Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

HEC-1B hücrelerinde glabridinin hücre proliferasyonu ve uzun kodlamayan RNA ekspresyonu üzerindeki etkileri

Yıl 2023, Cilt 16, Sayı 1, 59 - 65, 31.01.2023
https://doi.org/10.31362/patd.1172097

Öz

Amaç: Endometrium kanseri dünyada en sık görülen jinekolojik kanserlerden biridir. Glabridin, Glycyrrhiza glabra (meyan kökü) kökündeki ana izoflavonoidlerden biridir. Glabridin anti-proliferatif ve anti-inflamatuar gibi çeşitli farmakolojik etkilere sahiptir. Uzun kodlamayan RNA'lar (LncRNAs) çeşitli hücresel mekanizmalarda rol oynar ve bunların değişen ekspresyonu, tümör gelişimine ve ilerlemesine katkıda bulunabilir. Bu çalışmada, glabridinin LncRNAs gen ekspresyonlarına etkileri ve HEC-1B insan endometriyal kanser hücre hattının canlılığı üzerindeki etkileri araştırılmıştır.

Gereç ve yöntem: Glabridin HEC-1B hücrelerine 1 uM, 10 uM, 20 uM, 40 uM, 60 uM ve 80 uM konsantrasyonlarda uygulandı. Glabridin'in HEC-1B hücre canlılığı üzerindeki etkisi MTS testi kullanılarak değerlendirildi. Çalışmamızda araştırdığımız LncRNAs olan H19, RNU43, LNC-MYC-3:1 ve ABCC5-AS1:1 ekspresyon profilleri Real time-PCR ile yöntemi ile belirlendi.

Bulgular: Glabridin, zamana ve doza bağlı bir şekilde HEC-1B hücrelerinin canlılığını azalttı. Glabridinin HEC-1B hücrelerinde maksimum yarı inhibisyon konsantrasyon (IC50) dozu 24. ve 48. saatlerde sırasıyla 21.32 μM ve 13.5 μM olarak tespit edildi. Glabridin'in LNC-MYC-3:1 ve ABCC5-AS1:1 ekspresyonunu arttırırken H19 ve RNU43 ekspresyonunda önemli bir azalmaya neden olduğu tespit edilmiştir. Sonuç: Glabridin muhtemelen LncRNAs ekspresyonlarını düzenleyerek HEC-1B kanser hücrelerinin ölümünü sağlamıştır. Sonuç olarak, glabridin insan endometriyal kanserine karşı ileride kullanılabilecek etkili bir terapötik ajan olarak önemli bir potansiyel taşımaktadır.

