Araştırma Makalesi
BibTex RIS Kaynak Göster

Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi

Yıl 2023, , 1011 - 1023, 05.07.2023
https://doi.org/10.2339/politeknik.1260040

Öz

Isı yalıtımı konusu global ölçüde önem arz eden ve üzerinde sürekli çalışılan bir alanı oluşturmaktadır. Bu bağlamda, Ağrı ili için dört farklı duvar modeli (taş, tuğla, briket ve betonarme) ve beş farklı yakıt (kömür, doğalgaz, Likit Propan Gaz (LPG), fuel oil ve elektrik) çeşidi seçilerek optimum yalıtım kalınlığı, yalıtım maliyeti, yakıt ve toplam maliyetler, geri ödeme süresi ve yıllık enerji kazancı değerleri hesaplanmıştır. Çalışmada yalıtım malzemesi olarak Genleştirilmiş Polistiren (EPS) kullanılmıştır. En yüksek optimum yalıtım kalınlığı, yakıt maliyeti ve toplam maliyet değerleri elektrik enerjisinin kullanıldığı durumda betonarme duvar modeli için belirlenmiştir. Betonarme duvar modelinde elektrik enerjisi için optimum yalıtım kalınlığı 0.168 m, yakıt maliyeti 3,2392 $/m2 ve toplam maliyet 23,9826 $/m2 olarak tespit edilmiştir. Betonarme duvar modeli için optimum yalıtım kalınlığı, yakıt maliyeti ve toplam maliyet diğer duvar türlerine göre daha yüksek değerler gösterse de geri ödeme süresi bakımından en verimli duvar modeli olduğu belirlenmiştir. Kullanılan yakıt çeşitleri arasında geri ödeme süresi bakımından en verimli olanının elektrik, kömür ve doğal gazın kendilerini en geç amorti edebilen iki yakıt çeşidi olduğu belirlenmiştir.

