Araştırma Makalesi
BibTex RIS Kaynak Göster

Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?

Yıl 2025, Cilt: 18 Sayı: 1, 7 - 7
https://doi.org/10.31362/patd.1477075

Öz

Purpose: Although there is a comprehensive characterization of the impact of spinopelvic parameters on outcomes after degenerative spine surgery, the impact of spinopelvic parameters on thoracolumbar trauma has not yet been defined. In the present study, it was aimed to reveal the correlation between the severity of vertebral fractures developing after trauma according to the mechanism of occurrence and sagittal spinopelvic parameters.
Materials and methods: Patients with thoracolumbar vertebra fractures were evaluated retrospectively. The patients were divided into two groups: in-vehicle traffic accident (sitting group) and fall from height (standing group). The pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS) and vertebral Hounsfield unit (HU) values were measured on computed tomography (CT) scans.
Results: The results of the multivariate logistic regression analysis performed in the study revealed that a one-unit increase in PI reduced the risk of more comminuted fractures (A2 and above) by 0.90 times in sitting position trauma (Hazard ratio (HR): 0.90; 95% CI: 0.84-0.96; p=0.002) and by 0.96 times in standing position trauma (HR: 0.96; 95% CI: 0.93-0.99; p=0.040).
Conclusions: It was observed that in vertebral fractures developed after trauma, the fact that the vertebral column of patients with low PI is more rigid increased the severity of the fracture.