Kaynakça

  • Referans1. McAlpine JN, Temkin SM, Mackay HJ. Endometrial cancer: Not your grandmother’s cancer. Cancer. 2016;122(18):2787-2798. doi:10.1002/cncr.30094
  • Referans2. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. In: Lancet. Vol 366. Elsevier B.V.; 2005:491-505. doi:10.1016/S0140-6736(05)67063-8
  • Referans3. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat rev Cancer. 2003;3(6):453-458. doi:10.1111/j.1937-5956.1995.tb00040.x
  • Referans4. Chen J, Liu S, Hu X. Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov. 2018;4(1):1-11. doi:10.1038/s41420-018-0051-8
  • Referans5. Zhang T, Hu H, Yan G, et al. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat. 2019;18. doi:10.1177/1533033819843889
  • Referans6. Ren J, Ding L, Zhang D, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932-3948. doi:10.7150/thno.25541
  • Referans7. Aoki F, Nakagawa K, Tanaka A, Matsuzaki K, Arai N, Mae T. Determination of glabridin in human plasma by solid-phase extraction and LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2005;828(1-2):70-74. doi:10.1016/j.jchromb.2005.09.012
  • Referans8. Tamuotsu S, Kinoshita T, Shibata S. New Isoflavan and Flavanone from Licorice Root. Chem Pharm Bull. 1976;24.
  • Referans9. Tian M, Yan H, Row KH. Simultaneous extraction and separation of liquiritin, glycyrrhizic acid, and glabridin from licorice root with analytical and preparative chromatography. Biotechnol Bioprocess Eng. 2008;13(6):671-676. doi:10.1007/s12257-008-0019-2
  • Referans10. Yokota T, Nishio H, Kubota Y, Mizoguchi M. The Inhibitory Effect of Glabridin from Licorice Extracts on Melanogenesis and Inflammation. Pigment Cell Res. 1998;11(6):355-361. doi:10.1111/j.1600-0749.1998.tb00494.x
  • Referans11. Dogan MF, Parlar A, Cam SA, Tosun EM, Uysal F, Arslan SO. Glabridin attenuates airway inflammation and hyperresponsiveness in a mice model of ovalbumin-induced asthma. Pulm Pharmacol Ther. 2020;63(July):101936. doi:10.1016/j.pupt.2020.101936
  • Referans12. Hsieh MJ, Chen MK, Chen CJ, et al. Glabridin induces apoptosis and autophagy through JNK1/2 pathway in human hepatoma cells. Phytomedicine. 2016;23(4):359-366. doi:10.1016/j.phymed.2016.01.005
  • Referans13. Hsu YL, Wu LY, Hou MF, et al. Glabridin, an isoflavan from licorice root, inhibits migration, invasion and angiogenesis of MDA-MB-231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway. Mol Nutr Food Res. 2011;55(2):318-327. doi:10.1002/mnfr.201000148
  • Referans14. Di Tucci C, Capone C, Galati G, et al. Immunotherapy in endometrial cancer: New scenarios on the horizon. J Gynecol Oncol. 2019;30(3). doi:10.3802/jgo.2019.30.e46
  • ReferansReferans15. Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer. Biomed Pharmacother. 2019;119. doi:10.1016/j.biopha.2019.109396
  • Referans16. Younger ST, Rinn JL. ’Lnc’-ing enhancers to MYC regulation. Cell Res. 2014;24(6):643. doi:10.1038/CR.2014.54
  • Referans17. Chen H, Chen L. An integrated analysis of the competing endogenous RNA network and co-expression network revealed seven hub long non-coding RNAs in osteoarthritis. Bone Jt Res. 2020;9(3):90-98. doi:10.1302/2046-3758.93.BJR-2019-0140.R2
  • Referans18. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-1261. doi:10.1038/nm.3981
  • Referans19. Dykes IM, Emanueli C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics, Proteomics Bioinforma. 2017;15(3):177-186. doi:10.1016/j.gpb.2016.12.005
  • Referans20. Jiang F, Li Y, Mu J, et al. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Mol Carcinog. 2016;55(5):929-940. doi:10.1002/mc.22333
  • Referans21. Wang Z, Luo S, Wan Z, et al. Glabridin arrests cell cycle and inhibits proliferation of hepatocellular carcinoma by suppressing braf/MEK signaling pathway. Tumor Biol. 2016;37(5):5837-5846. doi:10.1007/s13277-015-4177-5
  • Referans22. Thin KZ, Tu JC, Raveendran S. Long non-coding SNHG1 in cancer. Clin Chim Acta. 2019;494:38-47. doi:10.1016/j.cca.2019.03.002
  • Referans23. Zhao L, Li Z, Chen W, et al. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett. 2017;13(1):363-369. doi:10.3892/ol.2016.5389
  • Referans24. Zhang Y, Huang W, Yuan Y, et al. Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1. J Exp Clin Cancer Res. 2020;39(1). doi:10.1186/s13046-020-01619-6
  • Referans25. Gee HE, Buffa FM, Camps C, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104(7):1168-1177. doi:10.1038/sj.bjc.6606076
  • Referans26. Huang W, Chen K, Lu Y, et al. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia (United States). 2021;23(12):1227-1239. doi:10.1016/j.neo.2021.11.002
  • Referans27. Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17(22):7105-7115. doi:10.1158/1078-0432.CCR-11-0071
  • Referans28. Zhang Z, Feng L, Liu P, Duan W. ANRIL promotes chemoresistance via disturbing expression of ABCC1 by regulating the expression of Let-7a in colorectal cancer. Biosci Rep. 2018;38(6):20180620. doi:10.1042/BSR20180620
  • Referans29. Niemas-Teshiba R, Matsuno R, Wang LL, et al. MYC-family protein overexpression and prominent nucleolar formation represent prognostic indicators and potential therapeutic targets for aggressive high-MKI neuroblastomas: A report from the children’s oncology group. Oncotarget. 2018;9(5):6416-6432. doi:10.18632/oncotarget.23740
  • Referans30. Poh MSW, Yong PVC, Viseswaran N, Chia YY. Estrogenicity of glabridin in Ishikawa cells. PLoS One. 2015;10(3):1-12. doi:10.1371/journal.pone.0121382

Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells

Yıl 2023, Cilt 16, Sayı 1, 59 - 65, 31.01.2023
https://doi.org/10.31362/patd.1172097

Öz

Purpose: Endometrial cancer is one of the most common gynecological cancers in the world. Glabridin is a main isoflavone in Glycyrrhiza glabra (licorice) root. It has several therapeutic effects such as anti-proliferative and anti-inflammatory. Long non-coding RNAs (LncRNAs) play a role in a variety of cellular processes, and their abnormal expression may contribute to tumor development and progression. In this study, the effects of glabridin on LncRNAs gene expression and viability of HEC-1B human endometrial cancer cell lines have been investigated. Materials and methods: Glabridin was applied to HEC-1B cells in concentrations of 1 μM, 10 μM, 20 μM, 40 μM, 60 μM, and 80 μM. Glabridin's effect on HEC-1B cell proliferation was also evaluated using MTS assay. Expression profiles of LncRNAs such as H19, RNU43, LNC-MYC-3:1 and ABCC5-AS1:1 were determined by real-time PCR. Results: Glabridin reduced the viability of HEC-1B cells in a time- and dose-dependent manner. The half maximal inhibitory concentration (IC50) dose in HEC-1B cells was detected to be 21.32 μM and 13.5 μM at the 24th and 48 hours, respectively. Glabridin has been observed to cause a significant decrease in the expression of H19 and RNU43 while increasing in the expression of LNC-MYC-3:1 and ABCC5-AS1:1. Conclusion: Glabridin could induce HEC-1B cell death by regulating LncRNAs expression. As a result, glabridin is a potential candidate for a more effective therapeutic agent against human endometrial cancer.

