Konferans Bildirisi
BibTex RIS Kaynak Göster

Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications

Yıl 2024, , 221 - 226, 29.02.2024
https://doi.org/10.2339/politeknik.1056109

Öz

The developments of the wireless communications technology, the Terahertz (THz) frequency band of the electromagnetic spectrum becomes promising and recently has the researchers’ attention to be utilized in several applications such as medical, indoor communications for personal networks, and the military applications. The main issues in this frequency band are the construction of a compact, high-performance antenna design; as in this frequency band, the material properties for conduction decrease as the frequency increases, and therefore the performance of the antenna diminishes. In this paper, we propose a graphene-based bowtie microstrip antenna, the performance of the graphene material in the THz frequency band is analysed based on the finite integration of the Computer Simulation Technology (CST) software. The graphene-based bowtie patch printed on a silicon dioxide substrate with a fully copper ground plane printed on its bottom. The proposed graphene plasmonic bowtie antenna covers a range of 0.1-10 THz band frequency with good gain in the range of 2-19 dBi in the mentioned band.

Destekleyen Kurum

ICMECE 2021 conference Paper ID 58

Proje Numarası

ICMECE 2021 conference Paper ID 58

Teşekkür

ICMECE 2021 conference Paper ID 58

Kaynakça

  • [1] I. Mcintosh, B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, “Terahertz spectroscopy: A powerful new tool for the chemical Science”, Chemical Society Reviews, 41(6): 2072–2082, (2012).
  • [2] P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolic´, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonic´, P. Harrison, A. D. Rakic´, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser”, Optics letters, 36(13): 2587–2589, (2011).
  • [3] Y. Ren, R. Wallis, D. S. Jessop, R. Degl’Innocenti, A. Klimont, H. E. Beere, and D. A. Ritchie, “Fast terahertz imaging using a quantum cascade amplifier”, Applied Physics Letters, 107: 1-20, (2015).
  • [4] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging, and sensing for security applications-explosives, weapons and drugs”, Semiconductor Science and Technology, 20(7): 48-56, (2005).
  • [5] C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date”, Quantitative imaging in medicine and surgery, 2(1): 33–45, (2012).
  • [6] I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next Frontier for wireless communications”, Physical communication, 12: 16–32, (2014).
  • [7] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Lauther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate”, Nature photonics, 7: 977–981, (2013).
  • [8] H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24 Gbit/s data transmission in 300 GHz band for future terahertz communications”, Electronics Letters, 48(15): 953– 954, (2012).
  • [9] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Kilma, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, 146: 351–355, (2008).
  • [10] H. A. Abdulnabi, M. A. Shuriji, S. Ahmed, “UWB THz plasmonic microstrip antenna based on graphene”, Telkomnika, 18(1): 30-36, (2020).
  • [11] Malhat, H. A. E. A., Ghazi, A. M., and Zainud-Deen, S. H., “Reconfigurable Multi-beam On-Chip Patch Antenna Using Plasmonics Parasitic Graphene Strip Array”, Plasmonics, 17(1): 349-359, (2022).‏
  • [12] Shamim, S. M., Das, S., Hossain, M., and Madhav, B. T. P., “Investigations on graphene-based ultra-wideband (UWB) microstrip patch antennas for terahertz (THz) applications”, Plasmonics, 16(5): 1623-1631, (2021).‏
  • [13] Mahdi, R. H., and Jawad, H. A., “Assessment of Specific Absorption Rate and Temperature in the Tumor Tissue Subjected to Plasmonic Bow-Tie Optical Nano-Antenna”, In 2019 International Engineering Conference (IEC), IEEE, (2019).
  • [14] Rasha H. Mahdi, Hussein A. Jawad, “Thermal response of skin diseased tissue treated by plasmonic nan antenna”, Int. J. of Electr. & Comput. Eng., 10(3): 2969-2977, (2020).
  • [15] Hussein A., Refat T. and Raad S., “0.1-10 THz Single Port Log Periodic antenna design based on Hilbert Graphene Artificial Magnetic Conductor”, ARPN Journal of Engineering and Applied Sciences, 12(4): 1189-1196, (2017).
  • [16] A. Alsudani and H. M. Marhoon, “Performance Enhancement of Microstrip Patch Antenna Based on FSS Substrate for 5G Communication Applications”, Journal of Communications, 17(10): 610-618, (2022).
  • [17] H. A. Abdulnabi, R. T. Hussein and Raad S., “UWB Single Port Log Periodic Toothed Terahertz Antenna Design Based on Graphene Artificial Magnetic Conductor”, Modern Applied Science, 11(3):86-97, (2017).
  • [18] H. A. Abdulnabi, R. T. Hussein & Raad S., “Design and performance investigation of tunable UWB THz antenna based on graphene fractal artificial magnetic conductor”, IJECET, 6(9): 39-47, (2015).
  • [19] N. Qasem and H. M. Marhoon, “Simulation and optimization of a tuneable rectangular microstrip patch antenna based on hybrid metal-graphene and FSS superstrate for fifth-generation applications”, Telkomnika, 18(4): 1719–1730, (2020).
  • [20] H. M. Marhoon and N. Qasem, “Simulation and optimization of tunable microstrip patch antenna for fifth-generation applications based on graphene”, Int. J. Electr. Comput. Eng., 10(5): 5274– 5287, (2020).
  • [21] Y. Al-Aboosi, Abdulrahman K, Ahmad Z. Sha'ameri, H. A. Abdualnabi, “Diurnal Variability of Underwater Acoustic Noise Characteristics in Shallow Water”, Telkomnika, 15(1): 314-321, (2017).
  • [22] B. S. Taha, H. M. Marhoon, and A. A. Naser, “Simulating of RF energy harvesting micro-strip patch antenna over 2.45 GHz”, Int. J. Eng. Tech., 7(4): 5484–5488, (2018).
  • [23] Behera, D., Dwivedy, B., Mishra, D., & Behera, S. K., “Design of a CPW fed compact bow‐tie microstrip antenna with versatile frequency tunability”, IET Microwaves, Antennas & Propagation, 12(6): 841-849, (2020).‏
  • [24] H. A. Abdulnabi, Y. Y. Al-Aboosi, “Design of Tunable Multiband Hybrid Graphene Metal Antenna in Microwave Regime”, Ind. J. Electr. Eng. & Comput. Sci., 12(3): 401-408, (2018).
  • [25] Avşar Aydın, E., “3D-Printed Graphene-Based Bow-Tie Microstrip Antenna Design and Analysis for Ultra-Wideband Applications”, Polymers, 13(21): 3724-3725, (2021).‏