Kaynakça

  • 1. Whitney E, Alastra AJ. Vertebral fracture. 2019.
  • 2. Ferreira ML, March L. Vertebral fragility fractures – How to treat them? Best Pract Res Clin Rheumatol 2019;33:227-235. https://doi.org/10.1016/j.berh.2019.03.017
  • 3. Liebsch C, Wilke HJ. Which traumatic spinal injury creates which degree of instability? A systematic quantitative review. Spine J 2022;22:136-156. https://doi.org/10.1016/j.spinee.2021.06.004
  • 4. Divi SN, Schroeder GD, Oner FC, et al. AOSpine-spine trauma classification system: the value of modifiers: a narrative review with commentary on evolving descriptive principles. Global Spine J 2019;9:77-88. https://doi.org/10.1177/2192568219827260
  • 5. Vaccaro AR, Oner C, Kepler CK, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 2013;38:2028-2037. https://doi.org/10.1097/BRS.0b013e3182a8a381
  • 6. Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep 2010;8:198-204. https://doi.org/10.1007/s11914-010-0031-2
  • 7. Niu J, Feng T, Huang C, et al. Characteristics of osteoporotic low lumbar vertebral fracture and related lumbosacral sagittal imbalance. Orthopedics 2021;44:7-12. https://doi.org/10.3928/01477447-20201028-05
  • 8. Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C, Briot K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporosis Int 2016;27:559-567. https://doi.org/10.1007/s00198-015-3283-y
  • 9. Ozer AF, Kaner T, Bozdogan C. Sagittal balance in the spine. Turkish Neurosurgery 2014;24:13-19.
  • 10. Balta O, Yılmaz MA, Aytekin K, et al. Reliability of fossae lumbales laterales and pelvic incidence for estimating transsacral corridors assessed using reconstruction computed tomography. Clin Orthop Surg 2022;14:417-425. https://doi.org/10.4055/cios22090
  • 11. Baker JF, Don AS, Robertson PA. Pelvic incidence: computed tomography study evaluating correlation with sagittal sacropelvic parameters. Clin Anat 2020;33:237-244. https://doi.org/10.1002/ca.23478
  • 12. Ike H, Bodner RJ, Lundergan W, Saigusa Y, Dorr LD. The effects of pelvic incidence in the functional anatomy of the hip joint. J Bone Joint Surg Am 2020;102:991-999. http://dx.doi.org/10.2106/JBJS.19.00300
  • 13. Labelle H, Roussouly P, Berthonnaud É, et al. Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine 2004;29:2049-2054. https://doi.org/10.1097/01.brs.0000138279.53439.cc
  • 14. Yoshimoto H, Sato S, Masuda T, et al. Spinopelvic alignment in patients with osteoarthrosis of the hip: a radiographic comparison to patients with low back pain. Spine 2005;30:1650-1657. https://doi.org/10.1097/01.brs.0000169446.69758.fa
  • 15. Mehta VA, Amin A, Omeis I, Gokaslan ZL, Gottfried ON. Implications of spinopelvic alignment for the spine surgeon. Neurosurgery 2012;70:707-721. https://doi.org/10.1227/NEU.0b013e31823262ea
  • 16. Barrey C, Jund J, Perrin G, Roussouly P. Spinopelvic alignment of patients with degenerative spondylolisthesis. Neurosurgery 2007;61:981-986. https://doi.org/10.1227/01.neu.0000303194.02921.30
  • 17. Innmann M, Merle C, Gotterbarm T, Ewerbeck V, Beaulé PE, Grammatopoulos G. Can spinopelvic mobility be predicted in patients awaiting total hip arthroplasty? A prospective, diagnostic study of patients with end-stage hip osteoarthritis. Bone Joint J 2019;101:902-909. https://doi.org/10.1302/0301-620X.101B8.BJJ-2019-0106.R1
  • 18. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 2013;158:588-595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003
  • 19. Zou D, Ye K, Tian Y, et al. Characteristics of vertebral CT Hounsfield units in elderly patients with acute vertebral fragility fractures. Eur Spine J 2020;29:1092-1097. https://doi.org/10.1007/s00586-020-06363-1
  • 20. Graffy PM, Lee SJ, Ziemlewicz TJ, Pickhardt PJ. Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening. Am J Roentgenol 2017;209:491-496. https://doi.org/10.2214/AJR.17.17853
  • 21. Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporosis Int 2016;27:1131-1136. https://doi.org/10.1007/s00198-015-3318-4
  • 22. Zou D, Li W, Deng C, Du G, Xu N. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J 2019;28:1758-1766. https://doi.org/10.1007/s00586-018-5776-9
  • 23. Makhni MC, Shillingford JN, Laratta JL, Hyun SJ, Kim YJ. Restoration of sagittal balance in spinal deformity surgery. J Korean Neurosurg Soc 2018;61:167-179. https://doi.org/10.3340/jkns.2017.0404.013
  • 24. Briggs AM, Greig AM, Wark JD, Fazzalari NL, Bennell KL. A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci 2004;1:170-180. https://doi.org/10.7150/ijms.1.170
  • 25. Briggs AM, Greig AM, Wark JD. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis. Osteoporos Int 2007;18:575-584. https://doi.org/10.1007/s00198-006-0304-x
  • 26. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA 2001;285:320-323. https://doi.org/10.1001/jama.285.3.320
  • 27. Johnell O, Kanis JA, Odén A, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int 2004;15:175-179. https://doi.org/10.1007/s00198-003-1514-0
  • 28. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 2013;38:803-812. https://doi.org/10.1097/BRS.0b013e318292b7b9
  • 29. Cooperstein R, Lew M. The relationship between pelvic torsion and anatomical leg length inequality: a review of the literature. J Chiropr Med 2009;8:107-118. https://doi.org/10.1016/j.jcm.2009.06.001
  • 30. Roussouly P, Pinheiro Franco JL. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 2011;20:609-618. https://doi.org/10.1007/s00586-011-1928-x
  • 31. Imagama S, Ando K, Kobayashi K, et al. Impact of pelvic incidence on lumbar osteophyte formation and disc degeneration in middle-aged and elderly people in a prospective cross-sectional cohort. Eur Spine J 2020;29:2262-2271. https://doi.org/10.1007/s00586-019-06204-w
  • 32. Strube P, Pumberger M, Sonnow L, et al. Association between lumbar spinal degeneration and anatomic pelvic parameters. Clin Spine Surg 2018;31:263-267. https://doi.org/10.1097/BSD.0000000000000660
  • 33. Kobayashi T, Morimoto T, Yoshihara T, Sonohata M, Rivière C, Mawatari M. The relationship between pelvic incidence and anatomical acetabular anteversion in female Japanese patients with hip osteoarthritis: a retrospective iconographic study. Surg Radiol Anat 2021;43:1141-1147. https://doi.org/10.1007/s00276-021-02710-z
  • 34. Dai J, Yu X, Huang S, et al. Relationship between sagittal spinal alignment and the incidence of vertebral fracture in menopausal women with osteoporosis: a multicenter longitudinal follow-up study. Eur Spine J 2015;24:737-743. https://doi.org/10.1007/s00586-014-3637-8
  • 35. Le Huec JC, Aunoble S, Philippe L, Nicolas P. Pelvic parameters: origin and significance. Eur Spine J 2011;20:564-571. https://doi.org/10.1007/s00586-011-1940-1
  • 36. Dubousset J, Gaume M, Miladi L. Ilio-sacral screw pelvic fixation when correcting spinal deformities with or without pelvic obliquity: our experience over 40 years. Spine Deform 2021;9:665-670. https://doi.org/10.1007/s43390-020-00263-6
  • 37. Camp JF, Caudle R, Ashmun RD, Roach J. Immediate complications of cotrel-dubousset instrumentation to the sacro-pelvis. A clinical and biomechanical study. Spine 1990;15:932-941. https://doi.org/10.1097/00007632-199009000-00018
  • 38. Bao H, Liabaud B, Varghese J, et al. Lumbosacral stress and age may contribute to increased pelvic incidence: an analysis of 1625 adults. Eur Spine J 2018;27:482-488. https://doi.org/10.1007/s00586-017-5324-z
  • 39. Le Huec JC, Hasegawa K. Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 2016;25:3630-3637. https://doi.org/10.1007/s00586-016-4485-5
  • 40. Chau LTC, Hu Z, Yiu Ko KS, et al. Global sagittal alignment of the spine, pelvis, lower limb after vertebral compression fracture and its effect on quality of life. BMC Musculoskelet Disord 2021;22:1-7. https://doi.org/10.1186/s12891-021-04311-8
  • 41. Ru N, Li J, Li Y, Sun J, Wang G, Cui X. Sacral anatomical parameters varies in different Roussouly sagittal shapes as well as their relations to lumbopelvic parameters. JOR Spine 2021;4:e1180. https://doi.org/10.1002/jsp2.1180
  • 42. Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G. Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 2013;22:834-841. https://doi.org/10.1007/s00586-013-3030-z
  • 43. Smorgick Y, Geftler A, Goldstein S, Mirovsky Y, Blecher R, Anekstein Y. Determination of any correlation between sagittal spinopelvic configuration and progressive collapse of acute osteoporotic compression spine fractures: a retrospective radiological analysis. Asian Spine J 2020;14:872-877. https://doi.org/10.31616/asj.2019.0139
  • 44. Muraki S, Yamamoto S, Ishibashi H, et al. Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporosis Int 2004;15:724-728. https://doi.org/10.1007/s00198-004-1600-y
  • 45. Engelke K, Lang T, Khosla S, et al. Clinical use of quantitative computed tomography–based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions—part III. J Clin Densitom 2015;18:393-407. https://doi.org/10.1016/j.jocd.2015.06.010

