Gaz Çıkışı Dikdörtgen Kesitli Ev Tipi Ocaklarda LPG’nin Alev ve Akış Analizi
Yıl 2024,
, 1121 - 1128, 25.07.2024
Nimeti Döner
,
Berkay Şahin
,
Mustafa İlbaş
Öz
Bir ev tipi ocakta sıvılaştırılmış petrol gazının (%70 butan ve %30 propan karışımlı) soğuk akış ve alev karakteristikleri deneysel olarak incelenmiştir. Ev tipi ocak, gaz çıkışı dikdörtgen kesitli farklı büyüklüklerdeki ocaklardan oluşmaktadır. Maksimum ve minimum gaz akış debisinde, alev sıcaklığı ve gaz akış hızları laboratuvar şartlarında ölçülmüştür. Sıcaklıklar yatay, dikey ve diagonal doğrultularda ve referans noktası ile 3 cm arasındaki mesafelerde ölçülmüştür. Maksimum ve minimum debilerdeki sıcaklıklar, tüm ocaklarda önemli farklılıklar göstermiştir. Maksimum debide, gaz çıkış noktasındaki sıcaklıklar 620‒710 °C arasındadır. En büyük ocakta, maksimum debide diagonal yönde gaz yayınımları da ölçülmüştür. CO’in maksimum değeri referans noktasında 7000 ppm olarak tespit edilmiştir. CO2 yayınımı referans noktası ile 1.5 cm arasında %12 olup, diğer noktalarda yavaşca %11 e azalmaktadır. NOx ölçümleri 0.5 cm noktasında 180 ppm ile maksimum değeri göstermiştir. Ocak 1 maksimum debide türbülanslı akışa sahip iken, diğer ocaklar laminer akış rejimine sahiptirler.
Kaynakça
- [1] Chander S., Ray A., “Flame impingement heat transfer: a review”, Energy Conversion Management, 46 (18–19), 2803–2837, (2005).
- [2] Makmool U., Jugjai S., Tia S., Vallikul P., Fungtammasan B., “Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand” Energy, 32:10, 1986‒1995, (2007).
- [3] Özer S., Vural E., “Turbosarjlı enjeksiyonlu benzinli motorda LPG kullanımın emisyonlar ve motor perormansı açısından incelenmesi”, Journal of Polytechnic, 24:1, 143-150, (2021).
- [4] McAllister S., Chen J.-Y., Fernandez-Pello A.C., “Fundamentals of Combustion Process”, Springer, 10‒17, (2011).
- [5] Jugjai S., Rungsimuntuchart N., “High efficiency heat-recirculating domestic gas burners”, Experimental Thermal and Fluid Science, 26, 581–592, (2002).
- [6] Dong L.L., C.S. Cheung, C.W. Leung, “Heat transfer characteristics of an impinging butane/air flame jet of low Reynolds number”, Experimental Heat Transfer, 14:4, 265–282, (2001).
- [7] Li H.B., Wong T.T., Leung C.W., Probert S.D., “Thermal performances and CO emissions of gas-fired cooker-top burners”, Applied Energy, 83, 1326–1338, (2006).
- [8] Lee C.E., Hwang C.H., Lee H.Y., “A study on the interchangeability of LFG–LPG mixed fuels with LFG quality in domestic combustion appliances”, Fuel, 87, 297–303, (2018).
- [9] Gould C.F., Urpelainen J., “LPG as a clean cooking fuel: adoption, use, and impact in rural India”. Energy Policy, 122, 395–408, (2018).
- [10] Goldemberg J., Martinez-Gomez J., Sagar A., Smith K.R., “Household air pollution, health, and climate change: cleaning the air”, Environmental Research Letters, 13:3, 030201, (2018).
- [11] Budya H., Arofat M., “Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG”, Energy Policy, 39, 7575−7586, (2011).
- [12] Makmool U., Jugjai S., Tia S., “Structures and performances of laminar impinging multiple premixed LPG–air flames”, Fuel, 112, 254‒262, (2013).
- [13] Anggarania R., Wibowo C.S., Rulianto D., “Application of Dimethyl Ether as LPG Substitution for Household Stove”, Energy Procedia, 47, 227–234, (2014).
- [14] Zhen H.S., Leung C.W., Wong T.T., “Improvement of domestic cooking flames by utilizing swirling flows”, Fuel, 119, 153‒156, (2014).