Kaynakça

  • [1] Dombayci Ö.A., Atalay Ö., Acar Ş.G., and Ulu E.Y., “Thermoeconomic method for determination of optimum ınsulation thickness of external walls for the houses case study for Turkey”, Sustainable Energy Technologies and Assessments, 22: 1-8, (2017).
  • [2] Guven S., “Calculation of Optimum Insulation Thickness of External Walls in Residential Buildings by Using Exergetic Life Cycle Cost Assessment Method Case Study for Turkey”, Sustainable Energy, 38(6): 13232, (2019).
  • [3] Baniassadi A., Sajadi B., Amidpour M., and Noori N., “Economic optimization of PCM ınsulation layer thickness in residential buildings”, Sustainable Energy Technologies and Assessments, 14: 92-99, (2016).
  • [4] Kavaz İ., Türkiye’nin Enerjisi, Politikalar ve Stratejiler, Seta Kitapları, ISBN: 978-625-7712-57-6, 1-23, (2022).
  • [5] Dogan H. and Yilankiran N., “The potential of energy efficiency and projection of Turkey”, Journal of Institute of Science of University of Gazi, 3: 375-384, (2016).
  • [6] Dombaycı Ö.A., Gölcü M., and Pancar Y., “Optimization of Insulation Thickness for External Walls Using Different Energy-Sources”, Applied Energy, 83: 921-928, (2006).
  • [7] Ucar A. and Balo F., “Determination of the Energy Savings and the Optimum Insulation Thickness in the Four
  • Different Insulated Exterior Walls”, Renewable Energy, 35(1): 88-94, (2010).
  • [8] Al-Homoud M.S., “Performance characteristics and practical applications of common building thermal insulation materials”, Building and Environment, 40: 353-366, (2005).
  • [9] Bolatturk A., “Determination of optimum ınsulation thickness for building walls with respect to various fuels and climate zones in Turkey”, Applied Thermal Engineering, 11: 1301-1309, (2006).
  • [10] Yu J., Yang C., Tian L., and Liao D., “A Study on Optimum Insulation Thickness of External Walls in Hot Summer and Cold Winter Zone of China”, Applied Energy, 86: 2520-2529, (2009).
  • [11] Dylewski R., and Adamczyk J., “Economic and environmental benefits of thermal insulation of building external walls”, Building and Environment, 46: 2615-2623, (2011).
  • [12] Ozel M., “Thermal Performance and Optimum Insulation Thickness of Building Walls with Different Structure Materials”, Applied Thermal Energy, 31(17-18): 3854-3863, (2011).
  • [13] Ekici B.B., Gulten A.A., and Aksoy U.T., “A Study on the Optimum Insulation Thickness of Various Types of External Walls with respect to Different Materials Fuels and Climate Zones in Turkey”, Applied Energy, 92: 211-217, (2012).
  • [14] Kaynakli O., “A review of the economical and optimum thermal insulation thickness for building applications”, Renewable and Sustainable Energy Reviews, 16: 415-425, (2012).
  • [15] Tingley D.D., Hathway A., and Davison B., “An Environmental Impact Comparison of External Wall Insulation Types”, Building and Environment, 85: 182-189, (2015).
  • [16] Kürekci N.A., “Determination of Optimum Insulation Thickness for Building Walls by Using Heating and Cooling Degree-Day Values of All Turkey’s Provincial Centers”, Energy and Buildings, 118: 197-213, (2016).
  • [17] Idchabani R., Khyad A., and El Ganaouic M., “Optimizing insulation thickness of external walls in cold region of Morocco based on life cycle cost analysis”, Energy Procedia, 139:117-121, (2017).
  • [18] Yang J., and Tang J., “Influence of Envelope Insulation Materials on Building Energy Consumption”, Frontiers in Energy, 11: 575-581, (2017).
  • [19] D’Agostino D., de’ Rossia F., Marigliano M., Marino C., and Minichiello F., “Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost- optimal” methodology”, Journal of Building Engineering, 24: 100743, (2019).
  • [20] Ozalp C., Saydam D.B., Çerçi K.N., Hürdoğan E., and Moran H., “Evaluation of a sample building with different type building elements in an energetic and environmental perspective”, Renewable and Sustainable Energy Reviews, 115: 109386, (2019).
  • [21] Roumi S., Razi Astaraei F., Ghasempour R., Yousefi H., Hamlehdar M., and Razavi S., “New Insulation Replacement in Buildings’ Walls and Its Impact on Air Pollution Reduction in Tehran”, Intelligent Buildings International, 11: 65-74, (2019).
  • [22] Dombayci Ö.A., Yilmaz E.U., Guven S., Atalay O., and Kemal H.O., “Determination of optimum ınsulation thickness for building external walls with different ınsulation materials using environmental impact assessment”, Thermal Science, 24: 303-311, (2020).
  • [23] Alsurakji I.H., Abdallah R., Assad M., El-Qanni A., “Energy savings and optimum ınsulation thickness in external walls in palestinian buildings”, 12th International Renewable Engineering Conference (IREC), 1-5, (2021).
  • [24] Kallioğlu M.A., Sharma A., Chinnasamy V., Chauhan R., and Singh T., “Optimum insulation thickness assessment of different insulation materials for mid-latitude steppe and desert climate (BSH) region of India”, Materials Today: Proceedings, 44: 4421-4424, (2021).
  • [25] Gülten A.A., “Farklı Yakıt Türlerine Göre Dış Duvar Sistem Alternatiflerinin Enerji Maliyetinin İncelenmesi”, Technological Applied Sciences, 2(1): 39-48, (2007).
  • [26] TS 825, “Binalarda Isı Yalıtım Kuralları Standartı”. Aralık 2013.
  • [27] Fangueiro R., “Fibrous and Composite Materials for Civil Engineering Applications”, Cambridge, UK: Woodhead Publishing Limited, (2011).
  • [28] Özkan D.B., and Onan C., “Optimization of Insulation Thickness for Different Glazing Areas in Buildings for Various Climatic Regions in Turkey”, Applied Energy, 88: 1331-1342, (2011).
  • [29] Hasan A., “Optimizing Insulation Thickness for Buildings Using Life Cycle Cost”, Applied Energy, 63: 115- 124, (1999).
  • [30] https://www.dosider.org/?p=5&a=2 Son Erişim Tarihi: 10.10.2022.
  • [31] https://doviz/merkez-bankasi-doviz-kurlari/10-ekim-2022/ Son Erişim Tarihi: 10.10.2022.
  • [32] https://www.flextab.com.tr/urun/eps-plus-isi-yalitim-levhasi-16-kg-m3-5cm-50cm-100cm-0-25m3 Son Erişim Tarihi: 10.10.2022.
  • [33] https://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Istatistikler/Enflasyon+Verileri Son Erişim Tarihi: 10.10.2022.
  • [34] https://www.haberturk.com/merkez-bankasi-ekim-ayi-faiz-karari-ne-olur-merkez-bankasi-faiz- indirimi-surecek-mi-2022-ekim-tcmb-faiz-karari-tarihi-ve-saati-3530977-ekonomi Son Erişim Tarihi: 06.06.2022.