Terahertz Uygulamaları için Grafen Malzemesine Dayalı Mikroşerit Bowtie Anten Tasarımı ve Optimizasyonu

Yıl 2024, , 221 - 226, 29.02.2024
https://doi.org/10.2339/politeknik.1056109

Öz

Kablosuz iletişim teknolojisindeki gelişmeler, elektromanyetik spektrumun Terahertz (THz) frekans bandı umut verici hale geliyor ve son zamanlarda araştırmacıların dikkatini tıbbi, kişisel ağlar için iç mekan iletişimi ve askeri uygulamalar gibi çeşitli uygulamalarda kullanmaya başladı. Bu frekans bandındaki ana konular, kompakt, yüksek performanslı bir anten tasarımının oluşturulması; bu frekans bandında olduğu gibi, frekans arttıkça iletim için malzeme özellikleri azalmakta ve dolayısıyla antenin performansı düşmektedir. Bu yazıda, grafen tabanlı bir papyon mikroşerit anten öneriyoruz, grafen malzemesinin THz frekans bandındaki performansı, Bilgisayar Simülasyon Teknolojisi (BST) yazılımının sonlu entegrasyonuna dayalı olarak analiz ediliyor. Alt kısmında tamamen bakır bir zemin düzlemi bulunan bir silikon dioksit substratı üzerine basılmış grafen bazlı papyon yaması. Önerilen grafen plazmonik papyon anten, 2-19 dBi aralığında iyi kazanç ile 0.1-10 THz bant frekansını kapsar.

