Araştırma Makalesi
BibTex RIS Kaynak Göster

Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers

Yıl 2024, , 1089 - 1099, 25.07.2024
https://doi.org/10.2339/politeknik.1247175

Öz

In this study, the effects of the electrospinning operating parameters such as flow rate (1-5 ml/h), voltage (15-30 kV), and distance to the collector (100-200 mm) on the physical properties of PAN-based nanofibers were investigated statistically by applying the central composite design method. The minimum nanofiber diameter was found to be 366.5 nm, under operating conditions of 5 ml/h flow rate, 30 kV, and 100 mm distance to the collector. Experimental conditions of 15 kV, 5 ml/h flow rate, and a 200 mm distance to the collector, a maximum porosity value of 0.446 was obtained. Similarly to the porosity, the water absorption capacity (WAC) value did not show a linear increase, and the maximum absorption capacity was calculated as 5712%, and at that point where the diameter is relatively large and the porosity is low.

Destekleyen Kurum

Sivas Bilim ve Teknoloji Üniversitesi

Proje Numarası

2022-GENL-MUH-0008

Teşekkür

The authors acknowledge the financial support of Sivas University of Science and Technology under the grant no: 2022-GENL-MUH-0008.

Kaynakça

  • [1] Choi, D., Kil, H.S., Lee, S., “Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies”, Carbon, 142, 610–649, (2019).
  • [2] Zabihi, O., Ahmadi, M., Li, Q., Shafei, S., Huson, M.G., Naebe, M.: Carbon fibre surface modification using functionalized nanoclay, “A hierarchical interphase for fibre-reinforced polymer composites”, Composites Science and Technology, 148, 49–58, (2017).
  • [3] Atlı İ.S. and Evcin A., “Analysing mechanical behaviors of carbon fiber reinforced silicone matrix composite materials after static folding”, Journal of Polytechnic, 23(2): 351-359, (2020).
  • [4] Huang, M., Tu, H., Chen, J., Liu, R., Liang, Z., Jiang, L., Shi, X., Du, Y., Deng, H., “Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal”, Applied Surface Science, 437, 294–303, (2018).
  • [5] Chaúque, E.F.C., Dlamini, L.N., Adelodun, A.A., Greyling, C.J., Catherine Ngila, J., “Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents”, Applied Surface Science, 369, 19–28, (2016).
  • [6] Yerkinbekova, Y., Kalybekkyzy, S., Tolganbek, N., Kahraman, M.V., Bakenov, Z., Mentbayeva, A., “Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries”, Scientific Reports, 12, 1–13, (2022).
  • [7] Han, Q., Zhang, W., Han, Z., Niu, S., Zhang, J., Wang, F., Li, X., Geng, D., Yu, G., “Preparation of PAN-based carbon fiber/Co3O4 composite and potential application in structural lithium-ion battery anodes”, Ionics, 25, 5333–5340, (2019).
  • [8] Pusta, A., Tertiș, M., Cristea, C., Mirel, S., “Wearable Sensors for the Detection of Biomarkers for Wound Infection”, Biosensors, 12, 1-12, (2021).
  • [9] Khayyam, H., Jazar, R.N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S.M., Kumar, S., Naebe, M., “PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling”, Progress in Materials Science, 107, 100575, (2020).
  • [10] Özdemir A.O., Karataş Ç. ve Yücesu H.S., “Elyaf konfigürasyonunun termoplastik kompozit levhaların mekanik özelliklerine etkisi”, Politeknik Dergisi, 24(2): 599-607, (2021).
  • [11] Korku M., Feyzullahoğlu E. ve İlhan R., “Farklı türlerde polyester ve çekme katkısı içeren cam elyaf takviyeli polyester kompozit malzemelerde çevresel koşulların aşınma davranışlarına olan etkilerinin incelenmesi”, Politeknik Dergisi, *(*): *, (*).
  • [12] Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., Mai, L., Wei, Q.L., Xiong, F.Y., Tan, S.S., Huang, L., Mai, L.Q., Lan, E.H., Dunn, B., “Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage”, Advanced Materials, 29, 1602300, (2017).
