.
  • [9] Zhi-wei, H., Jia-hong, L., Ling, C., and Bing, W. “A hierarchical architecture for formation control of multi-UAV”. Procedia Engineering, 29, 3846-3851, 2012.
  • [10] Li, S., Shao, X., Zhang, W., and Zhang, Q. “Distributed multicircular circumnavigation control for UAVs with desired angular spacing”. Defence Technology, 2023.
  • [11] Wang, J., Wu, Y. X., Chen, Y. Q., and Ju, S. “Multi-UAVs collaborative tracking of moving target with maximized visibility in urban environment”. Journal of the Franklin Institute, 359(11), 5512-5532, 2022.
  • [12] Chai, S., Yang, Z., Huang, J., Li, X., Zhao, Y., and Zhou, D. “Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios”. Defence Technology, 2023.
  • [13] Sürü İHA Sistemleri Modern Harp İçin Bir Gelecek Öngörüsü, Araştırma Raporu Şubat 2019. https://thinktech.stm.com.tr/uploads/docs/1608905682_stm-suru-iha-sistemleri.pdf ? Accessed: 02.02.2022
  • [14] Rout, R., and Subudhi, B. “A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader–follower strategy”. Journal of Marine Engineering & Technology, 15(1), 38-46, 2016.
  • [15] Wang, J., Wang, C., Wei, Y., and Zhang, C. “Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy”. Applied Ocean Research, 94, 101971, 2020.
  • [16] Gao, Z., and Guo, G. “Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications”. IEEE Access, 6, 27902-27911, 2018.
  • [17] Ghamry, K. A., and Zhang, Y. “Formation control of multiple quadrotors based on leader-follower method”. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 1037-1042, IEEE, June 2015.
  • [18] Han, Z., Guo, K., Xie, L., and Lin, Z. “Integrated relative localization and leader–follower formation control”. IEEE Transactions on Automatic Control, 64(1), 20-34, 2018.
  • [19] Raghuwaiya, K., Sharma, B., and Vanualailai, J. “Leader-follower based locally rigid formation control”. Journal of Advanced Transportation, 2018.
  • [20] Tong, W. U., Jie, W. A. N. G., and Bailing, T. I. A. N. “Periodic event-triggered formation control for multi-UAV systems with collision avoidance”. Chinese Journal of Aeronautics, 35(8), 193-203, 2022.
  • [21] Ullah, N., Mehmood, Y., Aslam, J., Shaoping, W. A. N. G., and Phoungthong, K. “Fractional order adaptive robust formation control of multiple quad-rotor UAVs with parametric uncertainties and wind disturbances”. Chinese Journal of Aeronautics, 35(8), 204-220, 2022.
  • [22] Dai, J., Hu, Q., Liu, X., Zhang, Y., and Zhu, J. “Cluster head selection method of multiple UAVs under COVID-19 situation”. Computer Communications, 196, 141-147, 2022.
  • [23] Cheng, W., Jiang, B., Zhang, K., and Ding, S. X. “Robust finite-time cooperative formation control of UGV-UAV with model uncertainties and actuator faults”. Journal of the Franklin Institute, 358(17), 8811-8837, 2021.
  • [24] Liu, H., Meng, Q., Peng, F., and Lewis, F. L. “Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning”. Neurocomputing, 412, 63-71, 2020.
  • [25] Xie, Y., Han, L., Dong, X., Li, Q., and Ren, Z. “Bioinspired adaptive formation tracking control for swarm systems with application to UAV swarm systems”. Neurocomputing, 453, 272-285, 2021.
  • [26] Jiaqi, S., Li, T., Hongtao, Z., Xiaofeng, L., and Tianying, X. “Adaptive multi-UAV path planning method based on improved gray wolf algorithm”. Computers and Electrical Engineering, 104, 108377, 2022.
  • [27] Hartley, J., Shum, H. P., Ho, E. S., Wang, H., & Ramamoorthy, S. “Formation control for UAVs using a Flux Guided approach”. Expert Systems with Applications, 205, 117665, 2022.
  • [28] Li, J., Liu, J., Huangfu, S., Cao, G., & Yu, D. “Leader-follower formation of light-weight UAVs with novel active disturbance rejection control”. Applied Mathematical Modelling, 117, 577-591, 2023.
  • [29] Do, H. T., Hua, H. T., Nguyen, M. T., Nguyen, C. V., Nguyen, H. T., Nguyen, H. T., & Nguyen, N. T. “Formation control algorithms for multiple UAVs: a comprehensive survey”. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 8(27), e3-e3, 2021.