Proje Numarası

ICMECE 2021 conference Paper ID 58

Kaynakça

  • [1] I. Mcintosh, B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, “Terahertz spectroscopy: A powerful new tool for the chemical Science”, Chemical Society Reviews, 41(6): 2072–2082, (2012).
  • [2] P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolic´, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonic´, P. Harrison, A. D. Rakic´, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser”, Optics letters, 36(13): 2587–2589, (2011).
  • [3] Y. Ren, R. Wallis, D. S. Jessop, R. Degl’Innocenti, A. Klimont, H. E. Beere, and D. A. Ritchie, “Fast terahertz imaging using a quantum cascade amplifier”, Applied Physics Letters, 107: 1-20, (2015).
  • [4] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging, and sensing for security applications-explosives, weapons and drugs”, Semiconductor Science and Technology, 20(7): 48-56, (2005).
  • [5] C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date”, Quantitative imaging in medicine and surgery, 2(1): 33–45, (2012).
  • [6] I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next Frontier for wireless communications”, Physical communication, 12: 16–32, (2014).
  • [7] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Lauther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate”, Nature photonics, 7: 977–981, (2013).
  • [8] H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24 Gbit/s data transmission in 300 GHz band for future terahertz communications”, Electronics Letters, 48(15): 953– 954, (2012).
  • [9] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Kilma, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, 146: 351–355, (2008).
  • [10] H. A. Abdulnabi, M. A. Shuriji, S. Ahmed, “UWB THz plasmonic microstrip antenna based on graphene”, Telkomnika, 18(1): 30-36, (2020).
  • [11] Malhat, H. A. E. A., Ghazi, A. M., and Zainud-Deen, S. H., “Reconfigurable Multi-beam On-Chip Patch Antenna Using Plasmonics Parasitic Graphene Strip Array”, Plasmonics, 17(1): 349-359, (2022).‏
  • [12] Shamim, S. M., Das, S., Hossain, M., and Madhav, B. T. P., “Investigations on graphene-based ultra-wideband (UWB) microstrip patch antennas for terahertz (THz) applications”, Plasmonics, 16(5): 1623-1631, (2021).‏
  • [13] Mahdi, R. H., and Jawad, H. A., “Assessment of Specific Absorption Rate and Temperature in the Tumor Tissue Subjected to Plasmonic Bow-Tie Optical Nano-Antenna”, In 2019 International Engineering Conference (IEC), IEEE, (2019).
  • [14] Rasha H. Mahdi, Hussein A. Jawad, “Thermal response of skin diseased tissue treated by plasmonic nan antenna”, Int. J. of Electr. & Comput. Eng., 10(3): 2969-2977, (2020).
  • [15] Hussein A., Refat T. and Raad S., “0.1-10 THz Single Port Log Periodic antenna design based on Hilbert Graphene Artificial Magnetic Conductor”, ARPN Journal of Engineering and Applied Sciences, 12(4): 1189-1196, (2017).
  • [16] A. Alsudani and H. M. Marhoon, “Performance Enhancement of Microstrip Patch Antenna Based on FSS Substrate for 5G Communication Applications”, Journal of Communications, 17(10): 610-618, (2022).
  • [17] H. A. Abdulnabi, R. T. Hussein and Raad S., “UWB Single Port Log Periodic Toothed Terahertz Antenna Design Based on Graphene Artificial Magnetic Conductor”, Modern Applied Science, 11(3):86-97, (2017).
  • [18] H. A. Abdulnabi, R. T. Hussein & Raad S., “Design and performance investigation of tunable UWB THz antenna based on graphene fractal artificial magnetic conductor”, IJECET, 6(9): 39-47, (2015).
  • [19] N. Qasem and H. M. Marhoon, “Simulation and optimization of a tuneable rectangular microstrip patch antenna based on hybrid metal-graphene and FSS superstrate for fifth-generation applications”, Telkomnika, 18(4): 1719–1730, (2020).
  • [20] H. M. Marhoon and N. Qasem, “Simulation and optimization of tunable microstrip patch antenna for fifth-generation applications based on graphene”, Int. J. Electr. Comput. Eng., 10(5): 5274– 5287, (2020).
  • [21] Y. Al-Aboosi, Abdulrahman K, Ahmad Z. Sha'ameri, H. A. Abdualnabi, “Diurnal Variability of Underwater Acoustic Noise Characteristics in Shallow Water”, Telkomnika, 15(1): 314-321, (2017).
  • [22] B. S. Taha, H. M. Marhoon, and A. A. Naser, “Simulating of RF energy harvesting micro-strip patch antenna over 2.45 GHz”, Int. J. Eng. Tech., 7(4): 5484–5488, (2018).
  • [23] Behera, D., Dwivedy, B., Mishra, D., & Behera, S. K., “Design of a CPW fed compact bow‐tie microstrip antenna with versatile frequency tunability”, IET Microwaves, Antennas & Propagation, 12(6): 841-849, (2020).‏
  • [24] H. A. Abdulnabi, Y. Y. Al-Aboosi, “Design of Tunable Multiband Hybrid Graphene Metal Antenna in Microwave Regime”, Ind. J. Electr. Eng. & Comput. Sci., 12(3): 401-408, (2018).
  • [25] Avşar Aydın, E., “3D-Printed Graphene-Based Bow-Tie Microstrip Antenna Design and Analysis for Ultra-Wideband Applications”, Polymers, 13(21): 3724-3725, (2021).‏
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hamzah M. Marhoon 0000-0001-5613-6685

Proje Numarası ICMECE 2021 conference Paper ID 58
Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 11 Ocak 2022
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA M. Marhoon, H. (2024). Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications. Politeknik Dergisi, 27(1), 221-226. https://doi.org/10.2339/politeknik.1056109
AMA M. Marhoon H. Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications. Politeknik Dergisi. Şubat 2024;27(1):221-226. doi:10.2339/politeknik.1056109
Chicago M. Marhoon, Hamzah. “Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications”. Politeknik Dergisi 27, sy. 1 (Şubat 2024): 221-26. https://doi.org/10.2339/politeknik.1056109.
EndNote M. Marhoon H (01 Şubat 2024) Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications. Politeknik Dergisi 27 1 221–226.
IEEE H. M. Marhoon, “Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications”, Politeknik Dergisi, c. 27, sy. 1, ss. 221–226, 2024, doi: 10.2339/politeknik.1056109.
ISNAD M. Marhoon, Hamzah. “Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications”. Politeknik Dergisi 27/1 (Şubat 2024), 221-226. https://doi.org/10.2339/politeknik.1056109.
JAMA M. Marhoon H. Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications. Politeknik Dergisi. 2024;27:221–226.
MLA M. Marhoon, Hamzah. “Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications”. Politeknik Dergisi, c. 27, sy. 1, 2024, ss. 221-6, doi:10.2339/politeknik.1056109.
Vancouver M. Marhoon H. Design and Optimisation of Microstrip Bowtie Antenna Based on Graphene Material for Terahertz Applications. Politeknik Dergisi. 2024;27(1):221-6.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.