Analysis of Energy Costs Using Optimum Insulation Thicknesses for Different Fuels and Wall Components in Ağrı Province

Yıl 2023, , 1011 - 1023, 05.07.2023
https://doi.org/10.2339/politeknik.1260040

Öz

The subject of thermal insulation constitutes an area that is of global importance and is constantly studied. In this context, by choosing four different wall models (stone, brick, briquette and reinforced concrete) and five different fuels (coal, natural gas, Liquid Propane Gas (LPG), fuel oil and electricity) for Ağrı province, optimum insulation thickness, insulation cost, fuel and total costs, payback period and annual energy gain values were calculated. Expanded Polystyrene (EPS) was used as insulation material in the study. The highest optimum insulation thickness, fuel cost and total cost values were determined for the reinforced concrete wall model in the case where electrical energy was used. In the reinforced concrete wall model, optimum insulation thickness for electrical energy was determined as 0.168m, fuel cost was 3,2392 $/m2 and total cost was 23,9826 $/m2. Although the optimum insulation thickness, fuel cost and total cost for the reinforced concrete wall model were higher than the other wall types, it has been determined that it was the most efficient wall model in terms of payback time. It has been determined that among the fuel types used, the most efficient in terms of payback period are electricity, coal and natural gas, the two fuel types that can amortize themselves at the latest.

