Derleme
BibTex RIS Kaynak Göster

Technological Developments in Rotary Compressors

Yıl 2023, , 425 - 436, 27.03.2023
https://doi.org/10.2339/politeknik.1003699

Öz

The efficient use of energy is one of the most important issues to be solved after water and food problems. In 2020, approximately 290 billion kilowatt-hours of electricity was consumed in Turkey. About 10% of the electricity consumption in industry is used for the production of compressed air. Therefore, increasing the performance of compressors used in the production of compressed air is of great importance for the industry and our country. In this study, studies aimed at increasing the efficiency of rotary compressors, which are widely used in refrigerators and air conditioners, have been compiled and examined under the titles. In addition, advantages, disadvantages and technological developments of rotary compressors were evaluated and it was aimed to contribute to the literature.

Kaynakça

  • [1] Cai, D., Qiu, C., Pan, J., Yang, X., He, G., Tetsuhide, Y., ..., Li, H.. “Leakage characteristics and an updated volumetric efficiency prediction model of rolling piston type rotary compressor for small capacity air-conditioner and heat pump applications”, Applied Thermal Engineering, 121, (2017).
  • [2] Gu, H., Chen, Y., Wu, J., Jiang, Y., & Sundén, B.. “Impact of discharge port configurations on the performance of sliding vane rotary compressors with a rotating cylinder”, Applied Thermal Engineering, 186, (2021).
  • [3] Jadhav, T. S., & Lele, M. M., “Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones” Engineering Science and Technology, an International Journal, 18(4):669-673, (2015).
  • [4] Gürel, A. E., Ağbulut, Ü., Ergün, A., & Ceylan, I.. “Environmental and economic assessment of a low energy consumption household refrigerator”, Engineering Science and Technology, an International Journal, 23(2):365-372, (2020).
  • [5] Abdulhussain, M. A., “CFD pretending of vapor and liquid refrigerant mixing in variable speed scroll compressor” Engineering Science and Technology, an International Journal, 22(1):168-176, (2019).
  • [6] Vittorini, D., Bianchi, G., & Cipollone, R.. “Energy saving potential in existing volumetric rotary compressors”, Energy Procedia, 81:1121-1130, (2015).
  • [7] Saidur, R., Rahim, N. A., and Hasanuzzaman, M., “A review on compressed-air energy use and energy savings”, Renewable and Sustainable Energy Reviews, 14(4):1135-1153 (2010).
  • [8] The Global Air Compressor Market, 2021 URL: https://www.businesswire.com/news/home/20210909006010/en/Global-Air-Compressor-Market-2021-2026--- Stationary-Air-Compressors-to-Boost-the-100-Bn-Market---ResearchAndMarkets.com
  • [9] Sivakumar, V., “Design of Piston Compressor Coolers." (2019).
  • [10] Vimmr, J., "Mathematical modelling of compressible inviscid fluid flow through a sealing gap in the screw compressor”, Mathematics and computers in Simulation, 61.3-6:187-197, (2003).
  • [11] Toshiba compressor catalog http://toshibacompressor.com/index.php
  • [12] Qu, Z.C., Lin, X.W., Feng, J.M., Zhou, H., “Theory of synchronal rotary compressor” West Lafayette, Purdue University, Indiana, USA, (2004).
  • [13] Molinaroli, L., Joppolo, C. M., and De Antonellis, S., “A semi-empirical model for hermetic rolling piston compressors”, International Journal of Refrigeration, 79:226-237, (2017).
  • [14] 14. Ooi, K.T., Shakya, P., “A new compact rotary compressor: coupled vane compressor”, Purdue University, (2018).
  • [15] Wang, B., Liu, X., Shi, W., & Ding, Y.. “An enhanced rotary compressor with gas injection through a novel end-plate injection structure”, Applied Thermal Engineering, 131:180-191, (2018).
  • [16] Okur, M., Akmandor, I. S., “Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine”, Applied Thermal Engineering, 31(6-7):1031-1038, (2011).
  • [17] 17. Tan, K. M., and Ooi, K. T.. “Journal bearings design for a novel revolving vane compressor”, International Journal of Refrigeration, 34(1):94-104, (2011).
  • [18] Wu, J., & Chen, A., “A new structure and theoretical analysis on leakage and performance of an oil-free R290 rolling piston compressor”, International Journal of Refrigeration, 49:110-118, (2015).
  • [19] Yan, G., Jia, Q., & Bai, T., “Experimental investigation on vapor injection heat pump with a newly designed twin rotary variable speed compressor for cold regions”, International Journal of Refrigeration, 62:232-241, (2016).
  • [20] Bianchi, G., Cipollone, R., Murgia, S., & Contaldi, G.. “Development of an internal air cooling sprayed oil injection technique for the energy saving in sliding vane rotary compressors through theoretical and experimental methodologies”, International Journal of Refrigeration, 52:11-20, (2015).
  • [21] Wu, J., & Wang, G., “Numerical study on oil supply system of a rotary compressor”, Applied thermal engineering, 61(2):425-432, (2013).
  • [22] Zhu, Y., He, G., Sun, W., Shimoji, M., & Chen, X., “Experimental investigation on startup process for oil supply system of a variable speed rotary compressor”, International Journal of Refrigeration, 113:58-69, (2020).
  • [23] Zhu, Y., He, G., Sun, W., Shimoji, M., Chen, X., “Investigation on the characteristics of oil supply system for a hermetic variable speed rotary compressor”, International Journal of Refrigeration, 118:150-160, (2020).
  • [24] Fukuta M, Yanagisawa T, Shimizu T. “Analysis of oil film at vane side in vane compressors”, Int Comp Eng Conf., 395–400 (1996).
  • [25] Kitsunai, Y., Matsui, M. , Oyagi, S., “High Efficiency Development of a Rotary Compressor by Clarification of its Shaft Dynamic Motion”, Proceedings of the International Compressor Engineering Conference, 1276, (2010).
  • [26] Hirayama, T., Miura, K. , Hattori, H. , Ito, Y., “Numerical Analysis for Mixed Lubrication in Journal Bearings of Rotary Compressors” Int. Compress. Eng. Conf. 1–8, (2006).
  • [27] Bianchi, G., Cipollone, R., Murgia, S., Contaldi, G., “Performance enhancement in sliding vane rotary compressors through a sprayed oil injection technology” 22th International Compressor Engineering Conference, Purdue University, (2014).
  • [28] Ma, R., Wu, Y. T., Du, C. X., Chen, X., Zhang, D. L., & Ma, C. F., “The performance test of a modified miniature rotary compressor in upright and inverted modes subjected to microgravity”, Applied Thermal Engineering, 92:81-92, (2016).
  • [29] Fukuda T., Hayano, M., “HFC/POE lubricity evaluation on the rotary compressor in system operation”, Proceedings of the 1996 International Compressor Engineering Conference at Purdue, (1996).
  • [30] Kim, H. J., “Lubrication oil pumping by utilizing vane motion in a horizontal rotary compressor” International journal of refrigeration, 28(4):498-505, (2005).
  • [31] Kim, H. J., & Lancey, T. W., Numerical study on the lubrication oil distribution in a refrigeration rotary compressor. International journal of refrigeration, 26(7):800-808, (2003).
  • [32] Zhu, Y., He, G., Sun, W., Shimoji, M., & Chen, X., “Effect of inlet structures on the performance of oil supply system of a variable speed rotary compressor” Journal of Fluids Engineering, 141(8), (2019).
  • [33] Zhu, Y., He, G., Sun, W., Shimoji, M., & Chen, X.. “Effect of oil stirrer on the performance of oil supply system for a variable speed rotary compressor” International Journal of Refrigeration, 101:1-10, (2019).
  • [34] Ooi, K. T., & Wong, T. N., “A computer simulation of a rotary compressor for household refrigerators”, Applied Thermal Engineering, 17(1):65-78, (1997).
  • [35] Bianchi, G., & Cipollone, R. “Friction power modeling and measurements in sliding vane rotary compressors” Applied Thermal Engineering, 84:276-285, (2015).
  • [36] Sung, H. C., “Tribological characteristics of various surface coatings for rotary compressor vane” Wear, 221(2):77-85, (1998).