  • [13] Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S., Ramkumar, S.S., “Electrospinning of nanofibers”, Journal of Applied Polymer Science, 96, 557–569, (2005).
  • [14] Ali, A.A., Eltabey, M.M., Farouk, W.M., Zoalfakar, S.H., “Electrospun precursor carbon nanofibers optimization by using response surface methodology”, Journal Electrostatics, 72, 462–469, (2014).
  • [15] Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M., Baltrusaitis, J., “Design and characterization of electrospun polyamide nanofiber media for air filtration applications”, Journal of Nanomaterials, 1-13, (2014).
  • [16] Campbell, F. C., “Introduction to composite materials”, Structural composite materials, 1, 1-29, (2010). [17] Andreola, F., Leonelli, C., Romagnoli, M., Miselli, P., “Techniques Used to Determine Porosity”, American Ceramic Society Bulletin, 79, 49–52, (2000).
  • [18] Cazorla-Amorós, D., Alcaniz-Monge, J., Linares-Solano, A., “Characterization of activated carbon fibers by CO2 adsorption”, Langmuir, 12, 2820–2824, (1996).
  • [19] Jafari, M.J., Akhlaghi Pirposhteh, E., Farhangian, M., Khodakarim Ardakani, S., Tavakol, E., Dehghan, S.F., Khalilinejad, A., “Optimizing the electrospinning parameters in polyvinyl chloride nanofiber fabrication using CCD”, Research Journal of Textile and Apparel, 1-16, (2022).
  • [20]. Wei, L., Liu, C., Dong, J., Fan, X., Zhi, C., Sun, R., “Process investigation of nanofiber diameter based on linear needleless spinneret by response surface methodology”, Polymer Testing, 110, (2022).
  • [21] Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A.M., Kaflou, A., “Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks”, Journal of Applied Polymer Science, 126, 127–135, (2012).
  • [22] Rabbi, A., Nasouri, K., Bahrambeygi, H., Shoushtari, A.M., Babaei, M.R., “RSM and ANN Approaches for Modeling and Optimizing of Electrospun Polyurethane Nanofibers Morphology”, Fibers and Polymers, 13, 1007–1014, (2012).
  • [23] Murphy, R., Turcott, A., Banuelos, L., Dowey, E., Goodwin, B., O’, K., Cardinal, H., “SIMPoly: A Matlab-Based Image Analysis Tool to Measure Electrospun Polymer Scaffold Fiber Diameter, Tissue Engineering Part C: Methods, 26(12), 628-636, (2020).
  • [24] Dehghan, S.F., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M., Akbar-Khanzadeh, F., “Optimization of electrospinning parameters for polyacrylonitrile-MgO nanofibers applied in air filtration”, Journal of the Air & Waste Management Association, 66(9), 912-921, (2016).
  • [25] Do, V.T., Nguyen-Tran, H.D., Chun, D.M., “Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite”, Composite Structures, 150, 240–245, (2016).

PAN Bazlı Nanofiberlerin Elektroeğirme ile Üretiminde Proses Değişkenlerinin İstatistiksel Modellenmesi

Yıl 2024, , 1089 - 1099, 25.07.2024
https://doi.org/10.2339/politeknik.1247175

Öz

Bu çalışmada, akış hızı (1-5 ml/sa), voltaj (15-30 kV) ve kollektöre olan mesafe (100-200 mm) gibi elektroeğirme çalışma parametrelerinin PAN bazlı nanofiberlerin fiziksel özelliklerine etkisi, merkezi kompozit tasarım yöntemi uygulanarak, istatistiksel olarak incelenmiştir. 5 ml/sa akış hızında, 30 kV voltajda ve kolektöre 100 mm mesafedeki çalışma koşullarında minimum nanofiber çapı 366,5 nm olarak bulunmuştur. 15 kV, 5 ml/sa akış hızı ve kolektöre 200 mm mesafe uzaklıktaki deney koşullarında, maksimum gözeneklilik değeri 0,446 olarak elde edilmiştir. Gözenekliliğe benzer şekilde, su tutma kapasitesi (STK) değeri doğrusal bir artış göstermemiş ve maksimum absorpsiyon kapasitesi %5712 olarak hesaplanmış ve bu noktada çapın nispeten büyük ve gözenekliliğin düşük olduğu nokta olarak belirlenmiştir.