Spinopelvik parametreler torakolomber travmanın şiddetini araç içi trafik kazası ve yüksekten düşme arasında farklı şekilde etkiler mi?

Yıl 2025, Cilt: 18 Sayı: 1, 7 - 7
https://doi.org/10.31362/patd.1477075

Öz

Amaç: Spinopelvik parametrelerin dejeneratif omurga cerrahisi sonrası sonuçlar üzerindeki kapsamlı bir etkisinin karakterizasyonu olmasına rağmen, spinopelvik parametrelerin torakolomber travma üzerindeki etkisi henüz tanımlanmamıştır. Bu çalışmada travma sonrası gelişen vertebra kırıklarının oluşma mekanizması ve tipine göre sagittal spinopelvik parametreler ile arasındaki ilişkinin ortaya konulması amaçlandı.
Gereç ve yöntem: Torakolomber vertebra kırığı olan hastalar retrospektif olarak değerlendirildi. Hastalar araç içi trafik kazası (oturarak travmaya maruz kalan grup) ve yüksekten düşme (ayakta travmaya maruz kalan grup) olmak üzere iki gruba ayrıldı. Bilgisayarlı tomografi görüntülerinde pelvik insidans, pelvik tilt, sakral slop ve vertebral Hounsfield ünitesi değerleri ölçüldü.
Bulgular: Çalışmada yapılan çok değişkenli lojistik regresyon analizi sonuçları, PI'deki bir birimlik artışın, oturan grup travmalarında daha fazla parçalı kırık (A2 ve üzeri) riskini 0,90 kat azalttığını ortaya koydu (Risk oranı: 0,90; 95). %GA: 0,84-0,96; p=0,002) ve ayakta durma pozisyonu travmasında 0,96 kat (Risk oranı: 0,96; %95 GA: 0,93-0,99; p=0,040).
Sonuç: Travma sonrası gelişen vertebra kırıklarında düşük PI'li hastaların vertebral kolonunun daha rijit olmasının kırığın şiddetini arttırdığı görüldü.