  • [37] Lee, Y. Z., & Oh, S. D., “Friction and wear of the rotary compressor vane–roller surfaces for several sliding conditions”, Wear, 255(7-12):1168-1173, (2003).
  • [38] Chen, Z., Wu, J., & Li, G.. “Experimental study on the tribological characteristic of vane–roller interface of HC290 rotary compressor with mineral oil”, International Journal of Refrigeration, 94:205-213, (2018).
  • [39] Geng, K., Geng, A., Wang, X., Zheng, X., Wei, W., Zhao, T., ... & He, Y.. “Frictional characteristics of the vane–chute pair in a rolling piston compressor based on the second-order motion” Tribology International, 133:111-125, (2019).
  • [40] Yanagisawa T., Shimizu T., “Friction losses in rolling piston type rotary compressors. III”, Int. J. Refrig. 8:159–165, (1985).
  • [41] Okur, M., Arabaci, E., “Experimental study of a novel hinged vane rotary turbine–part I: The effect of different vane thickness and vane weight on turbine performance”, International Journal of Refrigeration, 51:70-76, (2015).
  • [42] Hua, Y., Zongchang, Q., Hui, Z., Bingfeng, Y., “Friction characteristics of sliding vane for synchronal rotary compressor” J. Xi’an Jiaotong Univ., 42(7):843-847, (2008).
  • [43] Tan, K. M., & Ooi, K. T., “A novel revolving vane compressor with a fixed-vane”, International Journal of Refrigeration, 34(8):1980-1988, (2011).
  • [44] Teh, Y. L., & Ooi, K. T. “Theoretical study of a novel refrigeration compressor–Part I: Design of the revolving vane (RV) compressor and its frictional losses”, International Journal of Refrigeration, 32(5):1092-1102, (2009).
  • [45] Subiantoro, A., & Ooi, K. T., “Analytical study of the endface friction of the revolving vane mechanism”, International Journal of Refrigeration, 34(5):1276-1285, (2011).
  • [46] Gu, H., Zhou, X., Chen, Y., Wu, J., Wu, Z., Jiang, Y., & Sundén, B., “Analysis, modeling and simulations of an innovative sliding vane rotary compressor with a rotating cylinder”, Energy Conversion and Management, 230:113822, (2021).
  • [47] De Lim, Y., & Ooi, K. T., “Performance analysis of a U-Vane compressor” Applied Thermal Engineering, 178, 115570, (2020).
  • [48] Costa C.M.N.F., Ferreira R.T.S., Prata A.T., “Considerations about the leakage through the minimal clearance in a rolling piston compressor”, Purdue University, (1990).
  • [49] Takebayashi, M. , Hata, H. , Iizuka, T. , et al. , “A study on wear characteristics of a rolling-piston-type rotary compressor”, Proceedings of the International Compressor Engineering Conference at Purdue, 145–152, (2000).
  • [50] Osama A.H., “Theoretical modeling of sliding vane compressor with leakage”, Int J Refrig., 32(7):1555–62, (2009).
  • [51] Gasche, J.L. , Andreotti, T. , Maia, C.R.M., “A model to predict R134a refrigerant leakage through the radial clearance of rolling piston compressors”, International Journal of Refrigeration, 35:2223–2232, (2012).
  • [52] Yanagisawa, T., Shimizu, T., “Leakage losses with a rolling piston type rotary compressor I. Radial clearance on the rolling piston”, Int. J. Refrig., 8:75–84, (1985).
  • [53] Reed, W.A, Hamilton, JF., “Internal leakage effects in sliding vane, rotary compressors”, International Conference on Compressors and Their Systems, West Lafayette, Indiana, USA, (1980).
  • [54] Yanagisawa T., Shimizu T., “Leakage losses with a rolling piston type rotary compressor. II. Leakage losses through clearances on rolling piston faces”, International Journal of Refrigeration, 8:152–158, (1985).
  • [55] Hugenroth, J., “Oil-less Swing Compressor Development”, International Compressor Engineering Conference, 1–10, (2014).
  • [56] Bradshaw, C.R., Groll, E.A., “A comprehensive model of a novel rotating spool compressor”, International Journal of Refrigeration, 36:974–1981.1, (2013).
  • [57] Cai, D., He, G., Yokoyama, T., Tian, Q., Yang, X., & Pan, J., “Simulation and comparison of leakage characteristics of R290 in rolling piston type rotary compressor”, International Journal of Refrigeration, 53:42-54, (2015).
  • [58] Aw, K. T., Ooi, K. T., “Leakage study of a lubricant-free revolving vane compressor”, International Journal of Refrigeration, 124:122-133, (2021).
  • [59] Yang, H., Qu, Z., Zhou, H., & Yu, B., “Study on leakage via the radial clearance in a novel synchronal rotary refrigeration compressor”, International journal of Refrigeration, 34(1):84-93, (2011).
  • [60] Teh, Y. L., & Ooi, K. T., “Theoretical study of a novel refrigeration compressor-Part III: Leakage loss of the revolving vane (RV) compressor and a comparison with that of the rolling piston type”, International Journal of Refrigeration, 32(5):945-952, (2009).
  • [61] He, G., Sun, W., Zhu, Y., Yang, X., & Cai, D., “Experimental performance evaluation on leakage characteristics of R32 in rolling piston type rotary compressor”, International Journal of Refrigeration, 91:177-188 (2018).
  • [62] L Adornato, V., Padhy, S. K., Herzog, R. R.," Theoretical Modeling of Lubrication System of a Rotary Compressor", Proc. of the International Appliance Technical Conference, Purdue University, (1992).
  • [63] Wu, J., Hu, J., Chen, A., Mei, P., Zhou, X., & Chen, Z., “Numerical analysis of temperature distribution of motor-refrigerant in a R32 rotary compressor”, Applied Thermal Engineering, 95:365-373, (2016).
  • [64] Shi H., Wu, J., “Thermal analysis of oil sump and compression unit in a rotary compressor” Applied Thermal Engineering, 164:114465, (2020).
  • [65] Sanaye, S., Dehghandokht, M., Mohammadbeigi, H., & Bahrami, S., “Modeling of rotary vane compressor applying artificial neural network”, International Journal of Refrigeration, 34(3):764-772, (2011).
  • [66] Huang, P. X., “Under-compression (over-expansion)–an isochoric or adiabatic process?” International Compressor Engineering Conference, Purdue University, (2012).
  • [67] Takeshita, S., “Simulation and Modeling of an A/C Rotary Vane Compressor”. SAE transactions, 166-176, (1997).
  • [68] Abagnale, C., Cardone, M., Gargiulo, B., Marialto, R., “Ideal specific work of rotary compressors: A new approach” Energy Procedia, 101:710-717, (2016).
  • [69] Tan, K. M., Ooi, K. T., “Heat transfer in compression chamber of a revolving vane (RV) compressor” Applied Thermal Engineering, 31(8-9):1519-1526, (2011).
  • [70] Biao, X., Tongyi, H., Lin, H., Yan, Y., Yuying, S.,Wei, W., “Experimental study of an improved air-source heat pump system with a novel three-cylinder two-stage variable volume ratio rotary compressor”, International Journal of Refrigeration, 100:343-353, (2019).
  • [71] Ishiil, N., Morita, N., Kurimoto, M., Shuichi, K.S.A.K., Amamoto, Y., “Calculations for compression efficiency caused by heat transfer in compact rotary compressors”, International Compressor Engineering Conference, Purdue University, West Lafayette, IN, USA, 1423, (2000).
  • [72] Lin, J., Lian, Y., Wu, J., “Numerical investigation on vapor-liquid two-phase compression in the cylinder of rotary compressors” Applied Thermal Engineering, 170:115022, (2020).
  • [73] Ishii, N., Fukushima, M., Yamamura, M., Fujiwara, S.& Kakita, S., Optimum Combination of Dimensions for High Mechanical Efficiency of a Rolling-Piston Rotary Compressor, Proc. International Compressor Engineering Conference at Purdue, 418-424, (1990).
  • [74] Bianchi, G., Cipollone, R., “Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors”, Applied Energy, 142:95-107, (2015).
  • [75] Huang Y.M., Tsay S.N., “Mechanical efficiency optimization of a sliding vane rotary compressor”, J Pressure Vessel Technology, 131(6):061601, (2009).
  • [76] Molinaroli, L., Joppolo, C. M., De Antonellis, S., A semi-empirical model for hermetic rolling piston compressors. International Journal of Refrigeration, 79:226- 237 (2017).
  • [77] Ba, D. C., Deng, W. J., Che, S. G., Li, Y., Guo, H. X., Li, N.,Yue, X. J., “Gas dynamics analysis of a rotary compressor based on CFD”, Applied Thermal Engineering, 99:1263-1269 (2016).