Kaynakça

  • Referans1. McAlpine JN, Temkin SM, Mackay HJ. Endometrial cancer: Not your grandmother’s cancer. Cancer. 2016;122(18):2787-2798. doi:10.1002/cncr.30094
  • Referans2. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. In: Lancet. Vol 366. Elsevier B.V.; 2005:491-505. doi:10.1016/S0140-6736(05)67063-8
  • Referans3. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat rev Cancer. 2003;3(6):453-458. doi:10.1111/j.1937-5956.1995.tb00040.x
  • Referans4. Chen J, Liu S, Hu X. Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov. 2018;4(1):1-11. doi:10.1038/s41420-018-0051-8
  • Referans5. Zhang T, Hu H, Yan G, et al. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat. 2019;18. doi:10.1177/1533033819843889
  • Referans6. Ren J, Ding L, Zhang D, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932-3948. doi:10.7150/thno.25541
  • Referans7. Aoki F, Nakagawa K, Tanaka A, Matsuzaki K, Arai N, Mae T. Determination of glabridin in human plasma by solid-phase extraction and LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2005;828(1-2):70-74. doi:10.1016/j.jchromb.2005.09.012
  • Referans8. Tamuotsu S, Kinoshita T, Shibata S. New Isoflavan and Flavanone from Licorice Root. Chem Pharm Bull. 1976;24.
  • Referans9. Tian M, Yan H, Row KH. Simultaneous extraction and separation of liquiritin, glycyrrhizic acid, and glabridin from licorice root with analytical and preparative chromatography. Biotechnol Bioprocess Eng. 2008;13(6):671-676. doi:10.1007/s12257-008-0019-2
  • Referans10. Yokota T, Nishio H, Kubota Y, Mizoguchi M. The Inhibitory Effect of Glabridin from Licorice Extracts on Melanogenesis and Inflammation. Pigment Cell Res. 1998;11(6):355-361. doi:10.1111/j.1600-0749.1998.tb00494.x
  • Referans11. Dogan MF, Parlar A, Cam SA, Tosun EM, Uysal F, Arslan SO. Glabridin attenuates airway inflammation and hyperresponsiveness in a mice model of ovalbumin-induced asthma. Pulm Pharmacol Ther. 2020;63(July):101936. doi:10.1016/j.pupt.2020.101936
  • Referans12. Hsieh MJ, Chen MK, Chen CJ, et al. Glabridin induces apoptosis and autophagy through JNK1/2 pathway in human hepatoma cells. Phytomedicine. 2016;23(4):359-366. doi:10.1016/j.phymed.2016.01.005
  • Referans13. Hsu YL, Wu LY, Hou MF, et al. Glabridin, an isoflavan from licorice root, inhibits migration, invasion and angiogenesis of MDA-MB-231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway. Mol Nutr Food Res. 2011;55(2):318-327. doi:10.1002/mnfr.201000148
  • Referans14. Di Tucci C, Capone C, Galati G, et al. Immunotherapy in endometrial cancer: New scenarios on the horizon. J Gynecol Oncol. 2019;30(3). doi:10.3802/jgo.2019.30.e46
  • ReferansReferans15. Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer. Biomed Pharmacother. 2019;119. doi:10.1016/j.biopha.2019.109396
  • Referans16. Younger ST, Rinn JL. ’Lnc’-ing enhancers to MYC regulation. Cell Res. 2014;24(6):643. doi:10.1038/CR.2014.54
  • Referans17. Chen H, Chen L. An integrated analysis of the competing endogenous RNA network and co-expression network revealed seven hub long non-coding RNAs in osteoarthritis. Bone Jt Res. 2020;9(3):90-98. doi:10.1302/2046-3758.93.BJR-2019-0140.R2
  • Referans18. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-1261. doi:10.1038/nm.3981
  • Referans19. Dykes IM, Emanueli C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics, Proteomics Bioinforma. 2017;15(3):177-186. doi:10.1016/j.gpb.2016.12.005
  • Referans20. Jiang F, Li Y, Mu J, et al. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Mol Carcinog. 2016;55(5):929-940. doi:10.1002/mc.22333
  • Referans21. Wang Z, Luo S, Wan Z, et al. Glabridin arrests cell cycle and inhibits proliferation of hepatocellular carcinoma by suppressing braf/MEK signaling pathway. Tumor Biol. 2016;37(5):5837-5846. doi:10.1007/s13277-015-4177-5
  • Referans22. Thin KZ, Tu JC, Raveendran S. Long non-coding SNHG1 in cancer. Clin Chim Acta. 2019;494:38-47. doi:10.1016/j.cca.2019.03.002
  • Referans23. Zhao L, Li Z, Chen W, et al. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett. 2017;13(1):363-369. doi:10.3892/ol.2016.5389
  • Referans24. Zhang Y, Huang W, Yuan Y, et al. Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1. J Exp Clin Cancer Res. 2020;39(1). doi:10.1186/s13046-020-01619-6
  • Referans25. Gee HE, Buffa FM, Camps C, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104(7):1168-1177. doi:10.1038/sj.bjc.6606076
  • Referans26. Huang W, Chen K, Lu Y, et al. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia (United States). 2021;23(12):1227-1239. doi:10.1016/j.neo.2021.11.002
  • Referans27. Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17(22):7105-7115. doi:10.1158/1078-0432.CCR-11-0071
  • Referans28. Zhang Z, Feng L, Liu P, Duan W. ANRIL promotes chemoresistance via disturbing expression of ABCC1 by regulating the expression of Let-7a in colorectal cancer. Biosci Rep. 2018;38(6):20180620. doi:10.1042/BSR20180620
  • Referans29. Niemas-Teshiba R, Matsuno R, Wang LL, et al. MYC-family protein overexpression and prominent nucleolar formation represent prognostic indicators and potential therapeutic targets for aggressive high-MKI neuroblastomas: A report from the children’s oncology group. Oncotarget. 2018;9(5):6416-6432. doi:10.18632/oncotarget.23740
  • Referans30. Poh MSW, Yong PVC, Viseswaran N, Chia YY. Estrogenicity of glabridin in Ishikawa cells. PLoS One. 2015;10(3):1-12. doi:10.1371/journal.pone.0121382

