Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Oranlarda Ca Katkısının Döküm ZK60 Mg Alaşımlarının Mikroyapı ve Mekanik Özellikler Üzerindeki Etkisinin İncelenmesi

Yıl 2023, , 1061 - 1069, 01.10.2023
https://doi.org/10.2339/politeknik.1052154

Öz

Ağırlıkça farklı Ca (%) oranlarında katılarak elde edilen olarak bilinen döküm Mg-6Zn-0.5Zr (ağ. %) ZK60 Mg alaşımının 345°C’de sıcak çekme testleriyle mikroyapı ve mekanik özellikleri incelenmiştir. Deneysel bu çalışmada, alaşım düşük basınçlı kokil döküm (LPDC) yöntemiyle üretilmiştir. Döküm alaşımının mikroyapı karakterizasyonunda ağ.% 0.8Ca oranına kadar tane boyutu küçülmüş, Ca oranı yavaş yavaş arttırıldıkça tane boyutu da 345°C sıcaklıkta yaklaşık ~60 µm boyutuna ulaştığı gözlemlenmiştir. Sonuç olarak, ağ.% 0.4Ca oranına bağlı olarak tane sınırlarında şerit benzeri Mg-Zn intermetalik yapıyı tane köşelerinde ise kabalaşmış üçlü Ca-Mg-Zn intermetalik yapısını oluştururlar. ağ.% 1.6Ca ilavesinde akma ve çekme mukavemetleri mukayese edilebilecek şekilde 345°C sıcaklıkta sırasıyla 37.6 Mpa ve 39.7 MPa değerlerine düştüğü görülmüştür. Kopma uzaması ise, bunların tam tersine sıcaklığa bağlı tekstür yumuşaması neticesi mekanik özelliklerdeki artışına bağlı olarak, ağ.% 1.6Ca oranında 1.26 % olarak ölçülmüştür. Aşınma oranı ağ.% Ca oranından etkilenmiştir ağ.% 1.2Ca oranında aşınma hızı 3.70 x10-3 mm3/m olarak ölçülmüştür. Benzer şekilde ZK60 Magnezyum alaşımı sertlik değerlerinde de Ca içeriğine bağlı artışlar grafiklerde gösterilmiştir. Bu çalışmada döküm ZK60 magnezyum alaşımlarına % ağ. Ca katkısıyla sıcaklığa bağlı etkisinin mekanik özellikleri geliştirdiği gözlemlenmiştir.

Destekleyen Kurum

Kocaeli Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi

Proje Numarası

2018/047

Teşekkür

Yazarlar Kocaeli Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi'ne bu projeye sağlamış oldukları finansal hakkı nedeniyle teşekkürlerini sunar.