- [15] Kang Y.H., Lu Q.H., Wang X.F., Ji X.Y., Miao S.S., Wang H., Guo Q., He H.H., Xu J., “Experimental and theoretical study on the flow, mixing, and combustion characteristics of dimethyl ether, methane, and LPG jet diffusion flames”, Fuel Processing Technology, 129, 98–112, (2015).
- [16] Arya P.K., Tupkari S., Satish K., Thakre G.D., Shukla B.M., “DME blended LPG as a cooking fuel option for Indian household: A review”, Renewable and Sustainable Energy Reviews, 53, 1591–1601, (2016).
- [17] Shen G., Hays M.D., Smith K.R., Williams C., Faircloth J.W., Jetter J.J., “Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves”, Environmental Science and Technology, 52, 904−915, (2018).
- [18] Mishra N.K., Muthukumar P., “Development and testing of energy efficient and environment friendly porous radiant burner operating on liquefied petroleum gas”, Applied Thermal Engineering, 129, 482–489, (2018).
- [19] Kwok L.C., Leung C.W., Cheung C.S., “Heat-transfer characteristics of slot and round premixed impinging flame jets”, Experimental Heat Transfer, 16, 111–137, (2003).
- [20] Boggavarapu P., Ray B., Ravikrishna R.V., “Thermal Efficiency of LPG and PNG-fired burners: Experimental and numerical studies”, Fuel, 116, 709–715, (2014).
- [21] Ozdemir I.B., Kantas M., “Investigation of partially-premixed combustion in a household cooker-top burner”, Fuel Processing Technology, 151, 107–116, (2016).
- [22] Wae-hayee M., Yeranee K., Suksuwan W., Nuntadusit C., “Effect of burner-to-plate distance on heat transfer rate in a domestic stove using LPG”, Case Studies in Thermal Engineering, 28, 101418, (2021).
- [23] Carr N.L., Kobayashi R., Burrows D.B., “Viscosity of hydrocarbon gases under pressure”, Journal of Petrol Technology, 6:10, 47–55, SPE-297-G, (1954).
- [24] Sahin B., Doner N., Ilbas M., “Investigations of flame characteristics of LPG used in three different size household cookers”, 16th Combustion Symposium, September 8-11, (2022), Aydin, Turkiye.
- [25] İlbaş M., Candan G., “Effects of CO2 Dilution on Flame Stabilization and NOx Emission in a Small Swirl Burner and Furnace”, Journal of Polytechnic, (2023).
Flame and Flow Analysis of LPG in Household Cookers with Rectangular Ports
Yıl 2024,
, 1121 - 1128, 25.07.2024
Nimeti Döner
,
Berkay Şahin
,
Mustafa İlbaş
Öz
The cold flow and flame characteristics of liquefied petroleum gas (LPG- mixing 70% butane and 30% propane) in a household stove are experimentally investigated. The household stove has three cookers with rectangular ports and different sizes. The flame temperature and gas flow velocity are measured at maximum and minimum flow rates under laboratory conditions. Temperatures in the horizontal, vertical, and diagonal directions are measured at a distance between the reference point and 3 cm. The temperatures between the maximum and minimum flow rates show significant differences for all cookers. Flame temperatures at the gas exit point are 620‒710 °C at the maximum gas flow rate. On the largest cooker, the gas emissions in the diagonal direction at the maximum flow rate are also measured. The maximum value of CO emissions 7000 ppm is measured at the reference point. CO2 emissions are 12% between the reference point and 1.5 cm and slightly decreasing to 11% at other points. NOx measurements (ppm) show a peak value of 180 ppm at the 0.5 cm point. Cooker 1 is in the turbulence regime at maximum flow rate, while the other cookers are in the laminar regime.
Kaynakça
- [1] Chander S., Ray A., “Flame impingement heat transfer: a review”, Energy Conversion Management, 46 (18–19), 2803–2837, (2005).
- [2] Makmool U., Jugjai S., Tia S., Vallikul P., Fungtammasan B., “Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand” Energy, 32:10, 1986‒1995, (2007).
- [3] Özer S., Vural E., “Turbosarjlı enjeksiyonlu benzinli motorda LPG kullanımın emisyonlar ve motor perormansı açısından incelenmesi”, Journal of Polytechnic, 24:1, 143-150, (2021).
- [4] McAllister S., Chen J.-Y., Fernandez-Pello A.C., “Fundamentals of Combustion Process”, Springer, 10‒17, (2011).
