Araştırma Makalesi
BibTex RIS Kaynak Göster

RESTORANLARDA ROBOT GARSONLARIN KULLANIMINA YÖNELIK TOPLUMSAL ALGILAR: SOSYAL MEDYADA DUYGU VE İÇERİK ANALİZİ

Yıl 2025, Sayı: 68, 281 - 294, 12.05.2025
https://doi.org/10.30794/pausbed.1595542

Öz

Bu çalışmada restoranlarda robot garsonların kullanımına yönelik toplumsal görüşü çevrimiçi kullanıcı yorumları ile belirlenmesini amaçlamaktadır. Bu amaç kapsamında, restoranlarda kullanılan hizmet robotları ve robot garsonlarla ilgili en çok yorum alan ilk on beş YouTube videosundaki çevrim içi kullanıcı yorumları duygu analizi ve içerik analizi yöntemiyle incelenmiştir. Duygu analizinde, Lexicon (NLP) tabanlı bir yaklaşım kullanılarak yorumlar olumlu, nötr ve olumsuz olarak duygu kutupları belirlenmiştir. Duygu analizinin sonuçlarını desteklemek için ise içerik analizi yönteminde MAXQDA kullanılmıştır. Analiz sonuçlarına göre, kullanıcı yorumlarının %37,1’i olumlu, %32,5’i olumsuz ve %30,4’ü nötr olarak belirlenmiştir. Bu çalışma özellikle robot garsonların restoranlarda uygulanmasının henüz yeni olduğu göz önüne alındığında, çevrim içi yorumlar yeni hizmetlerin ve oluşumların anlaşılmasına katkı sağlaması bakımından önemlidir. Metodolojik olarak bu araştırma robot-insan etkileşiminde toplumun teknoloji kabulü ve görüşünün belirlenmesinde duygu analizi gibi yenilikçi bir yaklaşım sunmaktadır. Elde dilen bulguların ise, alan yazına teorik, sektörel uygulamalara ise pratik katkılar sunması açısından önemli görülmektedir.

Kaynakça

  • Alaei, A.R., Becken, S. and Stantic, B. (2019). Sentiment analysis in tourism: capitalizing on big data, Journal of Travel Research, Vol. 58 No. 2, pp. 175-191.
  • Bagheri, A., Saraee, M. and de Jong, F. (2013). Sentiment classification in Persian: introducing a mutual information-based method for feature selection, in Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), 14–16 May, Mashhad, Iran, IEEE, New York, NY, pp. 1-6.
  • Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D., Chen, L. ve Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID-19, JAMA, Vol. 323 No. 14, p.1406-1407, doi:10.1001/jama.2020.2565.
  • Berezina, K., Ciftci, O. and Cobanoglu, C. (2019). Robots, artificial intelligence, and service automation in restaurants, Ivanov, S. and Webster, C. (Ed.s), Robots, Artificial Intelligence and Service Automation in Travel, Tourism and Hospitality, Emerald Publishing, Bingley, pp.185-219, doi: 10.1108/978-1-78756-687-320191010.
  • Bloem, C. (2017). 84 percent of people trust online reviews as much as friends, available at: https://www.inc.com/craig-bloem/84-percent-ofpeople-trust-online-reviews-as-much-.html (accessed 2 August 2024).
  • Bonta, V., Kumaresh, N., and Janardhan, N. (2019). A comprehensive study on lexicon based approaches for sentiment analysis, Asian Journal of Computer Science and Technology, Vol. 8 No. No. 2, pp. 1-6, doi: 10.51983/ajcst-2019.8.S2.2037.
  • Brynjolfsson, E., and McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company.
  • Byrd, K., Fan, A., Her, E., Liu, Y., Almanza, B., and Leitch, S. (2021). Robot vs human: expectations, performances and gaps in off-premise restaurant service modes, International Journal of Contemporary Hospitality Management, Vol. 33 No. 11, pp. 3996-4016, doi: 10.1108/IJCHM-07-2020-0721.
  • Chan, E.S. and Lam, D. (2013). Hotel safety and security systems: bridging the gap between managers and guests, International Journal of Hospitality Management, Vol. 32, pp. 202-216, doi: 10.1108/IJCHM-11-2020-1246.
  • Chui, M., Manyika, J., and Miremadi, M. (2016). Where machines could replace humans and where they can’t (yet), McKinsey Quarterly.
  • Gaur, L., Afaq, A., Singh, G., and Dwivedi, Y.K. (2021). Role of artificial intelligence and robotics to foster the touchless travel during a pandemic: a review and research agenda, International Journal of Contemporary Hospitality Management, Vol. 33 No. 11, pp. 4079-4098, doi: 10.1108/IJCHM-11-2020-1246.
  • Hutto, C., and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text, in Proceedings of the international AAAI conference on web and social media, Vol. 8 No. 1, pp. 216-225.
  • Ivanov, S., and Webster, C. (2017). Adoption of robots, artificial intelligence and service automation by travel, tourism and hospitality companies: a cost-benefit analysis, paper presented at International scientific conference contemporary tourism-traditions and innovations, 19-21 October, Sofia University, Sofia, Bulgaria.
  • Jain, A.P. and Katkar, V.D. (2015, December). Sentiments analysis of Twitter data using data mining, in 2015 International Conference on Information Processing (ICIP), IEEE, pp. 807-810, doi: 10.1109/INFOP.2015.7489492.
  • Jain, R., Kumar, A., Nayyar, A., Dewan, K., Garg, R., Raman, S., and Ganguly, S. (2023). Explaining sentiment analysis results on social media texts through visualization, Multimedia Tools and Applications, Vol. 82 No. 15, pp. 22613-22629, doi: 10.1007/s11042-023-14432-y.
  • Kim, T., Jo, H., Yhee, Y., and Koo, C. (2022). Robots, artificial intelligence, and service automation (RAISA) in hospitality: sentiment analysis of YouTube streaming data, Electronic Markets, Vol. 32 No. 1, pp. 259-275, doi: 10.1007/s12525-021-00514-y.
  • Li, Z., Yuan, F., and Zhao, Z. (2024). Robot restaurant experience and recommendation behaviour: based on text-mining and sentiment analysis from online reviews, Current Issues in Tourism, pp. 1-15, doi: 10.1080/13683500.2024.2309140.
  • Liu, Y. (2010). Social media tools as a learning resource, Journal of Educational Technology Development and Exchange (JETDE), Vol. 3 No. 1, pp. 101-114, doi: 10.18785/jetde.0301.08.
  • Luo, J. M., Vu, H. Q., Li, G., and Law, R. (2021). Understanding service attributes of robot hotels: a sentiment analysis of customer online reviews, International Journal of Hospitality Management, Vol. 98 No. 103032, pp. 1-10, doi: 10.1016/j.ijhm.2021.103032.
  • Maynard, D., and Funk, A. (2012). Automatic detection of political opinions in tweets, in The Semantic Web: ESWC 2011 Workshops: ESWC 2011 Workshops, 29-30 May, Heraklion, Greece, Springer, Berlin Heidelberg, pp. 88-99.
  • Medhat, W., Yousef, A.H. and Mohamed, H.K. (2014). Combined algorithm for data mining using association rules, Ain Shams Journal of Electrical Engineering, Vol. 1 No. 1, pp. 1-12, doi: 10.48550/arXiv.1410.1343.
  • Murphy, J., Hofacker, C. and Gretzel, U. (2017). Dawning of the age of robots in hospitality and tourism: challenges for teaching and research, European Journal of Tourism Research, Vol. 15, pp. 104-111.
  • Naik, R., Bhamre, R., Poojary, V., Rane, P. and Vajramushti, N. (2023, April). A review on automated waiters, in 2023 11th International Conference on Emerging Trends in Engineering & Technology-Signal and Information Processing (ICETET-SIP), IEEE, pp. 1-6.
  • O’Leary, D.E. (2011). The use of social media in the supply chain: Survey and extensions, Intelligent Systems in Accounting, Finance and Management, Vol. 18 Nos. 2-3, pp. 121-144, doi: 10.1002/isaf.327.
  • Özgürel, G. (2021). Turizmde robotlaşma: Yiyecek-içecek sektöründe robot şefler ve robot garsonlar, OPUS International Journal of Society Researches, Vol. 18 (Yönetim ve Organizasyon Özel Sayısı), ss. 1849-1882, doi: 10.26466/opus.899296.
  • Pieska, S., Luimula, M., Jauhiainen, J., and Spiz, V. (2013). Social service robots in wellness and restaurant applications, Journal of Communication and Computer, Vol. 10, pp. 116-123.
  • Seyitoğlu, F. and Ivanov, S. (2022). Understanding the robotic restaurant experience: a multiple case study, Journal of Tourism Futures, Vol. 8 No. 1, pp. 55-72, doi: 10.1108/JTF-04-2020-0070.
  • Shin, S., Kim, T., Hlee, S. and Koo, C. (2023). Destination advertising on YouTube: Effects of native advertising and comment management on tourist perception, Journal of Hospitality & Tourism Research, Vol. 0 No. 0., pp. 1-18, doi: 10.1177/10963480231194689.
  • Tuomi, A., Tussyadiah, I.P. and Hanna, P. (2021). Spicing up hospitality service encounters: the case of PepperTM, International Journal of Contemporary Hospitality Management, Vol. 33 No. 11, pp. 3906-3925, doi: 10.1108/IJCHM-07-2020-0739.
  • Tussyadiah, I. and Park, S. (2018). Consumer evaluation of hotel service robots, in Information and Communication Technologies in Tourism 2018, Springer, pp. 308-320.
  • Tuzcu, S. (2020). Çevrimiçi kullanıcı yorumlarının duygu analizi ile sınıflandırılması, Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, Vol. 1 No. 2, ss. 1-5.
  • Wadawadagi, R. and Pagi, V. (2020). Sentiment analysis with deep neural networks: comparative study and performance assessment, Artificial Intelligence Review, Vol. 53 No. 8, pp. 6155-6195, doi: 10.1007/s10462-020-09845-2.
  • Yaşa, H. (2022). Çevre(cilik) hareketi olarak sosyal medyada sıfır atık hareketi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, No. 49, ss. 212-230. doi: 10.52642/susbed.1156189.
  • Zhong, L., Sun, S., Law, R., and Zhang, X. (2020). Impact of robot hotel service on consumers’ purchase intention: a control experiment, Asia Pacific Journal of Tourism Research, Vol. 25 No. 7, pp. 780-798, doi: 10.1080/10941665.2020.1726421.

SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA

Yıl 2025, Sayı: 68, 281 - 294, 12.05.2025
https://doi.org/10.30794/pausbed.1595542

Öz

In this study, it is aimed to determine the opinions of online user comments written on videos about robot waiters used in restaurants on the YouTube platform. For this purpose, online user comments on the top fifteen most commented YouTube videos about service robots and robot waiters used in restaurants were analyzed through sentiment analysis and content analysis. In sentiment analysis, a Lexicon (NLP)-based approach was used to polarize the comments into positive, neutral, and negative sentiments. To support the results of sentiment analysis, MAXQDA was used in the content analysis method. According to the results of the analysis, 37.1% of user comments were positive, 32.5% were negative, and 30.4% were neutral. This study is particularly important given that the implementation of robot waiters in restaurants is still in its infancy, as online reviews contribute to the understanding of new services and entities. Methodologically, this research offers an innovative approach, such as sentiment analysis, in determining society's acceptance and opinion of technology in robot-human interaction. The findings are considered important as they will provide theoretical contributions to the literature and practical contributions to sectoral applications.

Kaynakça

  • Alaei, A.R., Becken, S. and Stantic, B. (2019). Sentiment analysis in tourism: capitalizing on big data, Journal of Travel Research, Vol. 58 No. 2, pp. 175-191.
  • Bagheri, A., Saraee, M. and de Jong, F. (2013). Sentiment classification in Persian: introducing a mutual information-based method for feature selection, in Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), 14–16 May, Mashhad, Iran, IEEE, New York, NY, pp. 1-6.
  • Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D., Chen, L. ve Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID-19, JAMA, Vol. 323 No. 14, p.1406-1407, doi:10.1001/jama.2020.2565.
  • Berezina, K., Ciftci, O. and Cobanoglu, C. (2019). Robots, artificial intelligence, and service automation in restaurants, Ivanov, S. and Webster, C. (Ed.s), Robots, Artificial Intelligence and Service Automation in Travel, Tourism and Hospitality, Emerald Publishing, Bingley, pp.185-219, doi: 10.1108/978-1-78756-687-320191010.
  • Bloem, C. (2017). 84 percent of people trust online reviews as much as friends, available at: https://www.inc.com/craig-bloem/84-percent-ofpeople-trust-online-reviews-as-much-.html (accessed 2 August 2024).
  • Bonta, V., Kumaresh, N., and Janardhan, N. (2019). A comprehensive study on lexicon based approaches for sentiment analysis, Asian Journal of Computer Science and Technology, Vol. 8 No. No. 2, pp. 1-6, doi: 10.51983/ajcst-2019.8.S2.2037.
  • Brynjolfsson, E., and McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company.
  • Byrd, K., Fan, A., Her, E., Liu, Y., Almanza, B., and Leitch, S. (2021). Robot vs human: expectations, performances and gaps in off-premise restaurant service modes, International Journal of Contemporary Hospitality Management, Vol. 33 No. 11, pp. 3996-4016, doi: 10.1108/IJCHM-07-2020-0721.
  • Chan, E.S. and Lam, D. (2013). Hotel safety and security systems: bridging the gap between managers and guests, International Journal of Hospitality Management, Vol. 32, pp. 202-216, doi: 10.1108/IJCHM-11-2020-1246.
  • Chui, M., Manyika, J., and Miremadi, M. (2016). Where machines could replace humans and where they can’t (yet), McKinsey Quarterly.
  • Gaur, L., Afaq, A., Singh, G., and Dwivedi, Y.K. (2021). Role of artificial intelligence and robotics to foster the touchless travel during a pandemic: a review and research agenda, International Journal of Contemporary Hospitality Management, Vol. 33 No. 11, pp. 4079-4098, doi: 10.1108/IJCHM-11-2020-1246.
  • Hutto, C., and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text, in Proceedings of the international AAAI conference on web and social media, Vol. 8 No. 1, pp. 216-225.
  • Ivanov, S., and Webster, C. (2017). Adoption of robots, artificial intelligence and service automation by travel, tourism and hospitality companies: a cost-benefit analysis, paper presented at International scientific conference contemporary tourism-traditions and innovations, 19-21 October, Sofia University, Sofia, Bulgaria.
  • Jain, A.P. and Katkar, V.D. (2015, December). Sentiments analysis of Twitter data using data mining, in 2015 International Conference on Information Processing (ICIP), IEEE, pp. 807-810, doi: 10.1109/INFOP.2015.7489492.