  • [78] Park, Y. C., “Transient analysis of a variable speed rotary compressor”, Energy Conversion and Management, 51(2):277-287, (2010).
  • [79] Shin, M., Na, S., Lee, J., Min, B., Choi, G., Model analysis of a novel compressor with a dual chamber for high-efficiency systems. Applied Thermal Engineering, 158:113717, (2019).
  • [80] He, Z., Yang, X., Li, D., Wu, W., “Dynamic characteristics of a swing compressor for an air conditioning system at different discharge pressures”, International Journal of Refrigeration, 112:125-135 (2020).
  • [81] Teh, Y. L., Ooi, K. T., “Experimental study of the revolving vane (RV) compressor”, Applied Thermal Engineering, 29(14-15):3235-3245, (2009).
  • [82] Tan, K. M., & Ooi, K. T., “Experimental study of fixed-vane revolving vane compressor”, Applied Thermal Engineering, 62(1):207-214, (2014).
  • [83] Teh, Y. L., Ooi, K. T., & Djamari, D. W., “Theoretical study of a novel refrigeration compressor–Part II: Performance of a rotating discharge valve in the revolving vane (RV) compressor”, International Journal of Refrigeration, 32(5):1103-1111, (2009).
  • [84] Shuxue, X., Guoyuan, M., “Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor”, Applied Thermal Engineering, 62(2):803-808, (2014).
  • [85] Yang, X., Dong, C., Qu, Z., “Design and dynamic analysis of a novel double swing vane compressor for electric vehicle air conditioning systems”, International Journal of Refrigeration, 76:52–62, (2017).
  • [86] Cipollone, R., Di Battista, D., “Sliding vane rotary pump in engine cooling system for automotive sector”, Applied Thermal Engineering, 76:157-166, (2015).
  • [87] Hattori, H. , Kawashima, N. , “Dynamic analysis of a rotor-journal bearing system for twin rotary compressors”, Proceedings of the International Compressor Engineering Conference School, 768, (1990).
  • [88] Huang, Y. M., Liaw, Y. S., “The impact of sliding blades in a rotary compressor”, J. Mech. Des., 123(4):583-589, (2001).
  • [89] Zhou H, Qu ZC, Yang H, Yu BF. “Dynamic model and numerical simulation for synchronal rotary compressor”, Journal of Fluids Engineering, 31(4):041102, (2009).
  • [90] Ahn, H. J., Han, D. C., Hwang, I. S.. “A built-in bearing sensor to measure the shaft motion of a small rotary compressor for air conditioning” Tribology International, 36(8):561-572, (2003).
  • [91] Yu, X., Tan, Q., Ren, Y., Jia, X., & Jin, L., “Numerical study of the reed valve impact in the rotary compressor by FSI model” Energy Procedia, 105:4890-4897, (2017).
  • [92] Wang, Z., Yu, X., Liu, F., Feng, Q., Tan, Q., “Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor” International Journal of Refrigeration, 36(7):1938-1950, (2013).
  • [93] Ito, Y., Miura, K., Hatayama, M., “Dynamic analysis of a rotor journal bearing system with large dynamic loads for rotary compressors”, Proceedings of the 9th Asian Conference on Refrigeration and Air-Conditioning, 142070, (2018).
  • [94] Zhang, H., Wu, J., Xie, F., Chen, A., Li, Y., “Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compressors”, International Journal of Refrigeration, 47:36-45, (2014).
  • [95] Ferraris, G., Andrianoely, M. A., Berlioz, A., Dufour, R., “Influence of cylinder pressure on the balancing of a rotary compressor”, Journal of Sound and Vibration, 292(3-5):899 910, (2006).
  • [96] Heo, J., Yun, R., & Kim, Y., Simulations on the performance of a vapor-injection heat pump for different cylinder volume ratios of a twin rotary compressor, International Journal of Refrigeration, 36(3):730-744, (2013).
  • [97] Baek, C., Heo, J., Jung, J., Cho, H., & Kim, Y., “Effects of the cylinder volume ratio of a twin rotary compressor on the heating performance of a vapor injection CO2 cycle” Applied Thermal Engineering, 67(1-2):89-96, (2014).
  • [98] Sun, W., He, G., Ning, Q., Song, H., Pang, Q., “Performance investigation and optimization analysis for vapor injection rotary compressor oriented to circular end-plate injection port without check valve” Applied Thermal Engineering, 183:116196, (2021).
  • [99] Xu, X., Hwang, Y., Radermacher, R.J.I.J.o.R., “Refrigerant injection for heat pumping/air conditioning systems: literature review and challenges discussions”, International Journal of Refrigeration, 34:402-415, (2011).
  • [100] Kim, D., Jeon, Y., Jang, D. S., Kim, Y., Performance comparison among two-phase, liquid, and vapor injection heat pumps with a scroll compressor using R410A. Applied Thermal Engineering, 137:193-202, (2018).
  • [101] Yang, M., Wang, B., Li, X., Shi, W., Zhang L.J.i.j.o.r., “Evaluation of two-phase suction, liquid injection and two-phase injection for decreasing the discharge temperature of the R32 scroll compressor”, International Journal of Refrigeration, 59:269-280, (2015).
  • [102] Wang, B., Liu, X., Ding, Y., Shi, W., “An enhanced rotary compressor with gas injection through a novel end-plate injection structure end-plate gas injection with check valve”, International Journal of Refrigeration, 88:516–522, (2018).
  • [103] Mathison, M.M., Braun, J.E., Groll, E.A.J.I.j.o.r., “Modeling of a novel spool compressor with multiple vapor refrigerant injection ports”, International Journal of Refrigeration, 36:1982-1997, (2013).
  • [104] Wang, B., Ding, Y., & Shi, W., “Experimental research on vapor-injected rotary compressor through end-plate injection structure with check valve”, International Journal of Refrigeration, 96:131-138, (2018).
  • [105] Wang, B., Liu, X., Shi, W., “Performance improvement of air source heat pump using gas-injected rotary compressor through port on blade” International Journal of Refrigeration, 73:91-98, (2017).
  • [106] Wang, B., Liu, X., & Shi, W., “Comparative research on air conditioner with gas-injected rotary compressor through injection port on blade”, Applied Thermal Engineering, 106:67-75, (2016).
  • [107] Jeon, Y., Lee, S. H., Kim, W., Jung, J., Kim, Y., “Numerical study on the optimal design of injection-hole geometries of a twin rotary compressor in a liquid injection heat pump”, Applied Thermal Engineering, 113:1178-1188, (2017).
  • [108] Liu, X., Wang, B., Shi, W., Zhang, P., “A novel vapor injection structure on the blade of a rotary compressor”, Applied Thermal Engineering, 100:219-1228, (2016).
  • [109] Ko, Y., Park, S., Jin, S., Kim, B., & Jeong, J. H., “The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle” Applied Energy, 104:187-196, (2013).
  • [110] Lin, J., Wu, J., Zhang, Z., Chen, Z., Xie, J., & Lu, J., “Experimental investigation of startup characteristics of R290 rotary compressor under low ambient temperature heating condition” International Journal of Refrigeration, 77:128-135, (2017).
  • [111] Wu, J., Lin, J., Zhang, Z., Chen, Z., Xie, J., & Lu, J., “Experimental investigation on cold startup characteristics of a rotary compressor in the R290 air-conditioning system under cooling condition”, International Journal of Refrigeration, 65:209-217, (2016).
  • [112] Wu, J., Lin, J., Zhang, Z., Chen, Z., Xie, J., & Lu, J., “Experimental investigation of dynamic characteristics of a rotary compressor and its air conditioner using R290 during warm startup” Applied Thermal Engineering, 125:1469-1477, (2017).
  • [113] Lee, S. J., Kim, H. B., Huh, J. K., Lee, S. J., Ahn, B. H., “Quantitative analysis of flow inside the accumulator of a rotary compressor” International Journal of Refrigeration, 26(3):321-327, (2003).
  • [114] Vande, VJ, Vierendeels, J., Dick E., “A grid generator for flow calculations in rotary volumetric compressors”, Vienna, Austria: Fourth European Congress on Computational Methods in Applied Sciences and Engineering, (2004).
  • [115] Bianchi, G., Rane, S., Kovacevic, A., Cipollone R., “Deforming grid generation for numerical simulations of fluid dynamics in sliding vane rotary machines”, Advances in Engineering Software, 112:180–91, (2017).

Döngüsel Kompresörlerde Teknolojik Gelişmeler

Yıl 2023, , 425 - 436, 27.03.2023
https://doi.org/10.2339/politeknik.1003699

Öz

Enerjinin verimli bir şekilde kullanılması, su ve gıda sorunlarından sonra çözümlenmesi gereken en önemli konulardan birisidir. 2020 yılında Türkiye’de yaklaşık 290 milyar kilowatt saat elektrik tüketimi gerçekleşmiştir. Endüstride elektrik tüketiminin yaklaşık olarak %10’u sıkıştırılmış havanın üretimi için kullanılmaktadır. Bu sebeple sıkıştırılmış hava eldesinde kullanılan kompresörlerin performansının arttırılması endüstri ve ülkemiz açısından büyük önem taşımaktadır. Bu çalışmada, son zamanlarda buzdolabı ve klimalarda yaygın olarak kullanılan döngüsel kompresörlerin verimini arttırmaya yönelik çalışmalar konu başlıkları altında derlenmiş ve incelenmiştir. Ayrıca döngüsel kompresörlerin avantaj, dezavantaj ve teknolojik olarak gelişimleri de değerlendirilmiş olup, literatüre katkı sağlanması amaçlanmıştır.

Kaynakça

  • [1] Cai, D., Qiu, C., Pan, J., Yang, X., He, G., Tetsuhide, Y., ..., Li, H.. “Leakage characteristics and an updated volumetric efficiency prediction model of rolling piston type rotary compressor for small capacity air-conditioner and heat pump applications”, Applied Thermal Engineering, 121, (2017).
  • [2] Gu, H., Chen, Y., Wu, J., Jiang, Y., & Sundén, B.. “Impact of discharge port configurations on the performance of sliding vane rotary compressors with a rotating cylinder”, Applied Thermal Engineering, 186, (2021).
  • [3] Jadhav, T. S., & Lele, M. M., “Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones” Engineering Science and Technology, an International Journal, 18(4):669-673, (2015).
  • [4] Gürel, A. E., Ağbulut, Ü., Ergün, A., & Ceylan, I.. “Environmental and economic assessment of a low energy consumption household refrigerator”, Engineering Science and Technology, an International Journal, 23(2):365-372, (2020).
  • [5] Abdulhussain, M. A., “CFD pretending of vapor and liquid refrigerant mixing in variable speed scroll compressor” Engineering Science and Technology, an International Journal, 22(1):168-176, (2019).
  • [6] Vittorini, D., Bianchi, G., & Cipollone, R.. “Energy saving potential in existing volumetric rotary compressors”, Energy Procedia, 81:1121-1130, (2015).
  • [7] Saidur, R., Rahim, N. A., and Hasanuzzaman, M., “A review on compressed-air energy use and energy savings”, Renewable and Sustainable Energy Reviews, 14(4):1135-1153 (2010).
  • [8] The Global Air Compressor Market, 2021 URL: https://www.businesswire.com/news/home/20210909006010/en/Global-Air-Compressor-Market-2021-2026--- Stationary-Air-Compressors-to-Boost-the-100-Bn-Market---ResearchAndMarkets.com
  • [9] Sivakumar, V., “Design of Piston Compressor Coolers." (2019).
  • [10] Vimmr, J., "Mathematical modelling of compressible inviscid fluid flow through a sealing gap in the screw compressor”, Mathematics and computers in Simulation, 61.3-6:187-197, (2003).
  • [11] Toshiba compressor catalog http://toshibacompressor.com/index.php
  • [12] Qu, Z.C., Lin, X.W., Feng, J.M., Zhou, H., “Theory of synchronal rotary compressor” West Lafayette, Purdue University, Indiana, USA, (2004).
  • [13] Molinaroli, L., Joppolo, C. M., and De Antonellis, S., “A semi-empirical model for hermetic rolling piston compressors”, International Journal of Refrigeration, 79:226-237, (2017).
  • [14] 14. Ooi, K.T., Shakya, P., “A new compact rotary compressor: coupled vane compressor”, Purdue University, (2018).
  • [15] Wang, B., Liu, X., Shi, W., & Ding, Y.. “An enhanced rotary compressor with gas injection through a novel end-plate injection structure”, Applied Thermal Engineering, 131:180-191, (2018).
  • [16] Okur, M., Akmandor, I. S., “Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine”, Applied Thermal Engineering, 31(6-7):1031-1038, (2011).
  • [17] 17. Tan, K. M., and Ooi, K. T.. “Journal bearings design for a novel revolving vane compressor”, International Journal of Refrigeration, 34(1):94-104, (2011).
  • [18] Wu, J., & Chen, A., “A new structure and theoretical analysis on leakage and performance of an oil-free R290 rolling piston compressor”, International Journal of Refrigeration, 49:110-118, (2015).
  • [19] Yan, G., Jia, Q., & Bai, T., “Experimental investigation on vapor injection heat pump with a newly designed twin rotary variable speed compressor for cold regions”, International Journal of Refrigeration, 62:232-241, (2016).
  • [20] Bianchi, G., Cipollone, R., Murgia, S., & Contaldi, G.. “Development of an internal air cooling sprayed oil injection technique for the energy saving in sliding vane rotary compressors through theoretical and experimental methodologies”, International Journal of Refrigeration, 52:11-20, (2015).
  • [21] Wu, J., & Wang, G., “Numerical study on oil supply system of a rotary compressor”, Applied thermal engineering, 61(2):425-432, (2013).
  • [22] Zhu, Y., He, G., Sun, W., Shimoji, M., & Chen, X., “Experimental investigation on startup process for oil supply system of a variable speed rotary compressor”, International Journal of Refrigeration, 113:58-69, (2020).
  • [23] Zhu, Y., He, G., Sun, W., Shimoji, M., Chen, X., “Investigation on the characteristics of oil supply system for a hermetic variable speed rotary compressor”, International Journal of Refrigeration, 118:150-160, (2020).
  • [24] Fukuta M, Yanagisawa T, Shimizu T. “Analysis of oil film at vane side in vane compressors”, Int Comp Eng Conf., 395–400 (1996).
  • [25] Kitsunai, Y., Matsui, M. , Oyagi, S., “High Efficiency Development of a Rotary Compressor by Clarification of its Shaft Dynamic Motion”, Proceedings of the International Compressor Engineering Conference, 1276, (2010).
  • [26] Hirayama, T., Miura, K. , Hattori, H. , Ito, Y., “Numerical Analysis for Mixed Lubrication in Journal Bearings of Rotary Compressors” Int. Compress. Eng. Conf. 1–8, (2006).
  • [27] Bianchi, G., Cipollone, R., Murgia, S., Contaldi, G., “Performance enhancement in sliding vane rotary compressors through a sprayed oil injection technology” 22th International Compressor Engineering Conference, Purdue University, (2014).
  • [28] Ma, R., Wu, Y. T., Du, C. X., Chen, X., Zhang, D. L., & Ma, C. F., “The performance test of a modified miniature rotary compressor in upright and inverted modes subjected to microgravity”, Applied Thermal Engineering, 92:81-92, (2016).
  • [29] Fukuda T., Hayano, M., “HFC/POE lubricity evaluation on the rotary compressor in system operation”, Proceedings of the 1996 International Compressor Engineering Conference at Purdue, (1996).
  • [30] Kim, H. J., “Lubrication oil pumping by utilizing vane motion in a horizontal rotary compressor” International journal of refrigeration, 28(4):498-505, (2005).
  • [31] Kim, H. J., & Lancey, T. W., Numerical study on the lubrication oil distribution in a refrigeration rotary compressor. International journal of refrigeration, 26(7):800-808, (2003).
  • [32] Zhu, Y., He, G., Sun, W., Shimoji, M., & Chen, X., “Effect of inlet structures on the performance of oil supply system of a variable speed rotary compressor” Journal of Fluids Engineering, 141(8), (2019).
  • [33] Zhu, Y., He, G., Sun, W., Shimoji, M., & Chen, X.. “Effect of oil stirrer on the performance of oil supply system for a variable speed rotary compressor” International Journal of Refrigeration, 101:1-10, (2019).
  • [34] Ooi, K. T., & Wong, T. N., “A computer simulation of a rotary compressor for household refrigerators”, Applied Thermal Engineering, 17(1):65-78, (1997).
  • [35] Bianchi, G., & Cipollone, R. “Friction power modeling and measurements in sliding vane rotary compressors” Applied Thermal Engineering, 84:276-285, (2015).
  • [36] Sung, H. C., “Tribological characteristics of various surface coatings for rotary compressor vane” Wear, 221(2):77-85, (1998).
  • [37] Lee, Y. Z., & Oh, S. D., “Friction and wear of the rotary compressor vane–roller surfaces for several sliding conditions”, Wear, 255(7-12):1168-1173, (2003).
  • [38] Chen, Z., Wu, J., & Li, G.. “Experimental study on the tribological characteristic of vane–roller interface of HC290 rotary compressor with mineral oil”, International Journal of Refrigeration, 94:205-213, (2018).
  • [39] Geng, K., Geng, A., Wang, X., Zheng, X., Wei, W., Zhao, T., ... & He, Y.. “Frictional characteristics of the vane–chute pair in a rolling piston compressor based on the second-order motion” Tribology International, 133:111-125, (2019).
  • [40] Yanagisawa T., Shimizu T., “Friction losses in rolling piston type rotary compressors. III”, Int. J. Refrig. 8:159–165, (1985).
  • [41] Okur, M., Arabaci, E., “Experimental study of a novel hinged vane rotary turbine–part I: The effect of different vane thickness and vane weight on turbine performance”, International Journal of Refrigeration, 51:70-76, (2015).
  • [42] Hua, Y., Zongchang, Q., Hui, Z., Bingfeng, Y., “Friction characteristics of sliding vane for synchronal rotary compressor” J. Xi’an Jiaotong Univ., 42(7):843-847, (2008).
  • [43] Tan, K. M., & Ooi, K. T., “A novel revolving vane compressor with a fixed-vane”, International Journal of Refrigeration, 34(8):1980-1988, (2011).
  • [44] Teh, Y. L., & Ooi, K. T. “Theoretical study of a novel refrigeration compressor–Part I: Design of the revolving vane (RV) compressor and its frictional losses”, International Journal of Refrigeration, 32(5):1092-1102, (2009).
  • [45] Subiantoro, A., & Ooi, K. T., “Analytical study of the endface friction of the revolving vane mechanism”, International Journal of Refrigeration, 34(5):1276-1285, (2011).
  • [46] Gu, H., Zhou, X., Chen, Y., Wu, J., Wu, Z., Jiang, Y., & Sundén, B., “Analysis, modeling and simulations of an innovative sliding vane rotary compressor with a rotating cylinder”, Energy Conversion and Management, 230:113822, (2021).
  • [47] De Lim, Y., & Ooi, K. T., “Performance analysis of a U-Vane compressor” Applied Thermal Engineering, 178, 115570, (2020).
  • [48] Costa C.M.N.F., Ferreira R.T.S., Prata A.T., “Considerations about the leakage through the minimal clearance in a rolling piston compressor”, Purdue University, (1990).
  • [49] Takebayashi, M. , Hata, H. , Iizuka, T. , et al. , “A study on wear characteristics of a rolling-piston-type rotary compressor”, Proceedings of the International Compressor Engineering Conference at Purdue, 145–152, (2000).
  • [50] Osama A.H., “Theoretical modeling of sliding vane compressor with leakage”, Int J Refrig., 32(7):1555–62, (2009).
  • [51] Gasche, J.L. , Andreotti, T. , Maia, C.R.M., “A model to predict R134a refrigerant leakage through the radial clearance of rolling piston compressors”, International Journal of Refrigeration, 35:2223–2232, (2012).
  • [52] Yanagisawa, T., Shimizu, T., “Leakage losses with a rolling piston type rotary compressor I. Radial clearance on the rolling piston”, Int. J. Refrig., 8:75–84, (1985).
  • [53] Reed, W.A, Hamilton, JF., “Internal leakage effects in sliding vane, rotary compressors”, International Conference on Compressors and Their Systems, West Lafayette, Indiana, USA, (1980).
  • [54] Yanagisawa T., Shimizu T., “Leakage losses with a rolling piston type rotary compressor. II. Leakage losses through clearances on rolling piston faces”, International Journal of Refrigeration, 8:152–158, (1985).
  • [55] Hugenroth, J., “Oil-less Swing Compressor Development”, International Compressor Engineering Conference, 1–10, (2014).
  • [56] Bradshaw, C.R., Groll, E.A., “A comprehensive model of a novel rotating spool compressor”, International Journal of Refrigeration, 36:974–1981.1, (2013).
  • [57] Cai, D., He, G., Yokoyama, T., Tian, Q., Yang, X., & Pan, J., “Simulation and comparison of leakage characteristics of R290 in rolling piston type rotary compressor”, International Journal of Refrigeration, 53:42-54, (2015).
  • [58] Aw, K. T., Ooi, K. T., “Leakage study of a lubricant-free revolving vane compressor”, International Journal of Refrigeration, 124:122-133, (2021).
  • [59] Yang, H., Qu, Z., Zhou, H., & Yu, B., “Study on leakage via the radial clearance in a novel synchronal rotary refrigeration compressor”, International journal of Refrigeration, 34(1):84-93, (2011).
  • [60] Teh, Y. L., & Ooi, K. T., “Theoretical study of a novel refrigeration compressor-Part III: Leakage loss of the revolving vane (RV) compressor and a comparison with that of the rolling piston type”, International Journal of Refrigeration, 32(5):945-952, (2009).
  • [61] He, G., Sun, W., Zhu, Y., Yang, X., & Cai, D., “Experimental performance evaluation on leakage characteristics of R32 in rolling piston type rotary compressor”, International Journal of Refrigeration, 91:177-188 (2018).
  • [62] L Adornato, V., Padhy, S. K., Herzog, R. R.," Theoretical Modeling of Lubrication System of a Rotary Compressor", Proc. of the International Appliance Technical Conference, Purdue University, (1992).
  • [63] Wu, J., Hu, J., Chen, A., Mei, P., Zhou, X., & Chen, Z., “Numerical analysis of temperature distribution of motor-refrigerant in a R32 rotary compressor”, Applied Thermal Engineering, 95:365-373, (2016).
  • [64] Shi H., Wu, J., “Thermal analysis of oil sump and compression unit in a rotary compressor” Applied Thermal Engineering, 164:114465, (2020).
  • [65] Sanaye, S., Dehghandokht, M., Mohammadbeigi, H., & Bahrami, S., “Modeling of rotary vane compressor applying artificial neural network”, International Journal of Refrigeration, 34(3):764-772, (2011).
  • [66] Huang, P. X., “Under-compression (over-expansion)–an isochoric or adiabatic process?” International Compressor Engineering Conference, Purdue University, (2012).
  • [67] Takeshita, S., “Simulation and Modeling of an A/C Rotary Vane Compressor”. SAE transactions, 166-176, (1997).
  • [68] Abagnale, C., Cardone, M., Gargiulo, B., Marialto, R., “Ideal specific work of rotary compressors: A new approach” Energy Procedia, 101:710-717, (2016).
  • [69] Tan, K. M., Ooi, K. T., “Heat transfer in compression chamber of a revolving vane (RV) compressor” Applied Thermal Engineering, 31(8-9):1519-1526, (2011).
  • [70] Biao, X., Tongyi, H., Lin, H., Yan, Y., Yuying, S.,Wei, W., “Experimental study of an improved air-source heat pump system with a novel three-cylinder two-stage variable volume ratio rotary compressor”, International Journal of Refrigeration, 100:343-353, (2019).
  • [71] Ishiil, N., Morita, N., Kurimoto, M., Shuichi, K.S.A.K., Amamoto, Y., “Calculations for compression efficiency caused by heat transfer in compact rotary compressors”, International Compressor Engineering Conference, Purdue University, West Lafayette, IN, USA, 1423, (2000).
  • [72] Lin, J., Lian, Y., Wu, J., “Numerical investigation on vapor-liquid two-phase compression in the cylinder of rotary compressors” Applied Thermal Engineering, 170:115022, (2020).
  • [73] Ishii, N., Fukushima, M., Yamamura, M., Fujiwara, S.& Kakita, S., Optimum Combination of Dimensions for High Mechanical Efficiency of a Rolling-Piston Rotary Compressor, Proc. International Compressor Engineering Conference at Purdue, 418-424, (1990).
  • [74] Bianchi, G., Cipollone, R., “Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors”, Applied Energy, 142:95-107, (2015).
  • [75] Huang Y.M., Tsay S.N., “Mechanical efficiency optimization of a sliding vane rotary compressor”, J Pressure Vessel Technology, 131(6):061601, (2009).
  • [76] Molinaroli, L., Joppolo, C. M., De Antonellis, S., A semi-empirical model for hermetic rolling piston compressors. International Journal of Refrigeration, 79:226- 237 (2017).
  • [77] Ba, D. C., Deng, W. J., Che, S. G., Li, Y., Guo, H. X., Li, N.,Yue, X. J., “Gas dynamics analysis of a rotary compressor based on CFD”, Applied Thermal Engineering, 99:1263-1269 (2016).
  • [78] Park, Y. C., “Transient analysis of a variable speed rotary compressor”, Energy Conversion and Management, 51(2):277-287, (2010).
  • [79] Shin, M., Na, S., Lee, J., Min, B., Choi, G., Model analysis of a novel compressor with a dual chamber for high-efficiency systems. Applied Thermal Engineering, 158:113717, (2019).
  • [80] He, Z., Yang, X., Li, D., Wu, W., “Dynamic characteristics of a swing compressor for an air conditioning system at different discharge pressures”, International Journal of Refrigeration, 112:125-135 (2020).
  • [81] Teh, Y. L., Ooi, K. T., “Experimental study of the revolving vane (RV) compressor”, Applied Thermal Engineering, 29(14-15):3235-3245, (2009).
  • [82] Tan, K. M., & Ooi, K. T., “Experimental study of fixed-vane revolving vane compressor”, Applied Thermal Engineering, 62(1):207-214, (2014).
  • [83] Teh, Y. L., Ooi, K. T., & Djamari, D. W., “Theoretical study of a novel refrigeration compressor–Part II: Performance of a rotating discharge valve in the revolving vane (RV) compressor”, International Journal of Refrigeration, 32(5):1103-1111, (2009).
  • [84] Shuxue, X., Guoyuan, M., “Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor”, Applied Thermal Engineering, 62(2):803-808, (2014).
  • [85] Yang, X., Dong, C., Qu, Z., “Design and dynamic analysis of a novel double swing vane compressor for electric vehicle air conditioning systems”, International Journal of Refrigeration, 76:52–62, (2017).
  • [86] Cipollone, R., Di Battista, D., “Sliding vane rotary pump in engine cooling system for automotive sector”, Applied Thermal Engineering, 76:157-166, (2015).
  • [87] Hattori, H. , Kawashima, N. , “Dynamic analysis of a rotor-journal bearing system for twin rotary compressors”, Proceedings of the International Compressor Engineering Conference School, 768, (1990).
  • [88] Huang, Y. M., Liaw, Y. S., “The impact of sliding blades in a rotary compressor”, J. Mech. Des., 123(4):583-589, (2001).