- [5] Jugjai S., Rungsimuntuchart N., “High efficiency heat-recirculating domestic gas burners”, Experimental Thermal and Fluid Science, 26, 581–592, (2002).
- [6] Dong L.L., C.S. Cheung, C.W. Leung, “Heat transfer characteristics of an impinging butane/air flame jet of low Reynolds number”, Experimental Heat Transfer, 14:4, 265–282, (2001).
- [7] Li H.B., Wong T.T., Leung C.W., Probert S.D., “Thermal performances and CO emissions of gas-fired cooker-top burners”, Applied Energy, 83, 1326–1338, (2006).
- [8] Lee C.E., Hwang C.H., Lee H.Y., “A study on the interchangeability of LFG–LPG mixed fuels with LFG quality in domestic combustion appliances”, Fuel, 87, 297–303, (2018).
- [9] Gould C.F., Urpelainen J., “LPG as a clean cooking fuel: adoption, use, and impact in rural India”. Energy Policy, 122, 395–408, (2018).
- [10] Goldemberg J., Martinez-Gomez J., Sagar A., Smith K.R., “Household air pollution, health, and climate change: cleaning the air”, Environmental Research Letters, 13:3, 030201, (2018).
- [11] Budya H., Arofat M., “Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG”, Energy Policy, 39, 7575−7586, (2011).
- [12] Makmool U., Jugjai S., Tia S., “Structures and performances of laminar impinging multiple premixed LPG–air flames”, Fuel, 112, 254‒262, (2013).
- [13] Anggarania R., Wibowo C.S., Rulianto D., “Application of Dimethyl Ether as LPG Substitution for Household Stove”, Energy Procedia, 47, 227–234, (2014).
- [14] Zhen H.S., Leung C.W., Wong T.T., “Improvement of domestic cooking flames by utilizing swirling flows”, Fuel, 119, 153‒156, (2014).
- [15] Kang Y.H., Lu Q.H., Wang X.F., Ji X.Y., Miao S.S., Wang H., Guo Q., He H.H., Xu J., “Experimental and theoretical study on the flow, mixing, and combustion characteristics of dimethyl ether, methane, and LPG jet diffusion flames”, Fuel Processing Technology, 129, 98–112, (2015).
- [16] Arya P.K., Tupkari S., Satish K., Thakre G.D., Shukla B.M., “DME blended LPG as a cooking fuel option for Indian household: A review”, Renewable and Sustainable Energy Reviews, 53, 1591–1601, (2016).
- [17] Shen G., Hays M.D., Smith K.R., Williams C., Faircloth J.W., Jetter J.J., “Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves”, Environmental Science and Technology, 52, 904−915, (2018).
- [18] Mishra N.K., Muthukumar P., “Development and testing of energy efficient and environment friendly porous radiant burner operating on liquefied petroleum gas”, Applied Thermal Engineering, 129, 482–489, (2018).
- [19] Kwok L.C., Leung C.W., Cheung C.S., “Heat-transfer characteristics of slot and round premixed impinging flame jets”, Experimental Heat Transfer, 16, 111–137, (2003).
- [20] Boggavarapu P., Ray B., Ravikrishna R.V., “Thermal Efficiency of LPG and PNG-fired burners: Experimental and numerical studies”, Fuel, 116, 709–715, (2014).
- [21] Ozdemir I.B., Kantas M., “Investigation of partially-premixed combustion in a household cooker-top burner”, Fuel Processing Technology, 151, 107–116, (2016).
- [22] Wae-hayee M., Yeranee K., Suksuwan W., Nuntadusit C., “Effect of burner-to-plate distance on heat transfer rate in a domestic stove using LPG”, Case Studies in Thermal Engineering, 28, 101418, (2021).
- [23] Carr N.L., Kobayashi R., Burrows D.B., “Viscosity of hydrocarbon gases under pressure”, Journal of Petrol Technology, 6:10, 47–55, SPE-297-G, (1954).
- [24] Sahin B., Doner N., Ilbas M., “Investigations of flame characteristics of LPG used in three different size household cookers”, 16th Combustion Symposium, September 8-11, (2022), Aydin, Turkiye.
- [25] İlbaş M., Candan G., “Effects of CO2 Dilution on Flame Stabilization and NOx Emission in a Small Swirl Burner and Furnace”, Journal of Polytechnic, (2023).