Kaynakça

  • 1. Whitney E, Alastra AJ. Vertebral fracture. 2019.
  • 2. Ferreira ML, March L. Vertebral fragility fractures – How to treat them? Best Pract Res Clin Rheumatol 2019;33:227-235. https://doi.org/10.1016/j.berh.2019.03.017
  • 3. Liebsch C, Wilke HJ. Which traumatic spinal injury creates which degree of instability? A systematic quantitative review. Spine J 2022;22:136-156. https://doi.org/10.1016/j.spinee.2021.06.004
  • 4. Divi SN, Schroeder GD, Oner FC, et al. AOSpine-spine trauma classification system: the value of modifiers: a narrative review with commentary on evolving descriptive principles. Global Spine J 2019;9:77-88. https://doi.org/10.1177/2192568219827260
  • 5. Vaccaro AR, Oner C, Kepler CK, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 2013;38:2028-2037. https://doi.org/10.1097/BRS.0b013e3182a8a381
  • 6. Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep 2010;8:198-204. https://doi.org/10.1007/s11914-010-0031-2
  • 7. Niu J, Feng T, Huang C, et al. Characteristics of osteoporotic low lumbar vertebral fracture and related lumbosacral sagittal imbalance. Orthopedics 2021;44:7-12. https://doi.org/10.3928/01477447-20201028-05
  • 8. Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C, Briot K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporosis Int 2016;27:559-567. https://doi.org/10.1007/s00198-015-3283-y
  • 9. Ozer AF, Kaner T, Bozdogan C. Sagittal balance in the spine. Turkish Neurosurgery 2014;24:13-19.
  • 10. Balta O, Yılmaz MA, Aytekin K, et al. Reliability of fossae lumbales laterales and pelvic incidence for estimating transsacral corridors assessed using reconstruction computed tomography. Clin Orthop Surg 2022;14:417-425. https://doi.org/10.4055/cios22090
  • 11. Baker JF, Don AS, Robertson PA. Pelvic incidence: computed tomography study evaluating correlation with sagittal sacropelvic parameters. Clin Anat 2020;33:237-244. https://doi.org/10.1002/ca.23478
  • 12. Ike H, Bodner RJ, Lundergan W, Saigusa Y, Dorr LD. The effects of pelvic incidence in the functional anatomy of the hip joint. J Bone Joint Surg Am 2020;102:991-999. http://dx.doi.org/10.2106/JBJS.19.00300
  • 13. Labelle H, Roussouly P, Berthonnaud É, et al. Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine 2004;29:2049-2054. https://doi.org/10.1097/01.brs.0000138279.53439.cc
  • 14. Yoshimoto H, Sato S, Masuda T, et al. Spinopelvic alignment in patients with osteoarthrosis of the hip: a radiographic comparison to patients with low back pain. Spine 2005;30:1650-1657. https://doi.org/10.1097/01.brs.0000169446.69758.fa
  • 15. Mehta VA, Amin A, Omeis I, Gokaslan ZL, Gottfried ON. Implications of spinopelvic alignment for the spine surgeon. Neurosurgery 2012;70:707-721. https://doi.org/10.1227/NEU.0b013e31823262ea
  • 16. Barrey C, Jund J, Perrin G, Roussouly P. Spinopelvic alignment of patients with degenerative spondylolisthesis. Neurosurgery 2007;61:981-986. https://doi.org/10.1227/01.neu.0000303194.02921.30
  • 17. Innmann M, Merle C, Gotterbarm T, Ewerbeck V, Beaulé PE, Grammatopoulos G. Can spinopelvic mobility be predicted in patients awaiting total hip arthroplasty? A prospective, diagnostic study of patients with end-stage hip osteoarthritis. Bone Joint J 2019;101:902-909. https://doi.org/10.1302/0301-620X.101B8.BJJ-2019-0106.R1
  • 18. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 2013;158:588-595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003
  • 19. Zou D, Ye K, Tian Y, et al. Characteristics of vertebral CT Hounsfield units in elderly patients with acute vertebral fragility fractures. Eur Spine J 2020;29:1092-1097. https://doi.org/10.1007/s00586-020-06363-1
  • 20. Graffy PM, Lee SJ, Ziemlewicz TJ, Pickhardt PJ. Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening. Am J Roentgenol 2017;209:491-496. https://doi.org/10.2214/AJR.17.17853
  • 21. Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporosis Int 2016;27:1131-1136. https://doi.org/10.1007/s00198-015-3318-4
  • 22. Zou D, Li W, Deng C, Du G, Xu N. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J 2019;28:1758-1766. https://doi.org/10.1007/s00586-018-5776-9
  • 23. Makhni MC, Shillingford JN, Laratta JL, Hyun SJ, Kim YJ. Restoration of sagittal balance in spinal deformity surgery. J Korean Neurosurg Soc 2018;61:167-179. https://doi.org/10.3340/jkns.2017.0404.013
  • 24. Briggs AM, Greig AM, Wark JD, Fazzalari NL, Bennell KL. A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci 2004;1:170-180. https://doi.org/10.7150/ijms.1.170