Kaynakça

  • [1] Dombayci Ö.A., Atalay Ö., Acar Ş.G., and Ulu E.Y., “Thermoeconomic method for determination of optimum ınsulation thickness of external walls for the houses case study for Turkey”, Sustainable Energy Technologies and Assessments, 22: 1-8, (2017).
  • [2] Guven S., “Calculation of Optimum Insulation Thickness of External Walls in Residential Buildings by Using Exergetic Life Cycle Cost Assessment Method Case Study for Turkey”, Sustainable Energy, 38(6): 13232, (2019).
  • [3] Baniassadi A., Sajadi B., Amidpour M., and Noori N., “Economic optimization of PCM ınsulation layer thickness in residential buildings”, Sustainable Energy Technologies and Assessments, 14: 92-99, (2016).
  • [4] Kavaz İ., Türkiye’nin Enerjisi, Politikalar ve Stratejiler, Seta Kitapları, ISBN: 978-625-7712-57-6, 1-23, (2022).
  • [5] Dogan H. and Yilankiran N., “The potential of energy efficiency and projection of Turkey”, Journal of Institute of Science of University of Gazi, 3: 375-384, (2016).
  • [6] Dombaycı Ö.A., Gölcü M., and Pancar Y., “Optimization of Insulation Thickness for External Walls Using Different Energy-Sources”, Applied Energy, 83: 921-928, (2006).
  • [7] Ucar A. and Balo F., “Determination of the Energy Savings and the Optimum Insulation Thickness in the Four
  • Different Insulated Exterior Walls”, Renewable Energy, 35(1): 88-94, (2010).
  • [8] Al-Homoud M.S., “Performance characteristics and practical applications of common building thermal insulation materials”, Building and Environment, 40: 353-366, (2005).
  • [9] Bolatturk A., “Determination of optimum ınsulation thickness for building walls with respect to various fuels and climate zones in Turkey”, Applied Thermal Engineering, 11: 1301-1309, (2006).
  • [10] Yu J., Yang C., Tian L., and Liao D., “A Study on Optimum Insulation Thickness of External Walls in Hot Summer and Cold Winter Zone of China”, Applied Energy, 86: 2520-2529, (2009).
  • [11] Dylewski R., and Adamczyk J., “Economic and environmental benefits of thermal insulation of building external walls”, Building and Environment, 46: 2615-2623, (2011).
  • [12] Ozel M., “Thermal Performance and Optimum Insulation Thickness of Building Walls with Different Structure Materials”, Applied Thermal Energy, 31(17-18): 3854-3863, (2011).
  • [13] Ekici B.B., Gulten A.A., and Aksoy U.T., “A Study on the Optimum Insulation Thickness of Various Types of External Walls with respect to Different Materials Fuels and Climate Zones in Turkey”, Applied Energy, 92: 211-217, (2012).
  • [14] Kaynakli O., “A review of the economical and optimum thermal insulation thickness for building applications”, Renewable and Sustainable Energy Reviews, 16: 415-425, (2012).
  • [15] Tingley D.D., Hathway A., and Davison B., “An Environmental Impact Comparison of External Wall Insulation Types”, Building and Environment, 85: 182-189, (2015).
  • [16] Kürekci N.A., “Determination of Optimum Insulation Thickness for Building Walls by Using Heating and Cooling Degree-Day Values of All Turkey’s Provincial Centers”, Energy and Buildings, 118: 197-213, (2016).
  • [17] Idchabani R., Khyad A., and El Ganaouic M., “Optimizing insulation thickness of external walls in cold region of Morocco based on life cycle cost analysis”, Energy Procedia, 139:117-121, (2017).
  • [18] Yang J., and Tang J., “Influence of Envelope Insulation Materials on Building Energy Consumption”, Frontiers in Energy, 11: 575-581, (2017).
  • [19] D’Agostino D., de’ Rossia F., Marigliano M., Marino C., and Minichiello F., “Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost- optimal” methodology”, Journal of Building Engineering, 24: 100743, (2019).
  • [20] Ozalp C., Saydam D.B., Çerçi K.N., Hürdoğan E., and Moran H., “Evaluation of a sample building with different type building elements in an energetic and environmental perspective”, Renewable and Sustainable Energy Reviews, 115: 109386, (2019).
  • [21] Roumi S., Razi Astaraei F., Ghasempour R., Yousefi H., Hamlehdar M., and Razavi S., “New Insulation Replacement in Buildings’ Walls and Its Impact on Air Pollution Reduction in Tehran”, Intelligent Buildings International, 11: 65-74, (2019).
  • [22] Dombayci Ö.A., Yilmaz E.U., Guven S., Atalay O., and Kemal H.O., “Determination of optimum ınsulation thickness for building external walls with different ınsulation materials using environmental impact assessment”, Thermal Science, 24: 303-311, (2020).
  • [23] Alsurakji I.H., Abdallah R., Assad M., El-Qanni A., “Energy savings and optimum ınsulation thickness in external walls in palestinian buildings”, 12th International Renewable Engineering Conference (IREC), 1-5, (2021).
  • [24] Kallioğlu M.A., Sharma A., Chinnasamy V., Chauhan R., and Singh T., “Optimum insulation thickness assessment of different insulation materials for mid-latitude steppe and desert climate (BSH) region of India”, Materials Today: Proceedings, 44: 4421-4424, (2021).
  • [25] Gülten A.A., “Farklı Yakıt Türlerine Göre Dış Duvar Sistem Alternatiflerinin Enerji Maliyetinin İncelenmesi”, Technological Applied Sciences, 2(1): 39-48, (2007).
  • [26] TS 825, “Binalarda Isı Yalıtım Kuralları Standartı”. Aralık 2013.
  • [27] Fangueiro R., “Fibrous and Composite Materials for Civil Engineering Applications”, Cambridge, UK: Woodhead Publishing Limited, (2011).
  • [28] Özkan D.B., and Onan C., “Optimization of Insulation Thickness for Different Glazing Areas in Buildings for Various Climatic Regions in Turkey”, Applied Energy, 88: 1331-1342, (2011).
  • [29] Hasan A., “Optimizing Insulation Thickness for Buildings Using Life Cycle Cost”, Applied Energy, 63: 115- 124, (1999).
  • [30] https://www.dosider.org/?p=5&a=2 Son Erişim Tarihi: 10.10.2022.
  • [31] https://doviz/merkez-bankasi-doviz-kurlari/10-ekim-2022/ Son Erişim Tarihi: 10.10.2022.
  • [32] https://www.flextab.com.tr/urun/eps-plus-isi-yalitim-levhasi-16-kg-m3-5cm-50cm-100cm-0-25m3 Son Erişim Tarihi: 10.10.2022.
  • [33] https://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Istatistikler/Enflasyon+Verileri Son Erişim Tarihi: 10.10.2022.
  • [34] https://www.haberturk.com/merkez-bankasi-ekim-ayi-faiz-karari-ne-olur-merkez-bankasi-faiz- indirimi-surecek-mi-2022-ekim-tcmb-faiz-karari-tarihi-ve-saati-3530977-ekonomi Son Erişim Tarihi: 06.06.2022.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sinan Ünvar 0000-0002-9144-7638

