SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI
Yıl 2018,
Sayı: 31, 275 - 284, 13.04.2018
Mert Demircioğlu
,
İbrahim Tolga Coşkun
Öz
Taşıma maliyetlerinin doğru bir şekilde
hesaplanıp en uygun dağıtımın yapılması, işletmelerin daha hızlı büyümelerinde
ve mevcut durumda karlarını maksimize edebilmelerinde önem arzetmektedir. Bu
çalışma doğru güzergahları belirleyerek taşıma maliyetlerinin azaltılması ile
ilgilidir. Çalışmada kullanılan yöntem ile uygun rotaların belirlenmesi için
ulaştırma problemlerinde sabit maliyetleri de ele alınmıştır. Çalışmada sabit
maliyetler ve sabit maliyetli ulaştırma problemleriyle ilgili mevcut literatür
incelenmiştir. Sabit maliyetli ulaştırma problemlerinin çözümüne dair
geliştirilen bazı algoritmalara değinilmiş ve ulusal düzeyde faaliyet gösteren
bir şirketin mevcut dağıtım planındaki maliyetler ortaya konulmuştur. Balinski
yöntemiyle oluşturulan yeni dağıtım planı belirlenerek ve dağıtım planları ile
taşıma maliyetleri karşılaştırılmıştır. Belirlenen yeni dağıtım planı ile
firmanın mevcut durumdaki maliyetlerinden daha düşük maliyette taşıma
yapılabildiği ortaya konmuştur.
Kaynakça
- Adlakha, V. and Kowalski, K. (1999). “On The Fixed-Charge Transportation Problem”, OMEGA-The International Journal of Management Science, 27, 381-388.
Adlakha, V., Kowalski, K. and Lev, B. (2010). “A Branching Method For The Fixed Charge Transportation Problem”, OMEGA-The International Journal of Management Science, 38, 393-397.
Adlakha, V., Kowalski, K., Vemuganti, R. R., and Lev, B. (2007). “More-For-Less Algorithm For Fixed-Charge Transportation Problems”, OMEGA-The International Journal of Management Science, 35(1), s. 116-127.
Balinski, M. L. (1961). “Fixed-cost transportation problems”, Naval Research Logistics, 8(1), 41-54.
Barr, R. S., Glover F. and Klingman, D. (1981). “A New Optimization Method For Large Scale Fixed Charge Transportation Problems”, Operations Research, 29(3), 448-463.
Barr, R., Glover, F. and Klingman, D. (1979). “Enhancements of spanning tree labelling procedures for network optimization”, INFOR: Information Systems and Operational Research, 17(1), 16-34.
Charnes, A.and Klingman, D. (1971). “The More-For-Less Paradox İn The Distribution Model”, Cahiers du Centre d’Etudes de Recherche Operationelle, 13(1), 11-22.
Cooper, L. (1975). “The Fixed Charge Problem-I: A New Heuristic Method”, Computers & Mathematics with Applications, 1(1), 89-95.
Cooper, L. and Drebes, C. (1967). “An Approximate Solution Method For The Fixed Charge Problem”, Naval Research Logistics Quarterly, 14(1), 101-113.
Denzler, D. R. (1969). “An Approximative Algorithm For The Fixed Charge Problem”, Naval Research Logistics Quarterly, 16(3), 411-416.
Diaby, M. (1991). “Successive Linear Approximation Procedure For Generalized Fixed-Charge Transportation Problems”, The Journal of the Operational Research Society, 42(11), 991-1001.
Gray, P. (1971). “Technical Note—Exact Solution Of The Fixed-Charge Transportation Problem”, Operations Research, 19(6), 1529-1538.
Hirsch, W. M., and Dantzig, G. B. (1968). “The Fixed Charge Problem”, Naval Research Logistics Quarterly, 15(3), 413-424.
Hirsch, W. M., and Hoffman, A. J. (1961). “Extreme Varieties, Concave Functions, And The Fixed Charge Problem”, Communications on Pure and Applied Mathematics, 14(3), 355-369.
Kennington, J. (1976). “The Fixed-Charge Transportation Problem: A Computational Study with a Branch-And-Bound Code”, AIIE Transactions, 8(2), 241-247.
Kennington, J. and Unger, E. (1976). “A New Branch-And-Bound Algorithm For The Fixed-Charge Transportation Problem”, Management Science, 22(10), 1116-1126.
Kowalski, K. and Lev, B. (2007). New Approach To Fixed Charges Problems (FCP). International Journal of Management Science and Engineering Management, 2, 75-80.
Orhon, F. (1983). “Ulaştırma İşletmelerinde Maliyet Muhasebesi”, Eko-Bil Yayıncılık, İstanbul.
Öztürk, A. (2012). “Yöneylem Araştırması”, Ekin Basın Yayın Dağıtım, Bursa.
Robers, P. and Cooper, L. (1976). “A Study Of The Fixed Charge Transportation Problem”, Computers & Mathematics with Applications, 2(2), 125-135.
Sadagopan, S. and Ravindran, A. (1982). “A Vertex Ranking Algorithm For The Fixed-Charge Transportation Problem”, Journal of Optimization Theory and Applications, 37(2), 221-230.
Spielberg, K. (1964). “On The Fixed Charge Transportation Problem”, InProceedings of the 1964 19th ACM national conference (pp. 11-101). ACM, New York, USA.
Steinberg, D. I. (1970). “The fixed charge problem”, Naval Research Logistics Quarterly, 17(2), 217-235.
Sun, M., Aronson, J. E., Mckeown, P. G. and Drınka, D., (1998), “A Tabu Search Heuristic Procedure for the Fixed Charge Transportation Problem”, European Journal of Operational Research, 106, 441-456.
Walker, W. E. (1976). “A Heuristic Adjacent Extreme Point Algorithm For The Fixed Charge Problem”, Management Science, 22(5), 587-596.