  • 25. Briggs AM, Greig AM, Wark JD. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis. Osteoporos Int 2007;18:575-584. https://doi.org/10.1007/s00198-006-0304-x
  • 26. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA 2001;285:320-323. https://doi.org/10.1001/jama.285.3.320
  • 27. Johnell O, Kanis JA, Odén A, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int 2004;15:175-179. https://doi.org/10.1007/s00198-003-1514-0
  • 28. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 2013;38:803-812. https://doi.org/10.1097/BRS.0b013e318292b7b9
  • 29. Cooperstein R, Lew M. The relationship between pelvic torsion and anatomical leg length inequality: a review of the literature. J Chiropr Med 2009;8:107-118. https://doi.org/10.1016/j.jcm.2009.06.001
  • 30. Roussouly P, Pinheiro Franco JL. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 2011;20:609-618. https://doi.org/10.1007/s00586-011-1928-x
  • 31. Imagama S, Ando K, Kobayashi K, et al. Impact of pelvic incidence on lumbar osteophyte formation and disc degeneration in middle-aged and elderly people in a prospective cross-sectional cohort. Eur Spine J 2020;29:2262-2271. https://doi.org/10.1007/s00586-019-06204-w
  • 32. Strube P, Pumberger M, Sonnow L, et al. Association between lumbar spinal degeneration and anatomic pelvic parameters. Clin Spine Surg 2018;31:263-267. https://doi.org/10.1097/BSD.0000000000000660
  • 33. Kobayashi T, Morimoto T, Yoshihara T, Sonohata M, Rivière C, Mawatari M. The relationship between pelvic incidence and anatomical acetabular anteversion in female Japanese patients with hip osteoarthritis: a retrospective iconographic study. Surg Radiol Anat 2021;43:1141-1147. https://doi.org/10.1007/s00276-021-02710-z
  • 34. Dai J, Yu X, Huang S, et al. Relationship between sagittal spinal alignment and the incidence of vertebral fracture in menopausal women with osteoporosis: a multicenter longitudinal follow-up study. Eur Spine J 2015;24:737-743. https://doi.org/10.1007/s00586-014-3637-8
  • 35. Le Huec JC, Aunoble S, Philippe L, Nicolas P. Pelvic parameters: origin and significance. Eur Spine J 2011;20:564-571. https://doi.org/10.1007/s00586-011-1940-1
  • 36. Dubousset J, Gaume M, Miladi L. Ilio-sacral screw pelvic fixation when correcting spinal deformities with or without pelvic obliquity: our experience over 40 years. Spine Deform 2021;9:665-670. https://doi.org/10.1007/s43390-020-00263-6
  • 37. Camp JF, Caudle R, Ashmun RD, Roach J. Immediate complications of cotrel-dubousset instrumentation to the sacro-pelvis. A clinical and biomechanical study. Spine 1990;15:932-941. https://doi.org/10.1097/00007632-199009000-00018
  • 38. Bao H, Liabaud B, Varghese J, et al. Lumbosacral stress and age may contribute to increased pelvic incidence: an analysis of 1625 adults. Eur Spine J 2018;27:482-488. https://doi.org/10.1007/s00586-017-5324-z
  • 39. Le Huec JC, Hasegawa K. Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 2016;25:3630-3637. https://doi.org/10.1007/s00586-016-4485-5
  • 40. Chau LTC, Hu Z, Yiu Ko KS, et al. Global sagittal alignment of the spine, pelvis, lower limb after vertebral compression fracture and its effect on quality of life. BMC Musculoskelet Disord 2021;22:1-7. https://doi.org/10.1186/s12891-021-04311-8
  • 41. Ru N, Li J, Li Y, Sun J, Wang G, Cui X. Sacral anatomical parameters varies in different Roussouly sagittal shapes as well as their relations to lumbopelvic parameters. JOR Spine 2021;4:e1180. https://doi.org/10.1002/jsp2.1180
  • 42. Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G. Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 2013;22:834-841. https://doi.org/10.1007/s00586-013-3030-z
  • 43. Smorgick Y, Geftler A, Goldstein S, Mirovsky Y, Blecher R, Anekstein Y. Determination of any correlation between sagittal spinopelvic configuration and progressive collapse of acute osteoporotic compression spine fractures: a retrospective radiological analysis. Asian Spine J 2020;14:872-877. https://doi.org/10.31616/asj.2019.0139
  • 44. Muraki S, Yamamoto S, Ishibashi H, et al. Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporosis Int 2004;15:724-728. https://doi.org/10.1007/s00198-004-1600-y
  • 45. Engelke K, Lang T, Khosla S, et al. Clinical use of quantitative computed tomography–based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions—part III. J Clin Densitom 2015;18:393-407. https://doi.org/10.1016/j.jocd.2015.06.010
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi (Diğer), Ortopedi
Bölüm Araştırma Makalesi
Yazarlar