Proje Numarası

2022-GENL-MUH-0008

Kaynakça

  • [1] Choi, D., Kil, H.S., Lee, S., “Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies”, Carbon, 142, 610–649, (2019).
  • [2] Zabihi, O., Ahmadi, M., Li, Q., Shafei, S., Huson, M.G., Naebe, M.: Carbon fibre surface modification using functionalized nanoclay, “A hierarchical interphase for fibre-reinforced polymer composites”, Composites Science and Technology, 148, 49–58, (2017).
  • [3] Atlı İ.S. and Evcin A., “Analysing mechanical behaviors of carbon fiber reinforced silicone matrix composite materials after static folding”, Journal of Polytechnic, 23(2): 351-359, (2020).
  • [4] Huang, M., Tu, H., Chen, J., Liu, R., Liang, Z., Jiang, L., Shi, X., Du, Y., Deng, H., “Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal”, Applied Surface Science, 437, 294–303, (2018).
  • [5] Chaúque, E.F.C., Dlamini, L.N., Adelodun, A.A., Greyling, C.J., Catherine Ngila, J., “Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents”, Applied Surface Science, 369, 19–28, (2016).
  • [6] Yerkinbekova, Y., Kalybekkyzy, S., Tolganbek, N., Kahraman, M.V., Bakenov, Z., Mentbayeva, A., “Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries”, Scientific Reports, 12, 1–13, (2022).
  • [7] Han, Q., Zhang, W., Han, Z., Niu, S., Zhang, J., Wang, F., Li, X., Geng, D., Yu, G., “Preparation of PAN-based carbon fiber/Co3O4 composite and potential application in structural lithium-ion battery anodes”, Ionics, 25, 5333–5340, (2019).
  • [8] Pusta, A., Tertiș, M., Cristea, C., Mirel, S., “Wearable Sensors for the Detection of Biomarkers for Wound Infection”, Biosensors, 12, 1-12, (2021).
  • [9] Khayyam, H., Jazar, R.N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S.M., Kumar, S., Naebe, M., “PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling”, Progress in Materials Science, 107, 100575, (2020).
  • [10] Özdemir A.O., Karataş Ç. ve Yücesu H.S., “Elyaf konfigürasyonunun termoplastik kompozit levhaların mekanik özelliklerine etkisi”, Politeknik Dergisi, 24(2): 599-607, (2021).
  • [11] Korku M., Feyzullahoğlu E. ve İlhan R., “Farklı türlerde polyester ve çekme katkısı içeren cam elyaf takviyeli polyester kompozit malzemelerde çevresel koşulların aşınma davranışlarına olan etkilerinin incelenmesi”, Politeknik Dergisi, *(*): *, (*).
  • [12] Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., Mai, L., Wei, Q.L., Xiong, F.Y., Tan, S.S., Huang, L., Mai, L.Q., Lan, E.H., Dunn, B., “Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage”, Advanced Materials, 29, 1602300, (2017).
  • [13] Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S., Ramkumar, S.S., “Electrospinning of nanofibers”, Journal of Applied Polymer Science, 96, 557–569, (2005).
  • [14] Ali, A.A., Eltabey, M.M., Farouk, W.M., Zoalfakar, S.H., “Electrospun precursor carbon nanofibers optimization by using response surface methodology”, Journal Electrostatics, 72, 462–469, (2014).
  • [15] Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M., Baltrusaitis, J., “Design and characterization of electrospun polyamide nanofiber media for air filtration applications”, Journal of Nanomaterials, 1-13, (2014).
  • [16] Campbell, F. C., “Introduction to composite materials”, Structural composite materials, 1, 1-29, (2010). [17] Andreola, F., Leonelli, C., Romagnoli, M., Miselli, P., “Techniques Used to Determine Porosity”, American Ceramic Society Bulletin, 79, 49–52, (2000).
  • [18] Cazorla-Amorós, D., Alcaniz-Monge, J., Linares-Solano, A., “Characterization of activated carbon fibers by CO2 adsorption”, Langmuir, 12, 2820–2824, (1996).
  • [19] Jafari, M.J., Akhlaghi Pirposhteh, E., Farhangian, M., Khodakarim Ardakani, S., Tavakol, E., Dehghan, S.F., Khalilinejad, A., “Optimizing the electrospinning parameters in polyvinyl chloride nanofiber fabrication using CCD”, Research Journal of Textile and Apparel, 1-16, (2022).
  • [20]. Wei, L., Liu, C., Dong, J., Fan, X., Zhi, C., Sun, R., “Process investigation of nanofiber diameter based on linear needleless spinneret by response surface methodology”, Polymer Testing, 110, (2022).
  • [21] Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A.M., Kaflou, A., “Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks”, Journal of Applied Polymer Science, 126, 127–135, (2012).
  • [22] Rabbi, A., Nasouri, K., Bahrambeygi, H., Shoushtari, A.M., Babaei, M.R., “RSM and ANN Approaches for Modeling and Optimizing of Electrospun Polyurethane Nanofibers Morphology”, Fibers and Polymers, 13, 1007–1014, (2012).
  • [23] Murphy, R., Turcott, A., Banuelos, L., Dowey, E., Goodwin, B., O’, K., Cardinal, H., “SIMPoly: A Matlab-Based Image Analysis Tool to Measure Electrospun Polymer Scaffold Fiber Diameter, Tissue Engineering Part C: Methods, 26(12), 628-636, (2020).
  • [24] Dehghan, S.F., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M., Akbar-Khanzadeh, F., “Optimization of electrospinning parameters for polyacrylonitrile-MgO nanofibers applied in air filtration”, Journal of the Air & Waste Management Association, 66(9), 912-921, (2016).
  • [25] Do, V.T., Nguyen-Tran, H.D., Chun, D.M., “Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite”, Composite Structures, 150, 240–245, (2016).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ebubekir Sıddık Aydın 0000-0002-8704-4502