Erken Görünüm Tarihi 14 Haziran 2023
Yayımlanma Tarihi 5 Temmuz 2023
Gönderilme Tarihi 4 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Ünvar, S. (2023). Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi. Politeknik Dergisi, 26(2), 1011-1023. https://doi.org/10.2339/politeknik.1260040
AMA Ünvar S. Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi. Politeknik Dergisi. Temmuz 2023;26(2):1011-1023. doi:10.2339/politeknik.1260040
Chicago Ünvar, Sinan. “Ağrı İlinde Farklı Yakıtlar Ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi”. Politeknik Dergisi 26, sy. 2 (Temmuz 2023): 1011-23. https://doi.org/10.2339/politeknik.1260040.
EndNote Ünvar S (01 Temmuz 2023) Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi. Politeknik Dergisi 26 2 1011–1023.
IEEE S. Ünvar, “Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi”, Politeknik Dergisi, c. 26, sy. 2, ss. 1011–1023, 2023, doi: 10.2339/politeknik.1260040.
ISNAD Ünvar, Sinan. “Ağrı İlinde Farklı Yakıtlar Ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi”. Politeknik Dergisi 26/2 (Temmuz 2023), 1011-1023. https://doi.org/10.2339/politeknik.1260040.
JAMA Ünvar S. Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi. Politeknik Dergisi. 2023;26:1011–1023.
MLA Ünvar, Sinan. “Ağrı İlinde Farklı Yakıtlar Ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi”. Politeknik Dergisi, c. 26, sy. 2, 2023, ss. 1011-23, doi:10.2339/politeknik.1260040.
Vancouver Ünvar S. Ağrı İlinde Farklı Yakıtlar ve Duvar Bileşenleri İçin Optimum Yalıtım Kalınlıkları Kullanılarak Enerji Maliyetlerinin Analizi. Politeknik Dergisi. 2023;26(2):1011-23.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.