  • Jain, R., Kumar, A., Nayyar, A., Dewan, K., Garg, R., Raman, S., and Ganguly, S. (2023). Explaining sentiment analysis results on social media texts through visualization, Multimedia Tools and Applications, Vol. 82 No. 15, pp. 22613-22629, doi: 10.1007/s11042-023-14432-y.
  • Kim, T., Jo, H., Yhee, Y., and Koo, C. (2022). Robots, artificial intelligence, and service automation (RAISA) in hospitality: sentiment analysis of YouTube streaming data, Electronic Markets, Vol. 32 No. 1, pp. 259-275, doi: 10.1007/s12525-021-00514-y.
  • Li, Z., Yuan, F., and Zhao, Z. (2024). Robot restaurant experience and recommendation behaviour: based on text-mining and sentiment analysis from online reviews, Current Issues in Tourism, pp. 1-15, doi: 10.1080/13683500.2024.2309140.
  • Liu, Y. (2010). Social media tools as a learning resource, Journal of Educational Technology Development and Exchange (JETDE), Vol. 3 No. 1, pp. 101-114, doi: 10.18785/jetde.0301.08.
  • Luo, J. M., Vu, H. Q., Li, G., and Law, R. (2021). Understanding service attributes of robot hotels: a sentiment analysis of customer online reviews, International Journal of Hospitality Management, Vol. 98 No. 103032, pp. 1-10, doi: 10.1016/j.ijhm.2021.103032.
  • Maynard, D., and Funk, A. (2012). Automatic detection of political opinions in tweets, in The Semantic Web: ESWC 2011 Workshops: ESWC 2011 Workshops, 29-30 May, Heraklion, Greece, Springer, Berlin Heidelberg, pp. 88-99.
  • Medhat, W., Yousef, A.H. and Mohamed, H.K. (2014). Combined algorithm for data mining using association rules, Ain Shams Journal of Electrical Engineering, Vol. 1 No. 1, pp. 1-12, doi: 10.48550/arXiv.1410.1343.
  • Murphy, J., Hofacker, C. and Gretzel, U. (2017). Dawning of the age of robots in hospitality and tourism: challenges for teaching and research, European Journal of Tourism Research, Vol. 15, pp. 104-111.
  • Naik, R., Bhamre, R., Poojary, V., Rane, P. and Vajramushti, N. (2023, April). A review on automated waiters, in 2023 11th International Conference on Emerging Trends in Engineering & Technology-Signal and Information Processing (ICETET-SIP), IEEE, pp. 1-6.
  • O’Leary, D.E. (2011). The use of social media in the supply chain: Survey and extensions, Intelligent Systems in Accounting, Finance and Management, Vol. 18 Nos. 2-3, pp. 121-144, doi: 10.1002/isaf.327.
  • Özgürel, G. (2021). Turizmde robotlaşma: Yiyecek-içecek sektöründe robot şefler ve robot garsonlar, OPUS International Journal of Society Researches, Vol. 18 (Yönetim ve Organizasyon Özel Sayısı), ss. 1849-1882, doi: 10.26466/opus.899296.
  • Pieska, S., Luimula, M., Jauhiainen, J., and Spiz, V. (2013). Social service robots in wellness and restaurant applications, Journal of Communication and Computer, Vol. 10, pp. 116-123.
  • Seyitoğlu, F. and Ivanov, S. (2022). Understanding the robotic restaurant experience: a multiple case study, Journal of Tourism Futures, Vol. 8 No. 1, pp. 55-72, doi: 10.1108/JTF-04-2020-0070.
  • Shin, S., Kim, T., Hlee, S. and Koo, C. (2023). Destination advertising on YouTube: Effects of native advertising and comment management on tourist perception, Journal of Hospitality & Tourism Research, Vol. 0 No. 0., pp. 1-18, doi: 10.1177/10963480231194689.
  • Tuomi, A., Tussyadiah, I.P. and Hanna, P. (2021). Spicing up hospitality service encounters: the case of PepperTM, International Journal of Contemporary Hospitality Management, Vol. 33 No. 11, pp. 3906-3925, doi: 10.1108/IJCHM-07-2020-0739.
  • Tussyadiah, I. and Park, S. (2018). Consumer evaluation of hotel service robots, in Information and Communication Technologies in Tourism 2018, Springer, pp. 308-320.
  • Tuzcu, S. (2020). Çevrimiçi kullanıcı yorumlarının duygu analizi ile sınıflandırılması, Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, Vol. 1 No. 2, ss. 1-5.
  • Wadawadagi, R. and Pagi, V. (2020). Sentiment analysis with deep neural networks: comparative study and performance assessment, Artificial Intelligence Review, Vol. 53 No. 8, pp. 6155-6195, doi: 10.1007/s10462-020-09845-2.
  • Yaşa, H. (2022). Çevre(cilik) hareketi olarak sosyal medyada sıfır atık hareketi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, No. 49, ss. 212-230. doi: 10.52642/susbed.1156189.
  • Zhong, L., Sun, S., Law, R., and Zhang, X. (2020). Impact of robot hotel service on consumers’ purchase intention: a control experiment, Asia Pacific Journal of Tourism Research, Vol. 25 No. 7, pp. 780-798, doi: 10.1080/10941665.2020.1726421.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme
Bölüm Araştırma Makalesi
Yazarlar

Merve Onur 0000-0001-7985-1243

Hüseyin Yaşa 0000-0003-0589-0842

Erken Görünüm Tarihi 2 Mayıs 2025
Yayımlanma Tarihi 12 Mayıs 2025
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 15 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 68

Kaynak Göster

APA Onur, M., & Yaşa, H. (2025). SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(68), 281-294. https://doi.org/10.30794/pausbed.1595542
AMA Onur M, Yaşa H. SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA. PAUSBED. Mayıs 2025;(68):281-294. doi:10.30794/pausbed.1595542
Chicago Onur, Merve, ve Hüseyin Yaşa. “SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA”. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, sy. 68 (Mayıs 2025): 281-94. https://doi.org/10.30794/pausbed.1595542.
EndNote Onur M, Yaşa H (01 Mayıs 2025) SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 68 281–294.
IEEE M. Onur ve H. Yaşa, “SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA”, PAUSBED, sy. 68, ss. 281–294, Mayıs2025, doi: 10.30794/pausbed.1595542.
ISNAD Onur, Merve - Yaşa, Hüseyin. “SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA”. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 68 (Mayıs2025), 281-294. https://doi.org/10.30794/pausbed.1595542.
JAMA Onur M, Yaşa H. SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA. PAUSBED. 2025;:281–294.
MLA Onur, Merve ve Hüseyin Yaşa. “SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA”. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, sy. 68, 2025, ss. 281-94, doi:10.30794/pausbed.1595542.
Vancouver Onur M, Yaşa H. SOCIAL PERCEPTIONS ON THE USE OF ROBOT WAITERS IN RESTAURANTS: SENTIMENT AND CONTENT ANALYSIS ON SOCIAL MEDIA. PAUSBED. 2025(68):281-94.