İbrahim Korkut 0000-0002-2720-0796

Proje Numarası 2022-GENL-MUH-0008
Erken Görünüm Tarihi 31 Ocak 2024
Yayımlanma Tarihi 25 Temmuz 2024
Gönderilme Tarihi 3 Şubat 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Aydın, E. S., & Korkut, İ. (2024). Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi, 27(3), 1089-1099. https://doi.org/10.2339/politeknik.1247175
AMA Aydın ES, Korkut İ. Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi. Temmuz 2024;27(3):1089-1099. doi:10.2339/politeknik.1247175
Chicago Aydın, Ebubekir Sıddık, ve İbrahim Korkut. “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”. Politeknik Dergisi 27, sy. 3 (Temmuz 2024): 1089-99. https://doi.org/10.2339/politeknik.1247175.
EndNote Aydın ES, Korkut İ (01 Temmuz 2024) Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi 27 3 1089–1099.
IEEE E. S. Aydın ve İ. Korkut, “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”, Politeknik Dergisi, c. 27, sy. 3, ss. 1089–1099, 2024, doi: 10.2339/politeknik.1247175.
ISNAD Aydın, Ebubekir Sıddık - Korkut, İbrahim. “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”. Politeknik Dergisi 27/3 (Temmuz 2024), 1089-1099. https://doi.org/10.2339/politeknik.1247175.
JAMA Aydın ES, Korkut İ. Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi. 2024;27:1089–1099.
MLA Aydın, Ebubekir Sıddık ve İbrahim Korkut. “Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers”. Politeknik Dergisi, c. 27, sy. 3, 2024, ss. 1089-9, doi:10.2339/politeknik.1247175.
Vancouver Aydın ES, Korkut İ. Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers. Politeknik Dergisi. 2024;27(3):1089-9.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.