Kaynakça

  • [1] Ahlatci H., Kara I.H., Turen Y., Sun Y., Zengin H., Microstructure and corrosion properties of homogenized AZ31 and AZ31+1%La magnesium alloys, Key Eng. Mater. 750 KEM 107–112, (2017).
  • [2] Bondarev B.I., Rokhlin L.L., Magnesium alloys, Metallurg. 324, 41–42, (2002).
  • [3] Kulekci M.K., Magnesium and its alloys applications in the automotive industry, Int. J. Adv. Manuf. Technol. 39, 851–865, (2008).
  • [4] Jayasathyakawin S., Ravichandran M., N Baskar., Chairman C.A., Balasundaram R., Mechanical properties and applications of Magnesium alloy – Review, Mater. Today Proc. 27, 909–913, (2020).
  • [5] Kainer K.U., Magnesium – Alloys and Technology, (2003).
  • [6] Rams J., Torres B., Pulido-González N., García-Rodriguez S., Magnesium Alloys: Fundamentals and Recent Advances, Encycl. Mater. Met. Alloys. 1, 2–10, (2022).
  • [7] Yang Z., Xu C., Nakata T., Kamado S., Effect of extrusion ratio and temperature on microstructures and tensile properties of extruded Mg-Gd-Y-Mn-Sc alloy, Mater. Sci. Eng. A. 800, 140330, (2020).
  • [8] Pekguleryuz M.O., Kaya A.A., Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater. 5, 866–878, (2003).
  • [9] Zhu S., Gibson M., Easton M.A., Zhen C.Z., Abbott T., Limited M., Creep resistant magnesium alloys and their properties, Met. Cast. Technol. 2, 20–25, (2012).
  • [10] Karakulak E., A review: Past, present, and future of grain refining of magnesium castings, J. Magnes. Alloy. 7, 355–369, (2019).
  • [11] Pekguleryuz M.O., Kaya A.A., Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater. 5 866–878, (2003).
  • [12] Mostaed E., Fabrizi A., Dellasega D., Bonollo F., Vedani M., Grain size and texture dependence on mechanical properties, asymmetric behavior and low-temperature superplasticity of ZK60 Mg alloy, Mater. Charact. 107 70–78, (2015).
  • [13] Kim B., Hong C.H., Kim J.C., Lee S.Y., Baek S.M., Jeong H.Y., Park S.S., Factors affecting the grain refinement of extruded Mg–6Zn–0.5Zr alloy by Ca addition, Scr. Mater. 187, 24–29, (2020).
  • [14] Vinogradov A., Orlov D., Danyuk A., Estrin Y., Effect of grain size on the mechanisms of plastic deformation in wrought Mg-Zn-Zr alloy revealed by acoustic emission measurements, Acta Mater. 61, 2044–2056, (2013).
  • [15] Fabian R.K. T., Trojanova Z., Magnesium: Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications, (2007).
  • [16] Cai S., Lei T., Li N., Feng F., Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys, Mater. Sci. & Eng. C. 32, 2570–2577, (2012).
  • [17] Du Y.Z., Qiao X.G., Zheng M.Y., Wu K., Xu S.W., The microstructure, texture and mechanical properties of extruded Mg-5.3Zn-0.2Ca-0.5Ce (wt%) alloy, Mater. Sci. & Eng. A. 620, 164–171, (2015).
  • [18] Kim Y.M., Yim C.D., Kim H.S., You B.S., Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures, Scr. Mater. 65, 958–961, (2011).
  • [19] Jung Y.G., Yang W., Kim Y.J., Kim S.K., Yoon Y.O., Lim H., Kim D.H., Effect of Ca addition on the microstructure and mechanical properties of heat-treated Mg-6.0Zn-1.2Y-0.7Zr alloy, J. Magnes. Alloy. 9, 1619–1631, (2021).
  • [20] Kang Q., Jiang H., Zhang Y., Xu Z., Li H., Xia Z., Effect of various Ca content on microstructure and fracture toughness of extruded Mg-2Zn alloys, J. Alloys Compd. 742, 1019–1030, (2018).
  • [21] Kamrani S., Fleck C., Effects of calcium and rare-earth elements on the microstructure and tension-compression yield asymmetry of ZEK100 alloy, Mater. Sci. & Eng. A. 618, 238–243, (2014).
  • [22] Jun C., Qing Z., Quan-An L.I., Effect of y and Ca addition on the creep behaviors of AZ61 magnesium alloys, J. Alloys Compd. 686, 375–383, (2016).
  • [23] Y Du.Z., X Qiao.G., Zheng M.Y., Wang D.B., Wu K., Golovin I.S., Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys, Mater. Des. 98, 285–293, (2016).
  • [24] Zhang Y., Yang L., Dai J., Ge J., Guo G., Liu Z., Effect of Ca and Sr on the compressive creep behavior of Mg-4Al-RE based magnesium alloys, Mater. Des. 63, 439–445, (2014).
  • [25] Zhang B., Wang Y., Geng L., Lu C., Effects of calcium on texture and mechanical properties of hot-extruded Mg – Zn – Ca alloys, Mater. Sci. Eng. A. 539, 56–60, (2012).
  • [26] Nayyeri G., Mahmudi R., Effects of Ca additions on the microstructural stability and mechanical properties of Mg – 5 % Sn alloy, Mater. Des. 32, 1571–1576, (2011).
  • [27] Kim J.H., Kang N.E., Yim C.D., Kim B.K., Effect of calcium content on the microstructural evolution and mechanical properties of wrought Mg-3Al-1Zn alloy, Mater. Sci. & Eng. A. 525, 18–29, (2009).
  • [28] Bae G.T., Bae J.H., Kang D.H., Lee H., Kim N.J., Effect of Ca addition on microstructure of twin-roll cast AZ31 Mg alloy, Met. Mater. Int. 15, 1–5, (2009).
  • [29] Ding H.L., Zhang P., Cheng G.P., Kamado S., Effect of calcium addition on microstructure and texture modification of Mg rolled sheets, Trans. Nonferrous Met. Soc. China (English Ed. 25, 2875–2883, (2015).
  • [30] Koike J., Kobayashi T., Mukai T., Watanabe H., Suzuki M., The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Materialia, 51, 2055–2065, (2003).
  • [31] Nie J.F., Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 3891–3939, (2012).
  • [32] Turkish Standard TS EN ISO 6892-1, Institution Turkish Stand. 1, 77, (2010).
  • [33] Li H., Liu D., Zhao Y., Jin F., Chen M., The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid, J. Mater. Eng. Perform. 25, 3890–3895, (2016).
  • [34] Silva E.P., Batista L.F., Callegari B., Feierabend I., Buzolin R.H., Coelho R.S., Warchomicka F., Requena G.C., Pinto H., Casting in the semi-solid state of ZK60 magnesium alloy modified with rare earth addition, Adv. Mater. Res. 922, 694–699, (2014).
  • [35] Zheng R., Bhattacharjee T., Shibata A., Sasaki T., Hono K., Joshi M., Tsuji N., Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine-grained structures, Scr. Mater. 131, 1–5, (2017).
  • [36] Du Y.Z., Qiao X.G., Zheng M.Y., Wang D.B., Wu K., Golovin I.S., Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass % Zn alloys, Mater. & Design, 98, 285–293, (2016).
  • [37] Kim J.H., Kang N.E., Yim C.D., Kim B.K., Effect of calcium content on the microstructural evolution and mechanical properties of wrought Mg – 3Al – 1Zn alloy, Mater. Sci. & Eng. A 525, 18–29, (2009).
  • [38] Stanford N., The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg – Mn – Ca alloys, Mater. Sci. & Eng. A. 528, 314–322, (2010).
  • [39] Cáceres C.H., Blake A., The Strength of Concentrated Mg-Zn Solid Solutions, Phys. Status Solidi. 194, 147–158, (2002).

Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys

Yıl 2023, , 1061 - 1069, 01.10.2023
https://doi.org/10.2339/politeknik.1052154

Öz

The effect of various Ca content on microstructure and mechanical properties of as-cast Mg-6Zn-0.5Zr (wt.%) Mg alloys with hot tensile testing at 345°C were investigated. The alloy was produced with the LPDC method [1]. Microstructural characterization as-cast alloy demonstrated that wt.% Ca content increase, grain size decreases till wt.% 0.8Ca, the further increase affects gradual change in grain size to ~60 µm at 345°C. Therefore, increase in Ca ratio from 0.4 wt% forming to strip-like Mg-Zn intermetallics at grain boundaries, Ca-Mg-Zn ternary phase at grain boundary corners. Dramatical decrease in yield and tensile strength at wt% 1.6Ca addition is 37.6 MPa and 39.7 MPa respectively which is relatively low at 345°C due to the absence of retarded DRX’ed small particles prohibited the grain growth after the TMT process. Conversely, elongation-to-fracture increases were observed as 1.26 at 345°C showing the temperature-dependent texture softening results in improvement of mechanical properties. Wear rate is also affected from wt.% Ca addition so the gradual increase up to 1.2 wt% Ca is 3.70 x 10-3 mm3/m. Similarly, a gradual increase in hardness values was obtained with Ca addition in ZK60 alloy. In this study, the effect of temperature-dependent Ca addition (wt %) on gradual enhancement in mechanical properties was observed at as-cast magnesium alloys.

Proje Numarası

2018/047

Kaynakça

  • [1] Ahlatci H., Kara I.H., Turen Y., Sun Y., Zengin H., Microstructure and corrosion properties of homogenized AZ31 and AZ31+1%La magnesium alloys, Key Eng. Mater. 750 KEM 107–112, (2017).
  • [2] Bondarev B.I., Rokhlin L.L., Magnesium alloys, Metallurg. 324, 41–42, (2002).
  • [3] Kulekci M.K., Magnesium and its alloys applications in the automotive industry, Int. J. Adv. Manuf. Technol. 39, 851–865, (2008).
  • [4] Jayasathyakawin S., Ravichandran M., N Baskar., Chairman C.A., Balasundaram R., Mechanical properties and applications of Magnesium alloy – Review, Mater. Today Proc. 27, 909–913, (2020).
  • [5] Kainer K.U., Magnesium – Alloys and Technology, (2003).
  • [6] Rams J., Torres B., Pulido-González N., García-Rodriguez S., Magnesium Alloys: Fundamentals and Recent Advances, Encycl. Mater. Met. Alloys. 1, 2–10, (2022).
  • [7] Yang Z., Xu C., Nakata T., Kamado S., Effect of extrusion ratio and temperature on microstructures and tensile properties of extruded Mg-Gd-Y-Mn-Sc alloy, Mater. Sci. Eng. A. 800, 140330, (2020).
  • [8] Pekguleryuz M.O., Kaya A.A., Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater. 5, 866–878, (2003).
  • [9] Zhu S., Gibson M., Easton M.A., Zhen C.Z., Abbott T., Limited M., Creep resistant magnesium alloys and their properties, Met. Cast. Technol. 2, 20–25, (2012).
  • [10] Karakulak E., A review: Past, present, and future of grain refining of magnesium castings, J. Magnes. Alloy. 7, 355–369, (2019).
  • [11] Pekguleryuz M.O., Kaya A.A., Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater. 5 866–878, (2003).
  • [12] Mostaed E., Fabrizi A., Dellasega D., Bonollo F., Vedani M., Grain size and texture dependence on mechanical properties, asymmetric behavior and low-temperature superplasticity of ZK60 Mg alloy, Mater. Charact. 107 70–78, (2015).
  • [13] Kim B., Hong C.H., Kim J.C., Lee S.Y., Baek S.M., Jeong H.Y., Park S.S., Factors affecting the grain refinement of extruded Mg–6Zn–0.5Zr alloy by Ca addition, Scr. Mater. 187, 24–29, (2020).
  • [14] Vinogradov A., Orlov D., Danyuk A., Estrin Y., Effect of grain size on the mechanisms of plastic deformation in wrought Mg-Zn-Zr alloy revealed by acoustic emission measurements, Acta Mater. 61, 2044–2056, (2013).
  • [15] Fabian R.K. T., Trojanova Z., Magnesium: Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications, (2007).
  • [16] Cai S., Lei T., Li N., Feng F., Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys, Mater. Sci. & Eng. C. 32, 2570–2577, (2012).
  • [17] Du Y.Z., Qiao X.G., Zheng M.Y., Wu K., Xu S.W., The microstructure, texture and mechanical properties of extruded Mg-5.3Zn-0.2Ca-0.5Ce (wt%) alloy, Mater. Sci. & Eng. A. 620, 164–171, (2015).
  • [18] Kim Y.M., Yim C.D., Kim H.S., You B.S., Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures, Scr. Mater. 65, 958–961, (2011).
  • [19] Jung Y.G., Yang W., Kim Y.J., Kim S.K., Yoon Y.O., Lim H., Kim D.H., Effect of Ca addition on the microstructure and mechanical properties of heat-treated Mg-6.0Zn-1.2Y-0.7Zr alloy, J. Magnes. Alloy. 9, 1619–1631, (2021).
  • [20] Kang Q., Jiang H., Zhang Y., Xu Z., Li H., Xia Z., Effect of various Ca content on microstructure and fracture toughness of extruded Mg-2Zn alloys, J. Alloys Compd. 742, 1019–1030, (2018).
  • [21] Kamrani S., Fleck C., Effects of calcium and rare-earth elements on the microstructure and tension-compression yield asymmetry of ZEK100 alloy, Mater. Sci. & Eng. A. 618, 238–243, (2014).
  • [22] Jun C., Qing Z., Quan-An L.I., Effect of y and Ca addition on the creep behaviors of AZ61 magnesium alloys, J. Alloys Compd. 686, 375–383, (2016).
  • [23] Y Du.Z., X Qiao.G., Zheng M.Y., Wang D.B., Wu K., Golovin I.S., Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys, Mater. Des. 98, 285–293, (2016).
  • [24] Zhang Y., Yang L., Dai J., Ge J., Guo G., Liu Z., Effect of Ca and Sr on the compressive creep behavior of Mg-4Al-RE based magnesium alloys, Mater. Des. 63, 439–445, (2014).
  • [25] Zhang B., Wang Y., Geng L., Lu C., Effects of calcium on texture and mechanical properties of hot-extruded Mg – Zn – Ca alloys, Mater. Sci. Eng. A. 539, 56–60, (2012).
  • [26] Nayyeri G., Mahmudi R., Effects of Ca additions on the microstructural stability and mechanical properties of Mg – 5 % Sn alloy, Mater. Des. 32, 1571–1576, (2011).
  • [27] Kim J.H., Kang N.E., Yim C.D., Kim B.K., Effect of calcium content on the microstructural evolution and mechanical properties of wrought Mg-3Al-1Zn alloy, Mater. Sci. & Eng. A. 525, 18–29, (2009).
  • [28] Bae G.T., Bae J.H., Kang D.H., Lee H., Kim N.J., Effect of Ca addition on microstructure of twin-roll cast AZ31 Mg alloy, Met. Mater. Int. 15, 1–5, (2009).
  • [29] Ding H.L., Zhang P., Cheng G.P., Kamado S., Effect of calcium addition on microstructure and texture modification of Mg rolled sheets, Trans. Nonferrous Met. Soc. China (English Ed. 25, 2875–2883, (2015).
  • [30] Koike J., Kobayashi T., Mukai T., Watanabe H., Suzuki M., The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Materialia, 51, 2055–2065, (2003).
  • [31] Nie J.F., Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 3891–3939, (2012).
  • [32] Turkish Standard TS EN ISO 6892-1, Institution Turkish Stand. 1, 77, (2010).
  • [33] Li H., Liu D., Zhao Y., Jin F., Chen M., The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid, J. Mater. Eng. Perform. 25, 3890–3895, (2016).
  • [34] Silva E.P., Batista L.F., Callegari B., Feierabend I., Buzolin R.H., Coelho R.S., Warchomicka F., Requena G.C., Pinto H., Casting in the semi-solid state of ZK60 magnesium alloy modified with rare earth addition, Adv. Mater. Res. 922, 694–699, (2014).
  • [35] Zheng R., Bhattacharjee T., Shibata A., Sasaki T., Hono K., Joshi M., Tsuji N., Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine-grained structures, Scr. Mater. 131, 1–5, (2017).
  • [36] Du Y.Z., Qiao X.G., Zheng M.Y., Wang D.B., Wu K., Golovin I.S., Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass % Zn alloys, Mater. & Design, 98, 285–293, (2016).
  • [37] Kim J.H., Kang N.E., Yim C.D., Kim B.K., Effect of calcium content on the microstructural evolution and mechanical properties of wrought Mg – 3Al – 1Zn alloy, Mater. Sci. & Eng. A 525, 18–29, (2009).
  • [38] Stanford N., The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg – Mn – Ca alloys, Mater. Sci. & Eng. A. 528, 314–322, (2010).
  • [39] Cáceres C.H., Blake A., The Strength of Concentrated Mg-Zn Solid Solutions, Phys. Status Solidi. 194, 147–158, (2002).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Aykan Akbaş 0000-0002-5366-5722