  • [89] Zhou H, Qu ZC, Yang H, Yu BF. “Dynamic model and numerical simulation for synchronal rotary compressor”, Journal of Fluids Engineering, 31(4):041102, (2009).
  • [90] Ahn, H. J., Han, D. C., Hwang, I. S.. “A built-in bearing sensor to measure the shaft motion of a small rotary compressor for air conditioning” Tribology International, 36(8):561-572, (2003).
  • [91] Yu, X., Tan, Q., Ren, Y., Jia, X., & Jin, L., “Numerical study of the reed valve impact in the rotary compressor by FSI model” Energy Procedia, 105:4890-4897, (2017).
  • [92] Wang, Z., Yu, X., Liu, F., Feng, Q., Tan, Q., “Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor” International Journal of Refrigeration, 36(7):1938-1950, (2013).
  • [93] Ito, Y., Miura, K., Hatayama, M., “Dynamic analysis of a rotor journal bearing system with large dynamic loads for rotary compressors”, Proceedings of the 9th Asian Conference on Refrigeration and Air-Conditioning, 142070, (2018).
  • [94] Zhang, H., Wu, J., Xie, F., Chen, A., Li, Y., “Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compressors”, International Journal of Refrigeration, 47:36-45, (2014).
  • [95] Ferraris, G., Andrianoely, M. A., Berlioz, A., Dufour, R., “Influence of cylinder pressure on the balancing of a rotary compressor”, Journal of Sound and Vibration, 292(3-5):899 910, (2006).
  • [96] Heo, J., Yun, R., & Kim, Y., Simulations on the performance of a vapor-injection heat pump for different cylinder volume ratios of a twin rotary compressor, International Journal of Refrigeration, 36(3):730-744, (2013).
  • [97] Baek, C., Heo, J., Jung, J., Cho, H., & Kim, Y., “Effects of the cylinder volume ratio of a twin rotary compressor on the heating performance of a vapor injection CO2 cycle” Applied Thermal Engineering, 67(1-2):89-96, (2014).
  • [98] Sun, W., He, G., Ning, Q., Song, H., Pang, Q., “Performance investigation and optimization analysis for vapor injection rotary compressor oriented to circular end-plate injection port without check valve” Applied Thermal Engineering, 183:116196, (2021).
  • [99] Xu, X., Hwang, Y., Radermacher, R.J.I.J.o.R., “Refrigerant injection for heat pumping/air conditioning systems: literature review and challenges discussions”, International Journal of Refrigeration, 34:402-415, (2011).
  • [100] Kim, D., Jeon, Y., Jang, D. S., Kim, Y., Performance comparison among two-phase, liquid, and vapor injection heat pumps with a scroll compressor using R410A. Applied Thermal Engineering, 137:193-202, (2018).
  • [101] Yang, M., Wang, B., Li, X., Shi, W., Zhang L.J.i.j.o.r., “Evaluation of two-phase suction, liquid injection and two-phase injection for decreasing the discharge temperature of the R32 scroll compressor”, International Journal of Refrigeration, 59:269-280, (2015).
  • [102] Wang, B., Liu, X., Ding, Y., Shi, W., “An enhanced rotary compressor with gas injection through a novel end-plate injection structure end-plate gas injection with check valve”, International Journal of Refrigeration, 88:516–522, (2018).
  • [103] Mathison, M.M., Braun, J.E., Groll, E.A.J.I.j.o.r., “Modeling of a novel spool compressor with multiple vapor refrigerant injection ports”, International Journal of Refrigeration, 36:1982-1997, (2013).
  • [104] Wang, B., Ding, Y., & Shi, W., “Experimental research on vapor-injected rotary compressor through end-plate injection structure with check valve”, International Journal of Refrigeration, 96:131-138, (2018).
  • [105] Wang, B., Liu, X., Shi, W., “Performance improvement of air source heat pump using gas-injected rotary compressor through port on blade” International Journal of Refrigeration, 73:91-98, (2017).
  • [106] Wang, B., Liu, X., & Shi, W., “Comparative research on air conditioner with gas-injected rotary compressor through injection port on blade”, Applied Thermal Engineering, 106:67-75, (2016).
  • [107] Jeon, Y., Lee, S. H., Kim, W., Jung, J., Kim, Y., “Numerical study on the optimal design of injection-hole geometries of a twin rotary compressor in a liquid injection heat pump”, Applied Thermal Engineering, 113:1178-1188, (2017).
  • [108] Liu, X., Wang, B., Shi, W., Zhang, P., “A novel vapor injection structure on the blade of a rotary compressor”, Applied Thermal Engineering, 100:219-1228, (2016).
  • [109] Ko, Y., Park, S., Jin, S., Kim, B., & Jeong, J. H., “The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle” Applied Energy, 104:187-196, (2013).
  • [110] Lin, J., Wu, J., Zhang, Z., Chen, Z., Xie, J., & Lu, J., “Experimental investigation of startup characteristics of R290 rotary compressor under low ambient temperature heating condition” International Journal of Refrigeration, 77:128-135, (2017).
  • [111] Wu, J., Lin, J., Zhang, Z., Chen, Z., Xie, J., & Lu, J., “Experimental investigation on cold startup characteristics of a rotary compressor in the R290 air-conditioning system under cooling condition”, International Journal of Refrigeration, 65:209-217, (2016).
  • [112] Wu, J., Lin, J., Zhang, Z., Chen, Z., Xie, J., & Lu, J., “Experimental investigation of dynamic characteristics of a rotary compressor and its air conditioner using R290 during warm startup” Applied Thermal Engineering, 125:1469-1477, (2017).
  • [113] Lee, S. J., Kim, H. B., Huh, J. K., Lee, S. J., Ahn, B. H., “Quantitative analysis of flow inside the accumulator of a rotary compressor” International Journal of Refrigeration, 26(3):321-327, (2003).
  • [114] Vande, VJ, Vierendeels, J., Dick E., “A grid generator for flow calculations in rotary volumetric compressors”, Vienna, Austria: Fourth European Congress on Computational Methods in Applied Sciences and Engineering, (2004).
  • [115] Bianchi, G., Rane, S., Kovacevic, A., Cipollone R., “Deforming grid generation for numerical simulations of fluid dynamics in sliding vane rotary machines”, Advances in Engineering Software, 112:180–91, (2017).
Toplam 115 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Duygu Gürkan 0000-0002-2917-3330

Melih Okur 0000-0002-6017-1050

İhsan Korkut 0000-0002-5001-4449

Yayımlanma Tarihi 27 Mart 2023
Gönderilme Tarihi 1 Ekim 2021
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gürkan, D., Okur, M., & Korkut, İ. (2023). Döngüsel Kompresörlerde Teknolojik Gelişmeler. Politeknik Dergisi, 26(1), 425-436. https://doi.org/10.2339/politeknik.1003699
AMA Gürkan D, Okur M, Korkut İ. Döngüsel Kompresörlerde Teknolojik Gelişmeler. Politeknik Dergisi. Mart 2023;26(1):425-436. doi:10.2339/politeknik.1003699
Chicago Gürkan, Duygu, Melih Okur, ve İhsan Korkut. “Döngüsel Kompresörlerde Teknolojik Gelişmeler”. Politeknik Dergisi 26, sy. 1 (Mart 2023): 425-36. https://doi.org/10.2339/politeknik.1003699.
EndNote Gürkan D, Okur M, Korkut İ (01 Mart 2023) Döngüsel Kompresörlerde Teknolojik Gelişmeler. Politeknik Dergisi 26 1 425–436.
IEEE D. Gürkan, M. Okur, ve İ. Korkut, “Döngüsel Kompresörlerde Teknolojik Gelişmeler”, Politeknik Dergisi, c. 26, sy. 1, ss. 425–436, 2023, doi: 10.2339/politeknik.1003699.
ISNAD Gürkan, Duygu vd. “Döngüsel Kompresörlerde Teknolojik Gelişmeler”. Politeknik Dergisi 26/1 (Mart 2023), 425-436. https://doi.org/10.2339/politeknik.1003699.
JAMA Gürkan D, Okur M, Korkut İ. Döngüsel Kompresörlerde Teknolojik Gelişmeler. Politeknik Dergisi. 2023;26:425–436.
MLA Gürkan, Duygu vd. “Döngüsel Kompresörlerde Teknolojik Gelişmeler”. Politeknik Dergisi, c. 26, sy. 1, 2023, ss. 425-36, doi:10.2339/politeknik.1003699.
Vancouver Gürkan D, Okur M, Korkut İ. Döngüsel Kompresörlerde Teknolojik Gelişmeler. Politeknik Dergisi. 2023;26(1):425-36.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.