Ayrıntılar

Birincil Dil İngilizce
Konular Fizyoloji
Yayınlanma Tarihi Ocak 2023
Bölüm Araştırma Makalesi
Yazarlar

Muhammed Fatih DOĞAN> (Sorumlu Yazar)
PAMUKKALE ÜNİVERSİTESİ
0000-0003-4628-2771
Türkiye


Mücahit SEÇME>
Ordu Üniversitesi
0000-0002-2084-760X
Türkiye


Yasemin ŞAHİN>
PAMUKKALE ÜNİVERSİTESİ
0000-0003-4226-674X
Türkiye


Osman ÇİFTÇİ>
PAMUKKALE ÜNİVERSİTESİ
0000-0001-5755-3560
Türkiye

Yayımlanma Tarihi 31 Ocak 2023
Kabul Tarihi 19 Ekim 2022
Yayınlandığı Sayı Yıl 2023, Cilt 16, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { patd1172097, journal = {Pamukkale Medical Journal}, eissn = {1308-0865}, address = {Pamukkale Üniversitesi Tıp Fakültesi Eğitim Blokları Kınıklı kampüsü 20070 Kınıklı, Denizli}, publisher = {Pamukkale Üniversitesi}, year = {2023}, volume = {16}, number = {1}, pages = {59 - 65}, doi = {10.31362/patd.1172097}, title = {Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells}, key = {cite}, author = {Doğan, Muhammed Fatih and Seçme, Mücahit and Şahin, Yasemin and Çiftçi, Osman} }
APA Doğan, M. F. , Seçme, M. , Şahin, Y. & Çiftçi, O. (2023). Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells . Pamukkale Medical Journal , 16 (1) , 59-65 . DOI: 10.31362/patd.1172097
MLA Doğan, M. F. , Seçme, M. , Şahin, Y. , Çiftçi, O. "Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells" . Pamukkale Medical Journal 16 (2023 ): 59-65 <https://dergipark.org.tr/tr/pub/patd/issue/71515/1172097>
Chicago Doğan, M. F. , Seçme, M. , Şahin, Y. , Çiftçi, O. "Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells". Pamukkale Medical Journal 16 (2023 ): 59-65
RIS TY - JOUR T1 - HEC-1B hücrelerinde glabridinin hücre proliferasyonu ve uzun kodlamayan RNA ekspresyonu üzerindeki etkileri AU - Muhammed FatihDoğan, MücahitSeçme, YaseminŞahin, OsmanÇiftçi Y1 - 2023 PY - 2023 N1 - doi: 10.31362/patd.1172097 DO - 10.31362/patd.1172097 T2 - Pamukkale Medical Journal JF - Journal JO - JOR SP - 59 EP - 65 VL - 16 IS - 1 SN - -1308-0865 M3 - doi: 10.31362/patd.1172097 UR - https://doi.org/10.31362/patd.1172097 Y2 - 2022 ER -
EndNote %0 Pamukkale Tıp Dergisi Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells %A Muhammed Fatih Doğan , Mücahit Seçme , Yasemin Şahin , Osman Çiftçi %T Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells %D 2023 %J Pamukkale Medical Journal %P -1308-0865 %V 16 %N 1 %R doi: 10.31362/patd.1172097 %U 10.31362/patd.1172097
ISNAD Doğan, Muhammed Fatih , Seçme, Mücahit , Şahin, Yasemin , Çiftçi, Osman . "Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells". Pamukkale Medical Journal 16 / 1 (Ocak 2023): 59-65 . https://doi.org/10.31362/patd.1172097
AMA Doğan M. F. , Seçme M. , Şahin Y. , Çiftçi O. Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells. Pam Tıp Derg. 2023; 16(1): 59-65.
Vancouver Doğan M. F. , Seçme M. , Şahin Y. , Çiftçi O. Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells. Pamukkale Medical Journal. 2023; 16(1): 59-65.
IEEE M. F. Doğan , M. Seçme , Y. Şahin ve O. Çiftçi , "Effects of glabridin on cell proliferation and long non-coding RNA expression in HEC-1B cells", Pamukkale Medical Journal, c. 16, sayı. 1, ss. 59-65, Oca. 2023, doi:10.31362/patd.1172097
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır