Araştırma Makalesi
BibTex RIS Kaynak Göster

Görmek, Karar Vermek, Tasarlamak: Sanal Ürün Geliştirme Üzerine Otoetnografik Yansımalar

Yıl 2026, Cilt: 10 Sayı: 1, 13 - 23, 15.02.2026
https://doi.org/10.54864/planarch.1781820
https://izlik.org/JA74KF46XB

Öz

Epic Games tarafından geliştirilen gerçek zamanlı görselleştirme platformu olan Unreal Motoru, oyunların ötesine geçerek mimarlık, otomotiv tasarımı ve film endüstrisi gibi alanlarda kullanılmaktadır. Yüksek kaliteli görselleştirmeler üretme, gerçek dünya etkileşimlerini simüle etme ve sanal prototiplemeyi destekleme yeteneği sayesinde, endüstriyel tasarımcılar için de değerli bir araç olma potansiyeline sahiptir. Bu çalışma, uygulamalı ve özdüşünümsel bir yaklaşım üzerinden ürün tasarımındaki kullanımını incelemektedir. Yazar elde taşınan elektronik oyun cihazlarının tasarımında geleneksel yöntemleri (eskiz, CAD modelleme, fiziksel maketler) Unreal Motoru tabanlı iş akışlarıyla karşılaştıran tasarım denemeleri gerçekleştirmiştir. Süreçte kaydedilen düşünsel notlar, iş akışı verimliliği, görselleştirme kalitesi, maliyet düşüşü ve öğrenme deneyimini belgelemiştir. Bulgular, Unreal Motorunun iterasyon hızını belirgin şekilde artırdığını, son derece gerçekçi görselleştirmeler sunduğunu, fiziksel prototip ihtiyacını azaltarak malzeme maliyetlerini düşürdüğünü ve tasarım karar alma süreçlerini geliştirdiğini göstermektedir. Çalışma, Unreal Motorunun iş akışlarını hızlandırarak, sürdürülebilirliği destekleyerek ve dijital prototipleme konusunda yeni yetkinlikler kazandırarak endüstriyel tasarım pratiğini dönüştürebileceğini ortaya koymaktadır.

Etik Beyan

Bu çalışma, tek yazarlı otoetnografik bir araştırma olarak yürütüldüğünden etik kurul onayı gerektirmemektedir. Araştırmada insan veya hayvan katılımcı yer almamış, hassas kişisel veri toplanmamıştır. Sunulan tüm yansımalar, veriler ve materyaller yalnızca yazarın kendi tasarım pratiği ve sanal ortamda gerçekleştirdiği öz gözlemlerinden elde edilmiştir.

Kaynakça

  • Abusagr, J., & Mahamed Adan, A. (2023). Virtual Reality strategy from a product development perspective [Bachelor's Thesis]. Chalmers University of Technology. http://hdl.handle.net/20.500.12380/307198
  • Amiri, P. (2024). Review of rendering evolution of game engines in the 3D era. [Bachelor's Thesis, Lahti University of Technology LUT]. https://lutpub.lut.fi/handle/10024/167993
  • Avdonina, N., & Russo, M. (2024). VR Feedback System for Product Design Service. In A. Giordano, M. Russo, & R. Spallone (Eds.), Advances in Representation: New AI- and XR-Driven Transdisciplinarity (pp. 923–935). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-62963-1_57
  • Banfi, F., & Oreni, D. (2025). Unlocking the interactive potential of digital models with game engines and visual programming for inclusive VR and web-based museums, Virtual Archaeology Review. https://doi.org/10.4995/var.2024.22628
  • Bordegoni, M., Carulli, M., & Spadoni, E. (2023). Prototyping: Practices and Techniques. Prototyping User eXperience in eXtended Reality (pp. 29–47). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-39683-0_3
  • Caramida, A. A. (2022). Modeling of 2D/3D Components for Optimizing Operations in Industrial Environments. [Master's Thesis, NOVA University].
  • Chu, E., & Zaman, L. (2021). Exploring alternatives with Unreal Engine’s Blueprints Visual Scripting System. Entertainment Computing, 36, 100388. https://doi.org/10.1016/j.entcom.2020.100388
  • Convard, T. (2020, April). Toyota Vehicle Ergonomics Evaluation by Using VR. Toyota Evaluates Vehicle Ergonomics Utilizing VR and Unreal Engine. https://www.unrealengine.com/en-US/spotlights/toyota-evaluates-vehicle-ergonomics-utilizing-vr-and-unreal-engine (last access: 12.10.2025)
  • Coronado, E., Itadera, S., & Ramirez-Alpizar, I. G. (2023). Integrating Virtual, Mixed, and Augmented Reality to Human–Robot Interaction Applications Using Game Engines: A Brief Review of Accessible Software Tools and Frameworks. Applied Sciences, 13(3), Article 3. https://doi.org/10.3390/app13031292
  • Daniel, M. X. S., Appadurai, N. K., & Suan, W. B. (2023). Enhancing Realism and Creativity in Video/Filmmaking Utilizing Photogrammetry Assets in CGI Environments. 2023 IEEE 21st Student Conference on Research and Development (SCOReD), 369–378. https://doi.org/10.1109/SCOReD60679.2023.10563856
  • Davari, S. (2024). Intelligent Augmented Reality (iAR): Context-aware Inference and Adaptation in AR. [PhD Thesis]. Virginia Polytechnic Institute and State University. https://vtechworks.lib.vt.edu/items/9c1f5ba4-fcb0-4825-b8d3-f4d32c98c576
  • David, A., Joy, E., Kumar, S., & Bezaleel, S. J. (2022). Integrating Virtual Reality with 3D Modeling for Interactive Architectural Visualization and Photorealistic Simulation: A Direction for Future Smart Construction Design Using a Game Engine. Second International Conference on Image Processing and Capsule Networks (pp. 180–192). Springer International Publishing. https://doi.org/10.1007/978-3-030-84760-9_17
  • De Freitas, F. V., Gomes, M. V. M., & Winkler, I. (2022). Benefits and Challenges of Virtual-Reality-Based Industrial Usability Testing and Design Reviews: A Patents Landscape and Literature Review. Applied Sciences, 12(3), Article 3. https://doi.org/10.3390/app12031755
  • Doroudian, S. (2025). Collaboration in Immersive Environments: Challenges and Solutions (No. arXiv:2311.00689). arXiv Preprint. https://doi.org/10.48550/arXiv.2311.00689
  • Espinosa Castillo, A. (2023). Virtual reality application for automotive design reviews. [Bachelor's thesis]. Universitat Politècnica de Catalunya. https://upcommons.upc.edu/handle/2117/395701
  • Fathy, A. T. M., Ghareeb, S. E., & Shaban, Y. (2024). Digital Transformation and Design for Maintainability in Industrial Design. Journal of Art, Design and Music, 3(1). https://doi.org/10.55554/2785-9649.1031
  • Fatima, I., & Sooda, K. (2023). Enhancing Immersive Virtual Reality Product Experiences: Strategies for Graphics Quality, Performance Optimization, and User-Centric Interfaces. IEEE Engineering Informatics, 1–5. https://doi.org/10.1109/IEEECONF58110.2023.10520405
  • Ghinea, M., Deac, G. C., Deac, C. N., & Nita, F. A. (2021). The Importance of Virtual Immersion in the Rapid Prototyping of Industrial Products. Journal of Physics: Conference Series, 1935(1), 012010. https://doi.org/10.1088/1742-6596/1935/1/012010
  • Gibson, I., Rosen, D., & Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer New York. https://doi.org/10.1007/978-1-4939-2113-3
  • He, L., & Zhu, S. (2022). Virtual Reality Technology in Visual Design of Artistic Images: Analysis and Applications. Scientific Programming, 2022(1), 2527623. https://doi.org/10.1155/2022/2527623
  • Hernandez-Ibáñez, L., & Barneche-Naya, V. (2023). Real-Time Lighting Analysis for Design and Education Using a Game Engine. In P. Zaphiris, A. Ioannou, R. A. Sottilare, J. Schwarz, F. Fui-Hoon Nah, K. Siau, J. Wei, & G. Salvendy (Eds.), HCI International 2023 – Late Breaking Papers (pp. 70–81). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48060-7_6
  • History of CAD. (2025, February). History of Computer-Aided Design. https://yeswebim.wordpress.com/2015/01/15/history-of-computer-aided-design/ (last access: 12.10.2025)
  • Ilona, V. (2024). Unreal Engine 5 as an interactive tool for architects in combination with VR Project integrations: Contentions vs Consumers’ perception, Bachelor’s thesis, Jyvaskylan ammattikorkeakoulu University of Applied Sciences, Jyväskylä. http://www.theseus.fi/handle/10024/87699 2
  • Jungherr, A., & Schlarb, D. B. (2022). The Extended Reach of Game Engine Companies: How Companies Like Epic Games and Unity Technologies Provide Platforms for Extended Reality Applications and the Metaverse. Social Media + Society, 8(2), 12. https://doi.org/10.1177/20563051221107641
  • Khor, K. C. (2023). Physical Prototyping. https://medium.com/@kkhor01/hcde-451-a1-model-prototype-8cc954483fa9 (last access: 12.10.2025)
  • Kivi, P. E. J., Mäkitalo, M. J., Žádník, J., Ikkala, J., Vadakital, V. K. M., & Jääskeläinen, P. O. (2022). Real-Time Rendering of Point Clouds with Photorealistic Effects: A Survey. IEEE Access, 10, 13151–13173. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3146768
  • Krishnakumar, S., Letting, C., Johnson, E., Zurita, N. F. S., & Menold, J. (2023). Make it or draw it? Investigating the communicative trade-offs between sketches and prototypes. Design Science, 9, e32. https://doi.org/10.1017/dsj.2023.31
  • Li, J. (2024). Transforming architecture: The synergy of digital fabrication and parametric design. Applied and Computational Engineering, 66, 243–248. https://doi.org/10.54254/2755-2721/66/20240968
  • Lo, C. K., Chen, C. H., & Zhong, R. Y. (2021). A review of digital twins in product design and development. Advanced Engineering Informatics, 48, p.1-15. https://doi.org/10.1016/j.aei.2021.101297
  • Lu, S. C.-Y., Shpitalni, M., & Gadh, R. (1999). Virtual and Augmented Reality Technologies for Product Realization. CIRP Annals, 48(2), 471–495. https://doi.org/10.1016/S0007-8506(07)63229-6
  • Manninen, T. (2000, November 19). Multimedia Game Engine as Distributed Conceptualization and Prototyping Tool. Contextual Virtual Prototyping, Proceedings of IMSA2000 Conference.
  • Mital, A., Desai, A., Subramanian, A., & Mital, A. (2014). Product Development: A Structured Approach to Consumer Product Development, Design, and Manufacture. Elsevier.
  • Moerman, F. (2023). Hygienic design concepts for lighting in the food industry. In J. Holah, H. L. M. Lelieveld, & F. Moerman (Eds.), Hygienic Design of Food Factories (Second Edition) (pp. 531–623). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822618-6.00042-3
  • Mohammadrezaei, E., Ghasemi, S., Dongre, P., Gračanin, D., & Zhang, H. (2024). Systematic Review of Extended Reality for Smart Built Environments Lighting Design Simulations. IEEE Access, 12, 17058–17089. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3359167
  • Morse, C. (2021). Gaming Engines: Unity, Unreal, and Interactive 3D Spaces. Technology|Architecture+Design, 5(2), 246–249. https://doi.org/10.1080/24751448.2021.1967068
  • Nanite Virtualized Geometry. (2025). Unreal Engine Documentation. https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine (last access: 12.10.2025)
  • Paliwal, G., Donvir, A., Gujar, P., & Panyam, S. (2024). Accelerating Time-to-Market: The Role of Generative AI in Product Development. 2024 IEEE Colombian Conference on Communications and Computing (COLCOM), 1–9. https://doi.org/10.1109/COLCOM62950.2024.10720255
  • Plowman, J. (2016). 3D Game Design with Unreal Engine 4 and Blender. Packt Publishing Ltd.
  • Rane, N., Choudhary, S., & Rane, J. (2023). Enhanced Product Design and Development Using Artificial Intelligence (AI), Virtual Reality (VR), Augmented Reality (AR), 4D/5D/6D Printing, Internet of Things (IoT), and Blockchain: A Review (SSRN Scholarly Paper No. 4644059). Social Science Research Network. https://doi.org/10.2139/ssrn.4644059
  • Saraf, V., & Patil, D. D. (2024). Advancing Smart Autonomous Systems: Simulation and Testing Platforms. 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 642–649. https://doi.org/10.1109/ICICNIS64247.2024.10823208
  • Schäfer, A., Reis, G., & Stricker, D. (2022). A Survey on Synchronous Augmented, Virtual, and Mixed Reality Remote Collaboration Systems. ACM Computing Surveys, 55(6), 1–27. https://doi.org/10.1145/3533376
  • Şener, B. (2004). Enhancing the form creation capabilities of digital industrial design tools. [Doctoral Thesis]. Loughborough University. https://repository.lboro.ac.uk/articles/thesis/Enhancing_the_form_creation_capabilities_of_digital_industrial_design_tools/9356369/files/16966319.pdf
  • Shkliar, S., Bozhynskyi, N., Cirella, G. T., Silvestrova, N., Koshel, V., & Malik, N. (2024). Architectural Software Trends: Bridging Education and Practice to Build Ukraine’s Future. Handbook on Post-War Reconstruction and Development Economics of Ukraine: Catalyzing Progress (pp. 455–479). Springer International Publishing. https://doi.org/10.1007/978-3-031-48735-4_25
  • Silva Jasaui, D., Martí-Testón, A., Muñoz, A., Moriniello, F., Solanes, J. E., & Gracia, L. (2024). Virtual Production: Real-Time Rendering Pipelines for Indie Studios and the Potential in Different Scenarios. Applied Sciences, 14(6), Article 6. https://doi.org/10.3390/app14062530
  • Sketching Techniques for Product Design | i-mas. (2025). https://i-mas.com/en/10-essential-sketching-techniques-for-product-design/ (last access: 12.10.2025)
  • Snider, C., Kent, L., Goudswaard, M., & Hicks, B. (2022). Integrated Physical-Digital Workflow in Prototyping – Inspirations from the Digital Twin. Proceedings of the Design Society, 2, 1767–1776. https://doi.org/10.1017/pds.2022.179
  • Snorre, H. (2016). Simulation and design. [Doctoral Thesis]. The Oslo School of Architecture and Design. https://aho.brage.unit.no/aho-xmlui/handle/11250/2433549
  • Söderback, A., & Nguyen, V. (2023). Virtual reality in production development projects. [Bachelor’s thesis]. Chalmers University of Technology. http://hdl.handle.net/20.500.12380/307078
  • Subramanian, S., Sampath, B., Loganathan, D. P. E., Natarajan, E., & Radhakrishnan, E. (2025). The Integration of Augmented and Virtual Reality in Modern Manufacturing. Manufacturing Strategies and Systems (p. 18). CRC Press.
  • Susi, J. (2022). Interactive Architectural Visualization using Unreal Engine. [Bachelor's Thesis]. Savonia University of Applied Sciences. http://www.theseus.fi/handle/10024/744685
  • Tan, Q., & Li, H. (2024). Application of Computer-Aided Design in Product Innovation and Development: Practical Examination on Taking the Industrial Design Process. IEEE Access, 12, 85622–85634. https://doi.org/10.1109/ACCESS.2024.3404963
  • Verón, J., Pérez, C., Calero, C., Moraga, M., Pérez, F., & Cetina, C. (2024). A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine: Raising Awareness on the importance of Green MDD. Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 114–125. https://doi.org/10.1145/3640310.3674099
  • Visai, G. (2024). Cinematic Photoreal Environments in Unreal Engine 5: Create captivating worlds and unleash the power of cinematic tools without coding. Packt Publishing Ltd.
  • Vizcom AI. (2025, February). Online Artificial Intelligence Visualization Services. https://www.vizcom.ai/ (last access: 12.10.2025)
  • Yasuhira, N., & Ishida, S. (2022). Visualization Method of Product Design Intent and Examples of Application in Product Development: Concept and Application of Design Map. IEEE Engineering Management Review, 50(4), 170–185. https://doi.org/10.1109/EMR.2022.3210894
  • Yin, W., Hu, Q., Liu, W., Liu, J., He, P., Zhu, D., & Kornejady, A. (2024). Harnessing Game Engines and Digital Twins: Advancing Flood Education, Data Visualization, and Interactive Monitoring for Enhanced Hydrological Understanding. Water, 16(17), Article 17. https://doi.org/10.3390/w16172528
  • Yin, Y., Zheng, P., Li, C., & Wang, L. (2023). A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation. Robotics and Computer-Integrated Manufacturing, 81(102515). https://doi.org/10.1016/j.rcim.2022.102515
  • Zhang, T. (2024). From digital visual effects to emerging in-camera visual effects: Investigating the change of workflow, occupational roles, and common challenges in Southeast Asian and East Asian countries. [Master’s Thesis]. Nanyang Technological University. https://dr.ntu.edu.sg/handle/10356/174920

Seeing, Deciding, Designing: Autoethnographic Reflections on Virtual Product Development

Yıl 2026, Cilt: 10 Sayı: 1, 13 - 23, 15.02.2026
https://doi.org/10.54864/planarch.1781820
https://izlik.org/JA74KF46XB

Öz

Unreal Engine, a real-time rendering platform developed by Epic Games, has expanded beyond gaming and is used in architecture, automotive design, and the movie industry. Due to its ability to generate high-fidelity visualizations, simulate real-world interactions, and support virtual prototyping, it also has the potential to be a valuable tool for industrial designers. This study investigates its application in product design through a self-reflective practice-based approach. As the sole participant, the author conducted iterative design experiments comparing conventional methods (sketching, CAD modeling, physical mock-ups) with Unreal Engine–based workflows in the design of handheld electronic gaming devices. The author’s reflections documented workflow efficiency, visualization quality, cost reduction, and learning experience. Findings suggest that Unreal Engine significantly improves iteration speed, offers highly realistic visualizations, reduces material costs by limiting the need for physical prototypes, and enhances design decision-making. The study demonstrates that Unreal Engine can transform industrial design practice by streamlining workflows, promoting sustainability, and fostering new competencies in digital prototyping.

Etik Beyan

This study did not require ethical committee approval because it was conducted as a single-author autoethnographic investigation. No human or animal participants were involved, and no sensitive personal data was collected. All reflections, data, and materials presented derive solely from the author’s own design practice and self-observation within a virtual environment.

Kaynakça

  • Abusagr, J., & Mahamed Adan, A. (2023). Virtual Reality strategy from a product development perspective [Bachelor's Thesis]. Chalmers University of Technology. http://hdl.handle.net/20.500.12380/307198
  • Amiri, P. (2024). Review of rendering evolution of game engines in the 3D era. [Bachelor's Thesis, Lahti University of Technology LUT]. https://lutpub.lut.fi/handle/10024/167993
  • Avdonina, N., & Russo, M. (2024). VR Feedback System for Product Design Service. In A. Giordano, M. Russo, & R. Spallone (Eds.), Advances in Representation: New AI- and XR-Driven Transdisciplinarity (pp. 923–935). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-62963-1_57
  • Banfi, F., & Oreni, D. (2025). Unlocking the interactive potential of digital models with game engines and visual programming for inclusive VR and web-based museums, Virtual Archaeology Review. https://doi.org/10.4995/var.2024.22628
  • Bordegoni, M., Carulli, M., & Spadoni, E. (2023). Prototyping: Practices and Techniques. Prototyping User eXperience in eXtended Reality (pp. 29–47). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-39683-0_3
  • Caramida, A. A. (2022). Modeling of 2D/3D Components for Optimizing Operations in Industrial Environments. [Master's Thesis, NOVA University].
  • Chu, E., & Zaman, L. (2021). Exploring alternatives with Unreal Engine’s Blueprints Visual Scripting System. Entertainment Computing, 36, 100388. https://doi.org/10.1016/j.entcom.2020.100388
  • Convard, T. (2020, April). Toyota Vehicle Ergonomics Evaluation by Using VR. Toyota Evaluates Vehicle Ergonomics Utilizing VR and Unreal Engine. https://www.unrealengine.com/en-US/spotlights/toyota-evaluates-vehicle-ergonomics-utilizing-vr-and-unreal-engine (last access: 12.10.2025)
  • Coronado, E., Itadera, S., & Ramirez-Alpizar, I. G. (2023). Integrating Virtual, Mixed, and Augmented Reality to Human–Robot Interaction Applications Using Game Engines: A Brief Review of Accessible Software Tools and Frameworks. Applied Sciences, 13(3), Article 3. https://doi.org/10.3390/app13031292
  • Daniel, M. X. S., Appadurai, N. K., & Suan, W. B. (2023). Enhancing Realism and Creativity in Video/Filmmaking Utilizing Photogrammetry Assets in CGI Environments. 2023 IEEE 21st Student Conference on Research and Development (SCOReD), 369–378. https://doi.org/10.1109/SCOReD60679.2023.10563856
  • Davari, S. (2024). Intelligent Augmented Reality (iAR): Context-aware Inference and Adaptation in AR. [PhD Thesis]. Virginia Polytechnic Institute and State University. https://vtechworks.lib.vt.edu/items/9c1f5ba4-fcb0-4825-b8d3-f4d32c98c576
  • David, A., Joy, E., Kumar, S., & Bezaleel, S. J. (2022). Integrating Virtual Reality with 3D Modeling for Interactive Architectural Visualization and Photorealistic Simulation: A Direction for Future Smart Construction Design Using a Game Engine. Second International Conference on Image Processing and Capsule Networks (pp. 180–192). Springer International Publishing. https://doi.org/10.1007/978-3-030-84760-9_17
  • De Freitas, F. V., Gomes, M. V. M., & Winkler, I. (2022). Benefits and Challenges of Virtual-Reality-Based Industrial Usability Testing and Design Reviews: A Patents Landscape and Literature Review. Applied Sciences, 12(3), Article 3. https://doi.org/10.3390/app12031755
  • Doroudian, S. (2025). Collaboration in Immersive Environments: Challenges and Solutions (No. arXiv:2311.00689). arXiv Preprint. https://doi.org/10.48550/arXiv.2311.00689
  • Espinosa Castillo, A. (2023). Virtual reality application for automotive design reviews. [Bachelor's thesis]. Universitat Politècnica de Catalunya. https://upcommons.upc.edu/handle/2117/395701
  • Fathy, A. T. M., Ghareeb, S. E., & Shaban, Y. (2024). Digital Transformation and Design for Maintainability in Industrial Design. Journal of Art, Design and Music, 3(1). https://doi.org/10.55554/2785-9649.1031
  • Fatima, I., & Sooda, K. (2023). Enhancing Immersive Virtual Reality Product Experiences: Strategies for Graphics Quality, Performance Optimization, and User-Centric Interfaces. IEEE Engineering Informatics, 1–5. https://doi.org/10.1109/IEEECONF58110.2023.10520405
  • Ghinea, M., Deac, G. C., Deac, C. N., & Nita, F. A. (2021). The Importance of Virtual Immersion in the Rapid Prototyping of Industrial Products. Journal of Physics: Conference Series, 1935(1), 012010. https://doi.org/10.1088/1742-6596/1935/1/012010
  • Gibson, I., Rosen, D., & Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer New York. https://doi.org/10.1007/978-1-4939-2113-3
  • He, L., & Zhu, S. (2022). Virtual Reality Technology in Visual Design of Artistic Images: Analysis and Applications. Scientific Programming, 2022(1), 2527623. https://doi.org/10.1155/2022/2527623
  • Hernandez-Ibáñez, L., & Barneche-Naya, V. (2023). Real-Time Lighting Analysis for Design and Education Using a Game Engine. In P. Zaphiris, A. Ioannou, R. A. Sottilare, J. Schwarz, F. Fui-Hoon Nah, K. Siau, J. Wei, & G. Salvendy (Eds.), HCI International 2023 – Late Breaking Papers (pp. 70–81). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48060-7_6
  • History of CAD. (2025, February). History of Computer-Aided Design. https://yeswebim.wordpress.com/2015/01/15/history-of-computer-aided-design/ (last access: 12.10.2025)
  • Ilona, V. (2024). Unreal Engine 5 as an interactive tool for architects in combination with VR Project integrations: Contentions vs Consumers’ perception, Bachelor’s thesis, Jyvaskylan ammattikorkeakoulu University of Applied Sciences, Jyväskylä. http://www.theseus.fi/handle/10024/87699 2
  • Jungherr, A., & Schlarb, D. B. (2022). The Extended Reach of Game Engine Companies: How Companies Like Epic Games and Unity Technologies Provide Platforms for Extended Reality Applications and the Metaverse. Social Media + Society, 8(2), 12. https://doi.org/10.1177/20563051221107641
  • Khor, K. C. (2023). Physical Prototyping. https://medium.com/@kkhor01/hcde-451-a1-model-prototype-8cc954483fa9 (last access: 12.10.2025)
  • Kivi, P. E. J., Mäkitalo, M. J., Žádník, J., Ikkala, J., Vadakital, V. K. M., & Jääskeläinen, P. O. (2022). Real-Time Rendering of Point Clouds with Photorealistic Effects: A Survey. IEEE Access, 10, 13151–13173. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3146768
  • Krishnakumar, S., Letting, C., Johnson, E., Zurita, N. F. S., & Menold, J. (2023). Make it or draw it? Investigating the communicative trade-offs between sketches and prototypes. Design Science, 9, e32. https://doi.org/10.1017/dsj.2023.31
  • Li, J. (2024). Transforming architecture: The synergy of digital fabrication and parametric design. Applied and Computational Engineering, 66, 243–248. https://doi.org/10.54254/2755-2721/66/20240968
  • Lo, C. K., Chen, C. H., & Zhong, R. Y. (2021). A review of digital twins in product design and development. Advanced Engineering Informatics, 48, p.1-15. https://doi.org/10.1016/j.aei.2021.101297
  • Lu, S. C.-Y., Shpitalni, M., & Gadh, R. (1999). Virtual and Augmented Reality Technologies for Product Realization. CIRP Annals, 48(2), 471–495. https://doi.org/10.1016/S0007-8506(07)63229-6
  • Manninen, T. (2000, November 19). Multimedia Game Engine as Distributed Conceptualization and Prototyping Tool. Contextual Virtual Prototyping, Proceedings of IMSA2000 Conference.
  • Mital, A., Desai, A., Subramanian, A., & Mital, A. (2014). Product Development: A Structured Approach to Consumer Product Development, Design, and Manufacture. Elsevier.
  • Moerman, F. (2023). Hygienic design concepts for lighting in the food industry. In J. Holah, H. L. M. Lelieveld, & F. Moerman (Eds.), Hygienic Design of Food Factories (Second Edition) (pp. 531–623). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822618-6.00042-3
  • Mohammadrezaei, E., Ghasemi, S., Dongre, P., Gračanin, D., & Zhang, H. (2024). Systematic Review of Extended Reality for Smart Built Environments Lighting Design Simulations. IEEE Access, 12, 17058–17089. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3359167
  • Morse, C. (2021). Gaming Engines: Unity, Unreal, and Interactive 3D Spaces. Technology|Architecture+Design, 5(2), 246–249. https://doi.org/10.1080/24751448.2021.1967068
  • Nanite Virtualized Geometry. (2025). Unreal Engine Documentation. https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine (last access: 12.10.2025)
  • Paliwal, G., Donvir, A., Gujar, P., & Panyam, S. (2024). Accelerating Time-to-Market: The Role of Generative AI in Product Development. 2024 IEEE Colombian Conference on Communications and Computing (COLCOM), 1–9. https://doi.org/10.1109/COLCOM62950.2024.10720255
  • Plowman, J. (2016). 3D Game Design with Unreal Engine 4 and Blender. Packt Publishing Ltd.
  • Rane, N., Choudhary, S., & Rane, J. (2023). Enhanced Product Design and Development Using Artificial Intelligence (AI), Virtual Reality (VR), Augmented Reality (AR), 4D/5D/6D Printing, Internet of Things (IoT), and Blockchain: A Review (SSRN Scholarly Paper No. 4644059). Social Science Research Network. https://doi.org/10.2139/ssrn.4644059
  • Saraf, V., & Patil, D. D. (2024). Advancing Smart Autonomous Systems: Simulation and Testing Platforms. 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 642–649. https://doi.org/10.1109/ICICNIS64247.2024.10823208
  • Schäfer, A., Reis, G., & Stricker, D. (2022). A Survey on Synchronous Augmented, Virtual, and Mixed Reality Remote Collaboration Systems. ACM Computing Surveys, 55(6), 1–27. https://doi.org/10.1145/3533376
  • Şener, B. (2004). Enhancing the form creation capabilities of digital industrial design tools. [Doctoral Thesis]. Loughborough University. https://repository.lboro.ac.uk/articles/thesis/Enhancing_the_form_creation_capabilities_of_digital_industrial_design_tools/9356369/files/16966319.pdf
  • Shkliar, S., Bozhynskyi, N., Cirella, G. T., Silvestrova, N., Koshel, V., & Malik, N. (2024). Architectural Software Trends: Bridging Education and Practice to Build Ukraine’s Future. Handbook on Post-War Reconstruction and Development Economics of Ukraine: Catalyzing Progress (pp. 455–479). Springer International Publishing. https://doi.org/10.1007/978-3-031-48735-4_25
  • Silva Jasaui, D., Martí-Testón, A., Muñoz, A., Moriniello, F., Solanes, J. E., & Gracia, L. (2024). Virtual Production: Real-Time Rendering Pipelines for Indie Studios and the Potential in Different Scenarios. Applied Sciences, 14(6), Article 6. https://doi.org/10.3390/app14062530
  • Sketching Techniques for Product Design | i-mas. (2025). https://i-mas.com/en/10-essential-sketching-techniques-for-product-design/ (last access: 12.10.2025)
  • Snider, C., Kent, L., Goudswaard, M., & Hicks, B. (2022). Integrated Physical-Digital Workflow in Prototyping – Inspirations from the Digital Twin. Proceedings of the Design Society, 2, 1767–1776. https://doi.org/10.1017/pds.2022.179
  • Snorre, H. (2016). Simulation and design. [Doctoral Thesis]. The Oslo School of Architecture and Design. https://aho.brage.unit.no/aho-xmlui/handle/11250/2433549
  • Söderback, A., & Nguyen, V. (2023). Virtual reality in production development projects. [Bachelor’s thesis]. Chalmers University of Technology. http://hdl.handle.net/20.500.12380/307078
  • Subramanian, S., Sampath, B., Loganathan, D. P. E., Natarajan, E., & Radhakrishnan, E. (2025). The Integration of Augmented and Virtual Reality in Modern Manufacturing. Manufacturing Strategies and Systems (p. 18). CRC Press.
  • Susi, J. (2022). Interactive Architectural Visualization using Unreal Engine. [Bachelor's Thesis]. Savonia University of Applied Sciences. http://www.theseus.fi/handle/10024/744685
  • Tan, Q., & Li, H. (2024). Application of Computer-Aided Design in Product Innovation and Development: Practical Examination on Taking the Industrial Design Process. IEEE Access, 12, 85622–85634. https://doi.org/10.1109/ACCESS.2024.3404963
  • Verón, J., Pérez, C., Calero, C., Moraga, M., Pérez, F., & Cetina, C. (2024). A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine: Raising Awareness on the importance of Green MDD. Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 114–125. https://doi.org/10.1145/3640310.3674099
  • Visai, G. (2024). Cinematic Photoreal Environments in Unreal Engine 5: Create captivating worlds and unleash the power of cinematic tools without coding. Packt Publishing Ltd.
  • Vizcom AI. (2025, February). Online Artificial Intelligence Visualization Services. https://www.vizcom.ai/ (last access: 12.10.2025)
  • Yasuhira, N., & Ishida, S. (2022). Visualization Method of Product Design Intent and Examples of Application in Product Development: Concept and Application of Design Map. IEEE Engineering Management Review, 50(4), 170–185. https://doi.org/10.1109/EMR.2022.3210894
  • Yin, W., Hu, Q., Liu, W., Liu, J., He, P., Zhu, D., & Kornejady, A. (2024). Harnessing Game Engines and Digital Twins: Advancing Flood Education, Data Visualization, and Interactive Monitoring for Enhanced Hydrological Understanding. Water, 16(17), Article 17. https://doi.org/10.3390/w16172528
  • Yin, Y., Zheng, P., Li, C., & Wang, L. (2023). A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation. Robotics and Computer-Integrated Manufacturing, 81(102515). https://doi.org/10.1016/j.rcim.2022.102515
  • Zhang, T. (2024). From digital visual effects to emerging in-camera visual effects: Investigating the change of workflow, occupational roles, and common challenges in Southeast Asian and East Asian countries. [Master’s Thesis]. Nanyang Technological University. https://dr.ntu.edu.sg/handle/10356/174920
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlık ve Tasarımda Bilgi Teknolojileri, Mimarlık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Özkal Özsoy 0000-0001-5531-3539

Gönderilme Tarihi 10 Eylül 2025
Kabul Tarihi 21 Ekim 2025
Yayımlanma Tarihi 15 Şubat 2026
DOI https://doi.org/10.54864/planarch.1781820
IZ https://izlik.org/JA74KF46XB
Yayımlandığı Sayı Yıl 2026 Cilt: 10 Sayı: 1

Kaynak Göster

APA Özsoy, H. Ö. (2026). Seeing, Deciding, Designing: Autoethnographic Reflections on Virtual Product Development. PLANARCH - Design and Planning Research, 10(1), 13-23. https://doi.org/10.54864/planarch.1781820

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929