  • [30] Zheng, X., Zong, C., Cheng, J., Xu, J., Xin, S., Tu, C., ... and Wang, W. “Visually smooth multi-UAV formation transformation”. Graphical Models, 116, 101111, 2021.
  • [31] Hartley, J., Shum, H. P., Ho, E. S., Wang, H., & Ramamoorthy, S. “Formation control for UAVs using a Flux Guided approach”. Expert Systems with Applications, 205, 117665, 2022.
  • [32] Qiang, F. E. N. G., Xingshuo, H. A. I., Bo, S. U. N., Yi, R. E. N., Zili, W. A. N. G., Dezhen, Y. A. N. G., ... and Ronggen, F. E. N. G. “Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization”. Chinese Journal of Aeronautics, 35(1), 110-123, 2022.
  • [33] Yan, Z., Han, L., Li, X., Dong, X., Li, Q., and Ren, Z. “Event-Triggered formation control for time-delayed discrete-Time multi-Agent system applied to multi-UAV formation flying”. Journal of the Franklin Institute, 360(5), 3677-3699, 2023.
  • [34] Wu, Y., Gou, J., Ji, H., & Deng, J. “Hierarchical mission replanning for multiple UAV formations performing tasks in dynamic situation”. Computer Communications, 2023.
  • [35] Zear, A., Ranga, V., and Bhushan, K. “Coordinated network partition detection and bi-connected inter-partition topology creation in damaged sensor networks using multiple UAVs”. Computer Communications, 203, 15-29, 2023.
  • [36] Dou, L., Cai, S., Zhang, X., Su, X., and Zhang, R. “Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV”. Journal of the Franklin Institute, 359(8), 3671-3691, 2022.
  • [37] Zhao, T., Yu, X., Liu, P., and Liu, L. “Ultraviolet anticollision and localization algorithm in UAV formation network”. Optik, 192, 162919, 2019.
  • [38] Trujillo, M. A., Becerra, H. M., Gómez-Gutiérrez, D., Ruiz-León, J., and Ramírez-Treviño, A. “Hierarchical task-based formation control and collision avoidance of UAVs in finite time”. European Journal of Control, 60, 48-64, 2021.
  • [39] Alam, M. M., & Moh, S. “Joint topology control and routing in a UAV swarm for crowd surveillance”. Journal of Network and Computer Applications, 204, 103427, 2022.
  • [40] Huang, J., and Sun, W. “A method of feasible trajectory planning for UAV formation based on bidirectional fast search tree”. Optik, 221, 165213, 2020.
  • [41] Xu, J., Deng, Z., Ren, X., Xu, L., and Liu, D. “Invulnerability optimization of UAV formation based on super wires adding strategy”. Chaos, Solitons & Fractals, 140, 110185, 2020.
  • [42] Li, Y., Xu, Y., Xue, X., Liu, X., & Liu, X. “Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution”. Biosystems Engineering, 214, 177-192, 2022.
  • [43] Jiaqi, S., Li, T., Hongtao, Z., Xiaofeng, L., & Tianying, X. “Adaptive multi-UAV path planning method based on improved gray wolf algorithm”. Computers and Electrical Engineering, 104, 108377, 2022.
  • [44] Pang, B., Low, K. H., & Lv, C. “Adaptive conflict resolution for multi-UAV 4D routes optimization using stochastic fractal search algorithm”. Transportation Research Part C: Emerging Technologies, 139, 103666, 2022.
  • [45] Do, H. T., Hua, H. T., Nguyen, M. T., Nguyen, C. V., Nguyen, H. T., Nguyen, H. T., & Nguyen, N. T. “Formation control algorithms for multiple-UAVs: a comprehensive survey”. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 8(27), e3-e3, 2021.
  • [46] Wu, X., Yang, Z., Huo, J., & Zhang, J. “UAV formation control based on consistency”. In 2015 7th International Conference on Modelling, Identification and Control (ICMIC), 1-5, IEEE, December 2015.
  • [47] Dong, X., Yu, B., Shi, Z., & Zhong, Y. “Time-varying formation control for unmanned aerial vehicles: Theories and applications”. IEEE Transactions on Control Systems Technology, 23(1), 340-348, 2014.
  • [48] Liang, Y., Dong, Q., & Zhao, Y. “Adaptive leader–follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances”. Chinese Journal of Aeronautics, 33(11), 2972-2988, 2020.
  • [49] Guo, K., Li, X., & Xie, L. “Simultaneous cooperative relative localization and distributed formation control for multiple UAVs”. Science China Information Sciences, 63(1), 1-3, 2020.
  • [50] Fu, X., Pan, J., Wang, H., & Gao, X. “A formation maintenance and reconstruction method of UAV swarm based on distributed control”. Aerospace Science and Technology, 104, 105981, 2020.
  • [51] Yu, B., Dong, X., Shi, Z., & Zhong, Y. “Formation control for quadrotor swarm systems: Algorithms and experiments”. In Proceedings of the 32nd Chinese Control Conference, 7099-7104, IEEE, July 2013.
  • [52] Speck, C., & Bucci, D. J. “Distributed UAV swarm formation control via object-focused, multiobjective SARSA”. In 2018 Annual American Control Conference (ACC), 6596-6601, IEEE, June 2018.
  • [53] Zhu, C., Liang, X., He, L., & Liu, L. “Demonstration and verification system for UAV formation control”. In 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 56-60, IEEE, August 2017.
  • [54] Ali, Z. A., Han, Z., & Masood, R. J. “Collective motion and self-organization of a swarm of UAVs: A cluster-based architecture”. Sensors, 21(11), 3820, 2021.
  • [55] Yang, F., Wang, P., Zhang, Y., Zheng, L., & Lu, J. “Survey of swarm intelligence optimization algorithms”. In 2017 IEEE International Conference on Unmanned Systems (ICUS), 544-549, IEEE, October 2017.
  • [56] Fu, X., Pan, J., Wang, H., & Gao, X. “A formation maintenance and reconstruction method of UAV swarm based on distributed control”. Aerospace Science and Technology, 104, 105981, 2020.
  • [57] Wu, Y., Gou, J., Hu, X., & Huang, Y. “A new consensus theory-based method for formation control and obstacle avoidance of UAVs”. Aerospace Science and Technology, 107, 106332, 2020.
  • [58] Wang, J., Han, L., Dong, X., Li, Q., & Ren, Z. “Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader”. Aerospace Science and Technology, 111, 106549, 2021.
  • [59] Li, S., & Fang, X. “A modified adaptive formation of UAV swarm by pigeon flock behavior within local visual field”. Aerospace Science and Technology, 114, 106736, 2021.
  • [60] Liu, B., Li, A., Guo, Y., & Wang, C. “Adaptive distributed finite-time formation control for multi-UAVs under input saturation without collisions”. Aerospace Science and Technology, 120, 107252, 2022.
  • [61] Shen, J., Wang, S., & Zhan, X. “Multi-UAV cluster-based cooperative navigation with fault detection and exclusion capability”. Aerospace Science and Technology, 124, 107570, 2022.
  • [62] Chen, L., & Duan, H. “Collision-free formation-containment control for a group of UAVs with unknown disturbances”. Aerospace Science and Technology, 126, 107618, 2022.
  • [63] Shen, Y., & Wei, C. “Multi-UAV flocking control with individual properties inspired by bird behavior”. Aerospace Science and Technology, 130, 107882, 2022.
  • [64] An, B., Wang, B., Fan, H., Liu, L., Hu, H., & Wang, Y. “Fully distributed prescribed performance formation control for UAVs with unknown maneuver of leader”. Aerospace Science and Technology, 130, 107886, 2022.
  • [65] Shao, X., Liu, H., Zhang, W., Zhao, J., & Zhang, Q. “Path driven formation-containment control of multiple UAVs: A path-following framework”. Aerospace Science and Technology, 135, 108168, 2023.
  • [66] Yu, B., Dong, X., Shi, Z., & Zhong, Y. “Formation control for quadrotor swarm systems: Algorithms and experiments”. In Proceedings of the 32nd Chinese Control Conference, 7099-7104, IEEE, July 2013.
  • [67] Xiaoning, Z. “Analysis of military application of UAV swarm technology”. In 2020 3rd International Conference on Unmanned Systems (ICUS), 1200-1204, IEEE, November 2020.
  • [68] Cevik, P., Kocaman, I., Akgul, A. S., & Akca, B. “The small and silent force multiplier: a swarm UAV—electronic attack”. Journal of Intelligent & Robotic Systems, 70(1), 595-608, 2013.
  • [69] Xiong, F., Li, A., Wang, H., & Tang, L. “An SDN-MQTT based communication system for battlefield UAV swarms”. IEEE Communications Magazine, 57(8), 41-47, 2019.
  • [70] Gulosh, N. J. “Employment of intelligence, surveillance, and reconnaissance drone swarms to enhance ground combat operations”. Naval Postgraduate School Monterey United States, 2018.
  • [71] Li, R., & Ma, H. “Research on UAV swarm cooperative reconnaissance and combat technology”. In 2020 3rd International Conference on Unmanned Systems (ICUS), 996-999, IEEE, November 2020.
  • [72] Ju, C., & Son, H. I. “Multiple UAV systems for agricultural applications: Control, implementation, and evaluation”. Electronics, 7(9), 162, 2018.
  • [73] Mukherjee, A., Misra, S., & Raghuwanshi, N. S. “A survey of unmanned aerial sensing solutions in precision agriculture”. Journal of Network and Computer Applications, 148, 102461, 2019.
  • [74] Thornton, S., & Gallasch, G. E. “Swarming logistics for tactical last-mile delivery”. In International Conference on Science and Innovation for Land Power Vol., 2018, September 2018.
  • [75] Kuru, K., Ansell, D., Khan, W., & Yetgin, H. “Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform”. IEEE Access, 7, 15804-15831, 2019.
  • [76] Ghamry, K. A., Kamel, M. A., & Zhang, Y. “Multiple UAVs in forest fire fighting mission using particle swarm optimization”. In 2017 International Conference On Unmanned Aircraft Systems (ICUAS), 1404-1409, IEEE, June 2017.
  • [77] Brust, M. R., & Strimbu, B. M. “A networked swarm model for UAV deployment in the assessment of forest environments”. In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 1-6, IEEE, April 2015.
  • [78] Zhi-wei, H., Jia-hong, L., Ling, C., & Bing, W. “A hierarchical architecture for formation control of multi-UAV”. Procedia Engineering, 29, 3846-3851, 2012.
  • [79] Shuttleworth, R., Golden, B. L., Smith, S., & Wasil, E. “Advances In Meter Reading: Heuristic Solution Of The Close Enough Traveling Salesman Problem Over A Street Network”. In The Vehicle Routing Problem: Latest Advances and New Challenges, 487-501, United States of America, 2008.
  • [80] Erdoğan Akbulut, H., Özçelik, F., & Saraç, T. “Fakülte seviyesinde üniversite ders çizelgeleme problemi için bir tavlama benzetimi algoritması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 17-30, 2024.
  • [81] Özden, G., & Sarıçiçek, İ. “Çapraz sevkiyatta kamyon çizelgeleme problemi için çözüm yaklaşımları”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 82-88, 2019.
  • [82] Tanyeri, B., Bayrak, Z. U., & Uçar, U. U. “The Experimental Study of Attitude Stabilization Control for Programmable Nano Quadcopter”. Journal of Aviation, 6(1), 1-11, 2022.
  • [83] Sürü İnsansız Hava Aracı (İHA) Yarışması Teknik Şartnamesi, Teknofest, 2021.
  • [84] Golmisheh, F. M., & Shamaghdari, S. (2024). Heterogeneous optimal formation control of nonlinear multi-agent systems with unknown dynamics by safe reinforcement learning. Applied Mathematics and Computation, 460, 128302.
  • [85] Du, Z., Qu, X., Shi, J., & Lu, J. (2024). Formation control of fixed-wing UAVs with communication delay. ISA Transactions, 146, 154-164.
  • [86] Peng, H., Huang, B., Jin, M., Zhu, C., & Zhuang, J. (2024). Distributed finite-time bearing-based formation control for underactuated surface vessels with Levant differentiator. ISA Transactions, 147, 239-251.
  • [87] Zhu, Y., Li, S., Guo, G., Yuan, P., & Bai, J. (2024). Formation control of UAV–USV based on distributed event-triggered adaptive MPC with virtual trajectory restriction. Ocean Engineering, 294, 116850.
  • [88] Li, X., Qin, H., Li, L., & Xue, Y. (2024). Adaptive fixed-time fuzzy formation control for multiple AUV systems considering time-varying tracking error constraints and asymmetric actuator saturation. Ocean Engineering, 297, 116936.
  • [89] Shi, J., Ye, M., Ding, L., & Xu, S. (2024). Distributed least-distance formation control for Euler–Lagrange systems: A game-based approach. Control Engineering Practice, 142, 105743.
  • [90] Rai, A., & Mou, S. (2024). Safe region multi-agent formation control with velocity tracking. Systems & Control Letters, 186, 105776.
  • [91] Fei, Y., Shi, P., Li, Y., Liu, Y., & Qu, X. (2024). Formation control of multi-agent systems with actuator saturation via neural-based sliding mode estimators. Knowledge-Based Systems, 284, 111292.
  • [92] Xi, J., Wang, C., Wang, L., Qin, M., Xia, K., & Zheng, Y. (2024). Optimal formation strategy for interconnected quadrotor drones: Theory and experiment. Aerospace Science and Technology, 144, 108771.
  • [93] Qi, X. (2024). Event-Triggered Predictive Control Algorithm for Multi-AUV Formation Modeling. Informatica, 48(9).
  • [94] Yıldız, B. (2024). İnsansız Hava Aracı (İHA) sürüsünün akıllı yol planlaması. Doktora Tezi, Konya Teknik Üniversitesi, Konya, Türkiye.
  • [95] Lee, J., Ji, D., Cho, H., Baeg, S., & Jeong, S. (2024). Fault-coping algorithm for improving leader–follower swarm-control algorithm of unmanned surface vehicles. Applied Sciences, 14(8), 3444.
  • [96] Yiğit, A., Kalaycı, A. O., & Akdemir, E. (2024, May). Autonomous TDOA localization via swarm UAV concept. In 2024 32nd Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • [97] Huang, Y., Meng, Z., & Dimarogonas, D. V. (2024). Prescribed performance formation control for second-order multi-agent systems with connectivity and collision constraints. Automatica, 160, 111412.
  • [98] Yu, K., Li, Y., Lv, M., & Tong, S. (2024). Distributed optimal formation control of multiple unmanned surface vehicles with Stackelberg differential graphical game. IEEE Transactions on Artificial Intelligence.
  • [99] Imran, I. H., Kurtulus, D. F., Memon, A. M., Goli, S., Kouser, T., & Alhems, L. M. (2024). Distributed robust formation control of heterogeneous multi-UAVs with disturbance rejection. IEEE Access.
  • [100] Bu, Y., Yan, Y., & Yang, Y. (2024). Advancement challenges in UAV swarm formation control: A comprehensive review. Drones, 8(7), 320.
  • [101] Li, M., Liu, H., Xie, F., & Huang, H. (2024). Adaptive distributed control for leader–follower formation based on a recurrent SAC algorithm. Electronics, 13(17), 3513.
  • [102] Wu, J., Luo, C., Min, G., & McClean, S. (2024). Formation control algorithms for multi-UAV systems with unstable topologies and hybrid delays. IEEE Transactions on Vehicular Technology.
  • [103] Nguyen, K., Dang, V. T., Pham, D. D., & Dao, P. N. (2024). Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. International Journal of Robust and Nonlinear Control, 34(3), 2252–2279.
  • [104] Liu, Y., Liu, J., He, Z., Li, Z., Zhang, Q., & Ding, Z. (2024). A survey of multi-agent systems on distributed formation control. Unmanned Systems, 12(05), 913–926.
  • [105] Okutan, H. E., & Baykara, M. (2024, October). OptiRoute: Operational routing algorithm for swarm robots. In 2024 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1–6). IEEE.
  • [106] Li, H., Hu, J., Zhou, Q., & Ghosh, B. K. (2024). Safe formation control of multiple unmanned aerial vehicles: Control design and safety-stability analysis. Control Theory and Technology, 1–13.
  • [107] Wang, D., Ge, S. S., Liang, X., & Li, D. (2024). Time-synchronized formation control of unmanned surface vehicles. IEEE Transactions on Intelligent Vehicles.
Toplam 107 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ukbe Usame Uçar

Burak Tanyeri

Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 11 Kasım 2025
Gönderilme Tarihi 12 Ağustos 2024
Kabul Tarihi 24 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 7

Kaynak Göster

APA Uçar, U. U., & Tanyeri, B. (2025). A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.09552
AMA Uçar UU, Tanyeri B. A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(7). doi:10.5505/pajes.2025.09552
Chicago Uçar, Ukbe Usame, ve Burak Tanyeri. “A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 7 (Kasım 2025). https://doi.org/10.5505/pajes.2025.09552.
EndNote Uçar UU, Tanyeri B (01 Kasım 2025) A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE U. U. Uçar ve B. Tanyeri, “A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi: 10.5505/pajes.2025.09552.
ISNAD Uçar, Ukbe Usame - Tanyeri, Burak. “A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (Kasım2025). https://doi.org/10.5505/pajes.2025.09552.
JAMA Uçar UU, Tanyeri B. A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.09552.
MLA Uçar, Ukbe Usame ve Burak Tanyeri. “A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 7, 2025, doi:10.5505/pajes.2025.09552.
Vancouver Uçar UU, Tanyeri B. A novel solution approach for optimization of swarm UAV formation control problem under uncertain and dynamic constraints: Crazyfly 2.0 application. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.