Veysel Kıyak 0000-0002-4371-0155

Sezer Astan 0000-0003-2435-3874

Erken Görünüm Tarihi 9 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 2 Mayıs 2024
Kabul Tarihi 3 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Kıyak, V., & Astan, S. (2024). Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?. Pamukkale Medical Journal, 18(1), 7-7. https://doi.org/10.31362/patd.1477075
AMA Kıyak V, Astan S. Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?. Pam Tıp Derg. Temmuz 2024;18(1):7-7. doi:10.31362/patd.1477075
Chicago Kıyak, Veysel, ve Sezer Astan. “Do Spinopelvic Parameters Affect the Severity of Thoracolumbar Trauma Differently Between in-Vehicle Traffic Accidents and Falling from a Height?”. Pamukkale Medical Journal 18, sy. 1 (Temmuz 2024): 7-7. https://doi.org/10.31362/patd.1477075.
EndNote Kıyak V, Astan S (01 Temmuz 2024) Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?. Pamukkale Medical Journal 18 1 7–7.
IEEE V. Kıyak ve S. Astan, “Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?”, Pam Tıp Derg, c. 18, sy. 1, ss. 7–7, 2024, doi: 10.31362/patd.1477075.
ISNAD Kıyak, Veysel - Astan, Sezer. “Do Spinopelvic Parameters Affect the Severity of Thoracolumbar Trauma Differently Between in-Vehicle Traffic Accidents and Falling from a Height?”. Pamukkale Medical Journal 18/1 (Temmuz 2024), 7-7. https://doi.org/10.31362/patd.1477075.
JAMA Kıyak V, Astan S. Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?. Pam Tıp Derg. 2024;18:7–7.
MLA Kıyak, Veysel ve Sezer Astan. “Do Spinopelvic Parameters Affect the Severity of Thoracolumbar Trauma Differently Between in-Vehicle Traffic Accidents and Falling from a Height?”. Pamukkale Medical Journal, c. 18, sy. 1, 2024, ss. 7-7, doi:10.31362/patd.1477075.
Vancouver Kıyak V, Astan S. Do spinopelvic parameters affect the severity of thoracolumbar trauma differently between in-vehicle traffic accidents and falling from a height?. Pam Tıp Derg. 2024;18(1):7-.
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır