BibTex RIS Kaynak Göster

Atopik Dermatit Patogenezinde Son Gelişmeler

Yıl 2015, Cilt: 13 Sayı: 3, 194 - 200, 01.12.2015
https://doi.org/10.4274/jcp.53215

Öz

Atopik dermatit AD , yatkınlık oluşturan genler, konağın içinde bulunduğu çevre ve immünolojik faktörlerin etkileşimiyle ortaya çıkan multifaktöriyel bir deri hastalığıdır. Hastaların ve ailelerinin yaşam kalitesini önemli ölçüde etkileyebilen bir hastalık olan AD’nin, çocuklarda prevelansı gelişmiş ülkelerde %10-20, ülkemizde ise %4,9 ile 8,1 arasında değişmekte olup sıklığı tüm dünyada giderek artmaktadır. Günümüzde hastalık patogenezini açıklamakta iki temel hastalık hipotezi kabul edilmektedir: İçeriden dışarıya ve dışarıdan içeriye hipotezleri, ancak bunlar da AD patogenezini tüm ayrıntıları ile açıklayabilmiş değildirler. Son yıllardaki genetik araştırmalar filaggrin geni ve AD patogenezi arasında önemli bir ilişki olduğunu göstermektedir. Epidermal bariyer fonksiyon bozukluğunun deride kuruluk ve kaşıntıya neden olarak AD patogenezine katkıda bulunabileceği, ek olarak bazı viral ve bakteriyel etkenlerle enfeksiyona yatkınlık oluşturabileceği gösterilmiştir. Bu derlemede AD patogenezinde etkili olduğu düşünülen genetik, immünolojik ve deri bariyer fonksiyonu ile ilgili mekanizmalar gözden geçirilecektir

Kaynakça

  • 1. Leung DY, Bieber T. Atopic dermatitis. Lancet 2003;361:151-60.
  • 2. Wollenberg A, Wetzel S, Burgdorf WH, Haas J. Viral infections in atopic dermatitis: Pathogenic aspects and clinical management. J Allergy Clin Immunol 2003;112:667-74.
  • 3. Beattie PE, Lewis-Jones MS. A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases. Br J Dermatol 2006;155:145- 51.
  • 4. Ergin S, Ozşahin A, Erdogan BS, Aktan S, Zencir M. Epidemiology of atopic dermatitis in primary schoolchildren in Turkey. Pediatr Dermatol 2008;25:399-401.
  • 5. Civelek E, Sahiner UM, Yuksel H, Boz AB, Orhan F, Uner A, et al. Prevalence, burden, and risk factors of atopic eczema in schoolchildren aged 10-11 years: A national multicenter study. J Investig Allergol Clin Immunol 2011;21:270-7.
  • 6. Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 2008;121:1337- 43.
  • 7. Novak N, Leung DYM. Role of Barier Dysfunction and Immune Response in Atopic Dermatitis. In: Leung DYM, Sampson HA, Geha R, Szefler SJ, (eds). Pediatric Allergy Principles and Practice. 2nd ed. Elsevier, 2010.
  • 8. Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol 2009;102:135-226.
  • 9. Cookson W. The immunogenetics of asthma and eczema: A new focus on the epithelium. Nat Rev Immunol 2004;4:978-88.
  • 10. Boguniewicz M, Leung DY. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol Rev 2011;242:233-46.
  • 11. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, DiazLacava A, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 2006;118:214-9.
  • 12. Bonnelykke K, Pipper CB, Tavendale R, Palmer CN, Bisgaard H. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth. Pediatr Allergy Immunol 2010;21:954-61.
  • 13. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007;120:150- 5.
  • 14. Söderhäll C, Marenholz I, Kerscher T, Rüschendorf F, EsparzaGordillo J, Worm M, et al. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol 2007;5:242.
  • 15. Vasilopoulos Y, Cork MJ, Murphy R, Williams HC, Robinson DA, Duff GW, et al. Genetic association between an AACC insertion in the 3’UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 2004;123:62-6.
  • 16. Guttman-Yassky E, Suarez-Farinas M, Chiricozzi A, Nograles KE, Shemer A, Fuentes-Duculan J, et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol 2009;124:1235-44.
  • 17. Esparza-Gordillo J, Weidinger S, Fölster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 2009;41:596-601.
  • 18. Eyerich K, Huss-Marp J, Darsow U, Wollenberg A, Foerster S, Ring J, et al. Pollen grains induce a rapid and biphasic eczematous immune response in atopic eczema patients. Int Arch Allergy Immunol 2008;145:213-23.
  • 19. Maintz L and Novak N. Getting more and more complex: The pathophysiology of atopic eczema. Eur J Dermatol 2007;17:267- 83.
  • 20. Kuo IH, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol 2013;131:266-78.
  • 21. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009;129:1892-908.
  • 22. Morar N, Cookson WO, Harper JI, Moffatt MF. Filaggrin mutations in children with severe atopic dermatitis. J Invest Dermatol 2007;127:1667-72.
  • 23. Jensen JM, Folster-Holst R, Baranowsky A, Schunck M, WinotoMorbach S, Neumann C, et al. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 2004;122:1423-31.
  • 24. He R, Oyoshi MK, Jin H, Geha RS. Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. Proc Natl Acad Sci U S A 2007;104:15817- 22.
  • 25. Park LS, Martin U, Garka K, Gliniak B, Di Santo JP, Muller W, et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med 2000;192:659-70.
  • 26. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 2011;127:773-86.
  • 27. De Benedetto A, Slifka MK, Rafaels NM, Kuo IH, Georas SN, Boguniewicz M, et al. Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol 2011;128:242-6.
  • 28. Akdis CA, Akdis M, Simon D, Dibbert B, Weber M, Gratzl S, et al. T cells and T cell-derived cytokines as pathogenic factors in the nonallergic form of atopic dermatitis. J Invest Dermatol 1999;113:628-34.
  • 29. Akdis M, Simon HU, Weigl L, Kreyden O, Blaser K, Akdis CA. Skin homing (cutaneous lymphocyte-associated antigenpositive) CD8+ T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis. J Immunol 1999;163:466-75.
  • 30. Kondo S, Yazawa H, Jimbow K. Reduction of serum interleukin-5 levels reflect clinical improvement in patients with atopic dermatitis. J Dermatol 2001;28:237-43.
  • 31. Kiehl P, Falkenberg K, Vogelbruch M, Kapp A. Tissue eosinophilia in acute and chronic atopic dermatitis: A morphometric approach using quantitative image analysis of immunostaining. Br J Dermatol 2001;145:720-9.
  • 32. Badertscher K, Brönnimann M, Karlen S, Braathen LR, Yawalkar N. Mast cell chymase is increased in chronic atopic dermatitis but not in psoriasis. Arch Dermatol Res 2005;296:503-6.
  • 33. Bogiatzi SI, Fernandez I, Bichet JC, Marloie-Provost MA, Volpe E, Sastre X, et al. Cutting Edge: Proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J Immunol 2007;178:3373-7.
  • 34. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008;122:261- 6.
  • 35. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003;171:3262-9.
  • 36. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 2006;121:332-8.
  • 37. Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Brocker EB, Blaser K, et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol 2001;108:839-46.
  • 38. Aktas E, Akdis M, Bilgic S, Disch R, Falk CS, Blaser K, et al. Different natural killer (NK) receptor expression and immunoglobulin E (IgE) regulation by NK1 and NK2 cells. Clin Exp Immunol 2005;140:301-9.
  • 39. Katsuta M, Takigawa Y, Kimishima M, Inaoka M, Takahashi R, Shiohara T. NK cells and gamma delta+ T cells are phenotypically and functionally defective due to preferential apoptosis in patients with atopic dermatitis. J Immunol 2006;176:7736-44.
  • 40. Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY. Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human beta-defensin-3. J Allergy Clin Immunol 2008;122:62-8.
  • 41. Vanbervliet B, Homey B, Durand I, Massacrier C, Ait-Yahia S, de Bouteiller O, et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: Possible role at inflamed epithelial surfaces. Eur J Immunol 2002;32:231- 42.
  • 42. Hata TR, Kotol P, Boguniewicz M, Taylor P, Paik A, Jackson M, et al. History of eczema herpeticum is associated with the inability to induce human beta-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol 2010;163:659-61.
  • 43. Gao PS, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol 2009;124:507-13.
  • 44. Gao PS, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, et al. Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 2010;125:1403-7.

Recent Improvements in the Pathogenesis of Atopic Dermatitis

Yıl 2015, Cilt: 13 Sayı: 3, 194 - 200, 01.12.2015
https://doi.org/10.4274/jcp.53215

Öz

Atopic dermatitis AD is a multifactorial skin disease manifested by the interaction between environmental factors, immune system and the genes predisposing to the disease. It affects the quality of life of patients and their family considerably. The prevelance for children is 10-20% in developed countries, while frequency of AD is considered as rising all over the world. According to the studies conducted in our country, the frequency is about 4.9% to 8.1%. Currently, there are two main hypothesis accepted to explain disease pathogenesis; inside-outside and outsideinside hypotheses. However, these are even not able to define the pathogenetic mechanisms underlying AD in all details. In the recent years, genetic studies have revealed significant role of filaggrin gene in the pathogenesis of AD. Further, epidermal barier dysfunction is found to play an important role in the pathogenesis by causing dryness and pruritus in skin and cause predisposition to infections with some viruses and bacteria. In this review, recent data about genetic, immunologic mechanisms and the dysfunction of epidermal barier complex underlying the pathogenesis of AD will be discussed

Kaynakça

  • 1. Leung DY, Bieber T. Atopic dermatitis. Lancet 2003;361:151-60.
  • 2. Wollenberg A, Wetzel S, Burgdorf WH, Haas J. Viral infections in atopic dermatitis: Pathogenic aspects and clinical management. J Allergy Clin Immunol 2003;112:667-74.
  • 3. Beattie PE, Lewis-Jones MS. A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases. Br J Dermatol 2006;155:145- 51.
  • 4. Ergin S, Ozşahin A, Erdogan BS, Aktan S, Zencir M. Epidemiology of atopic dermatitis in primary schoolchildren in Turkey. Pediatr Dermatol 2008;25:399-401.
  • 5. Civelek E, Sahiner UM, Yuksel H, Boz AB, Orhan F, Uner A, et al. Prevalence, burden, and risk factors of atopic eczema in schoolchildren aged 10-11 years: A national multicenter study. J Investig Allergol Clin Immunol 2011;21:270-7.
  • 6. Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 2008;121:1337- 43.
  • 7. Novak N, Leung DYM. Role of Barier Dysfunction and Immune Response in Atopic Dermatitis. In: Leung DYM, Sampson HA, Geha R, Szefler SJ, (eds). Pediatric Allergy Principles and Practice. 2nd ed. Elsevier, 2010.
  • 8. Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol 2009;102:135-226.
  • 9. Cookson W. The immunogenetics of asthma and eczema: A new focus on the epithelium. Nat Rev Immunol 2004;4:978-88.
  • 10. Boguniewicz M, Leung DY. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol Rev 2011;242:233-46.
  • 11. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, DiazLacava A, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 2006;118:214-9.
  • 12. Bonnelykke K, Pipper CB, Tavendale R, Palmer CN, Bisgaard H. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth. Pediatr Allergy Immunol 2010;21:954-61.
  • 13. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007;120:150- 5.
  • 14. Söderhäll C, Marenholz I, Kerscher T, Rüschendorf F, EsparzaGordillo J, Worm M, et al. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol 2007;5:242.
  • 15. Vasilopoulos Y, Cork MJ, Murphy R, Williams HC, Robinson DA, Duff GW, et al. Genetic association between an AACC insertion in the 3’UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 2004;123:62-6.
  • 16. Guttman-Yassky E, Suarez-Farinas M, Chiricozzi A, Nograles KE, Shemer A, Fuentes-Duculan J, et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol 2009;124:1235-44.
  • 17. Esparza-Gordillo J, Weidinger S, Fölster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 2009;41:596-601.
  • 18. Eyerich K, Huss-Marp J, Darsow U, Wollenberg A, Foerster S, Ring J, et al. Pollen grains induce a rapid and biphasic eczematous immune response in atopic eczema patients. Int Arch Allergy Immunol 2008;145:213-23.
  • 19. Maintz L and Novak N. Getting more and more complex: The pathophysiology of atopic eczema. Eur J Dermatol 2007;17:267- 83.
  • 20. Kuo IH, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol 2013;131:266-78.
  • 21. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009;129:1892-908.
  • 22. Morar N, Cookson WO, Harper JI, Moffatt MF. Filaggrin mutations in children with severe atopic dermatitis. J Invest Dermatol 2007;127:1667-72.
  • 23. Jensen JM, Folster-Holst R, Baranowsky A, Schunck M, WinotoMorbach S, Neumann C, et al. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 2004;122:1423-31.
  • 24. He R, Oyoshi MK, Jin H, Geha RS. Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. Proc Natl Acad Sci U S A 2007;104:15817- 22.
  • 25. Park LS, Martin U, Garka K, Gliniak B, Di Santo JP, Muller W, et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med 2000;192:659-70.
  • 26. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 2011;127:773-86.
  • 27. De Benedetto A, Slifka MK, Rafaels NM, Kuo IH, Georas SN, Boguniewicz M, et al. Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol 2011;128:242-6.
  • 28. Akdis CA, Akdis M, Simon D, Dibbert B, Weber M, Gratzl S, et al. T cells and T cell-derived cytokines as pathogenic factors in the nonallergic form of atopic dermatitis. J Invest Dermatol 1999;113:628-34.
  • 29. Akdis M, Simon HU, Weigl L, Kreyden O, Blaser K, Akdis CA. Skin homing (cutaneous lymphocyte-associated antigenpositive) CD8+ T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis. J Immunol 1999;163:466-75.
  • 30. Kondo S, Yazawa H, Jimbow K. Reduction of serum interleukin-5 levels reflect clinical improvement in patients with atopic dermatitis. J Dermatol 2001;28:237-43.
  • 31. Kiehl P, Falkenberg K, Vogelbruch M, Kapp A. Tissue eosinophilia in acute and chronic atopic dermatitis: A morphometric approach using quantitative image analysis of immunostaining. Br J Dermatol 2001;145:720-9.
  • 32. Badertscher K, Brönnimann M, Karlen S, Braathen LR, Yawalkar N. Mast cell chymase is increased in chronic atopic dermatitis but not in psoriasis. Arch Dermatol Res 2005;296:503-6.
  • 33. Bogiatzi SI, Fernandez I, Bichet JC, Marloie-Provost MA, Volpe E, Sastre X, et al. Cutting Edge: Proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J Immunol 2007;178:3373-7.
  • 34. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008;122:261- 6.
  • 35. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003;171:3262-9.
  • 36. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 2006;121:332-8.
  • 37. Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Brocker EB, Blaser K, et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol 2001;108:839-46.
  • 38. Aktas E, Akdis M, Bilgic S, Disch R, Falk CS, Blaser K, et al. Different natural killer (NK) receptor expression and immunoglobulin E (IgE) regulation by NK1 and NK2 cells. Clin Exp Immunol 2005;140:301-9.
  • 39. Katsuta M, Takigawa Y, Kimishima M, Inaoka M, Takahashi R, Shiohara T. NK cells and gamma delta+ T cells are phenotypically and functionally defective due to preferential apoptosis in patients with atopic dermatitis. J Immunol 2006;176:7736-44.
  • 40. Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY. Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human beta-defensin-3. J Allergy Clin Immunol 2008;122:62-8.
  • 41. Vanbervliet B, Homey B, Durand I, Massacrier C, Ait-Yahia S, de Bouteiller O, et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: Possible role at inflamed epithelial surfaces. Eur J Immunol 2002;32:231- 42.
  • 42. Hata TR, Kotol P, Boguniewicz M, Taylor P, Paik A, Jackson M, et al. History of eczema herpeticum is associated with the inability to induce human beta-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol 2010;163:659-61.
  • 43. Gao PS, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol 2009;124:507-13.
  • 44. Gao PS, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, et al. Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 2010;125:1403-7.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Collection
Yazarlar

Ayşegül Akan Bu kişi benim

Emine Dibek Mısırlıoğlu Bu kişi benim

Can Naci Kocabaş Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 13 Sayı: 3

Kaynak Göster

APA Akan, A., Dibek Mısırlıoğlu, E., & Kocabaş, C. N. (2015). Atopik Dermatit Patogenezinde Son Gelişmeler. Güncel Pediatri, 13(3), 194-200. https://doi.org/10.4274/jcp.53215
AMA Akan A, Dibek Mısırlıoğlu E, Kocabaş CN. Atopik Dermatit Patogenezinde Son Gelişmeler. Güncel Pediatri. Aralık 2015;13(3):194-200. doi:10.4274/jcp.53215
Chicago Akan, Ayşegül, Emine Dibek Mısırlıoğlu, ve Can Naci Kocabaş. “Atopik Dermatit Patogenezinde Son Gelişmeler”. Güncel Pediatri 13, sy. 3 (Aralık 2015): 194-200. https://doi.org/10.4274/jcp.53215.
EndNote Akan A, Dibek Mısırlıoğlu E, Kocabaş CN (01 Aralık 2015) Atopik Dermatit Patogenezinde Son Gelişmeler. Güncel Pediatri 13 3 194–200.
IEEE A. Akan, E. Dibek Mısırlıoğlu, ve C. N. Kocabaş, “Atopik Dermatit Patogenezinde Son Gelişmeler”, Güncel Pediatri, c. 13, sy. 3, ss. 194–200, 2015, doi: 10.4274/jcp.53215.
ISNAD Akan, Ayşegül vd. “Atopik Dermatit Patogenezinde Son Gelişmeler”. Güncel Pediatri 13/3 (Aralık 2015), 194-200. https://doi.org/10.4274/jcp.53215.
JAMA Akan A, Dibek Mısırlıoğlu E, Kocabaş CN. Atopik Dermatit Patogenezinde Son Gelişmeler. Güncel Pediatri. 2015;13:194–200.
MLA Akan, Ayşegül vd. “Atopik Dermatit Patogenezinde Son Gelişmeler”. Güncel Pediatri, c. 13, sy. 3, 2015, ss. 194-00, doi:10.4274/jcp.53215.
Vancouver Akan A, Dibek Mısırlıoğlu E, Kocabaş CN. Atopik Dermatit Patogenezinde Son Gelişmeler. Güncel Pediatri. 2015;13(3):194-200.