Muzaffer Zeren 0000-0001-5490-3799

Proje Numarası 2018/047
Yayımlanma Tarihi 1 Ekim 2023
Gönderilme Tarihi 1 Ocak 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akbaş, A., & Zeren, M. (2023). Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys. Politeknik Dergisi, 26(3), 1061-1069. https://doi.org/10.2339/politeknik.1052154
AMA Akbaş A, Zeren M. Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys. Politeknik Dergisi. Ekim 2023;26(3):1061-1069. doi:10.2339/politeknik.1052154
Chicago Akbaş, Aykan, ve Muzaffer Zeren. “Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-Cast ZK60 Magnesium Alloys”. Politeknik Dergisi 26, sy. 3 (Ekim 2023): 1061-69. https://doi.org/10.2339/politeknik.1052154.
EndNote Akbaş A, Zeren M (01 Ekim 2023) Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys. Politeknik Dergisi 26 3 1061–1069.
IEEE A. Akbaş ve M. Zeren, “Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys”, Politeknik Dergisi, c. 26, sy. 3, ss. 1061–1069, 2023, doi: 10.2339/politeknik.1052154.
ISNAD Akbaş, Aykan - Zeren, Muzaffer. “Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-Cast ZK60 Magnesium Alloys”. Politeknik Dergisi 26/3 (Ekim 2023), 1061-1069. https://doi.org/10.2339/politeknik.1052154.
JAMA Akbaş A, Zeren M. Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys. Politeknik Dergisi. 2023;26:1061–1069.
MLA Akbaş, Aykan ve Muzaffer Zeren. “Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-Cast ZK60 Magnesium Alloys”. Politeknik Dergisi, c. 26, sy. 3, 2023, ss. 1061-9, doi:10.2339/politeknik.1052154.
Vancouver Akbaş A, Zeren M. Investigation of the Effect of Various Ca Content on Microstructure and Mechanical Properties of As-cast ZK60 Magnesium Alloys. Politeknik Dergisi. 2023;26(3):1061-9.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.