Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen nanoplatelet takviyeli epoksi kompozitlerin mekanik özellikleri ve aşınma davranışı üzerinde takviye oranının etkisi

Yıl 2024, , 2181 - 2192, 12.12.2024
https://doi.org/10.2339/politeknik.1307849

Öz

Nano ölçekteki parçacıkların eklenmesiyle kompozitlerin özellikleri geliştirilmekte ve yeni özellikler kazanılmaktadır. Grafen, iki boyutlu yapısı ve yüksek mukavemeti nedeniyle nanoparçacık takviye elemanları arasında önemli bir yere sahiptir. Bu çalışmada, nano parçacık takviyeli kompozit malzemenin tribolojik davranışı ve mekanik özellikleri incelenmiştir. Nano parçacıklar, %0,1 ila %0,5 ağırlık oranları arasında değişen oranlarda takviyesiz numuneye katılmıştır. Bulgular, grafen nanoparçacıklarının epoksi matris malzemesine eklenmesinin, tüm takviye oranlarında numunelerin mekanik özelliklerini artırdığını göstermiştir. Takviyesiz epoksi numunelerin kopma yükü 415,94 N ve elastisite modülü ise 2,4 GPa olarak belirlenmiştir. Grafen nanoplatelet takviyeli kompozitlerde en iyi mekanik sonuçlar, %0,2 takviyeli kompozitlerde elde edilmiş olup, kopma yükü ve elastisite modülü değerleri sırasıyla 903,13 N ve 4,46 GPa olarak bulunmuştur. Ayrıca, numunelerin tribolojik performansı kuru kayma koşullarında incelenmiştir. Aşınmış yüzeyler SEM kullanılarak incelenmiştir. Grafen nanoplatelet takviyesinin epoksi matris malzemesinin aşınma direncini olumlu yönde etkilediği gözlemlenmiştir.

Kaynakça

  • [1] Hull, D., Clyne, T., “An Introduction to Composite Materials”, Cambridge University Press, (2012).
  • [2] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Ra, M., and Elhar, A. (2021). “Polymer composite materials : A comprehensive review” Composite Structures, 262: 113640, (2021).
  • [3] Jain, V., Bisht, A., Jaiswal, S., Dasgupta, K., and Lahiri, D. “Assessment of Interfacial Interaction in Graphene Nanoplatelets and Carbon Fiber-Reinforced Epoxy Matrix Multiscale Composites and Its Effect on Mechanical Behavior” Journal of Materials Engineering and Performance, 30, 8913–8925: (2021).
  • [4] Kamaraj, M., Manimaran, R., & Datta, S. “Optimization of Dry Sliding Wear Parameters of Graphene-Filled Flax Fiber-Reinforced Epoxy Composites using Taguchi Grey Relational Analysis” Journal of The Institution of Engineers (India): Series D., (2022).
  • [5] Prolongo, M. G., Salom, C., Arribas, C., and Sa, M. “Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites”, Journal of Thermal Analysis and Calorimetry, (2015).
  • [6] Hou, L., Gao, J., Ruan, H., Xu, X., and Lu, S. “Mechanical and thermal properties of hyperbranched poly(ε-caprolactone) modified graphene/epoxy composites” Journal of Polymer Research, 27(2): (2020).
  • [7] Kalin, M., Zalaznik, M., & Novak, S. “Wear and friction behaviour of poly-ether-ether-ketone ( PEEK ) filled with graphene , WS2 and CNT nanoparticles”, Wear, 1–8, (2015).
  • [8] Mittal, G., Dhand, V., Yop, K., Park, S., and Ro, W. “Journal of Industrial and Engineering Chemistry A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites”, Journal of Industrial and Engineering Chemistry, 21: 11–25, (2015).
  • [9] Kuilla, T., Bhadra, S., Yao, D., Hoon, N., Bose, S., and Hee, J. “Progress in Polymer Science Recent advances in graphene based polymer composites”, Progress in Polymer Science, 35(11): 1350–1375, (2010).
  • [10] Potts, J. R., Dreyer, D. R., Bielawski, C. W., and Ruoff, R.S., Graphene-based polymer nanocomposites. Polymer, 52(1): 5–25, (2011).
  • [11] Avinc, I., Akpinar, S., Akbulut, H., & Ozel, A. “Experimental analysis on the single-lap joints bonded by a nanocomposite adhesives which obtained by adding nanostructures”, Composites Part B, 110: 420–428, (2017).
  • [12] Gnanakkan, V., Veerakumar, S., Shanmugavel, B. P., Paskaramoorthy, R., and Harish, S. “The Influence of Graphene Nanoplatelets on the Tensile and Impact Behavior of Glass-Fiber-Reinforced Polymer Composites” Journal of Materials Engineering and Performance, 596–609, (2021).
  • [13] Doagou-rad, S., Islam, A., Jensen, J. S., and Alnasser, A. “Interaction of nanofillers in injection-molded graphene /carbon nanotube reinforced PA66 hybrid nanocomposites” Journal of Polymer Engineering, 38(10): 971–981, (2018).
  • [14] Wan, Y., Tang, L., Gong, L., Yan, D., and Li, Y. “Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties” Carbon, 69: 467–480, (2013).
  • [15] Chatterjee, S., Wang, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., Li, W. L., Hollertz, R., Nüesch, F. A., and Chu, B. T. T. “Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites” Chemical Physics Letters, 531: 6–10, (2012).
  • [16] Polat, S., Avc, A., and Ekrem, M. “Fatigue behavior of composite to aluminum single lap joints reinforced with graphene doped nylon 66 nano fibers”, Composite Structures Journal, 194: 624–632, (2018).
  • [17] Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., and Schulte, K. “Fracture toughness and failure mechanism of graphene based epoxy composites”, Composıtes Scıence And Technology, 97: 90–99, (2014).
  • [18] Boumaza, M., Khan, R., & Zahrani, S. “An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating” Thin Solid Films, 620: 160–164, (2016).
  • [19] Sepetcioglu, H., & Tarakcioglu, N. “Effect of Graphene Nanoplatelets on Progressive Failure Behavior under Internal Pressure of Composite Cylindrical Pressure Vessels” Journal of Materials Engineering and Performance, 31(3): 2225–2239, (2022).
  • [20] Du, X., Zhou, H., Sun, W., Liu, H., & Zhou, G. “Graphene / epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre / epoxy composite laminates” Composites Science and Technology, 140: 123–133, (2017).
  • [21] Upadhyay, R. K., and Kumar, A. “Effect of humidity on the synergy of friction and wear properties in ternary epoxy-graphene-MoS2 composites” Carbon, 146: 717–727, (2019).
  • [22] Wang, H., Xie, G., Zhu, Z., Ying, Z., and Zeng, Y. “Enhanced tribological performance of the multi-layer graphene filled poly (vinyl chloride) composites”, Composıtes Part A, 67: 268–273, (2014).
  • [23] Akbulut, H., Keskin, Z., and Ozel, A. “The effects of graphene nanostructure reinforcement on the adhesive method and the graphene reinforcement ratio on the failure load in adhesively bonded joints”, Composites Part B, 98: 362–369, (2016).
  • [24] Xiao, W., Lu, S., Wang, Y., & Shi, J. “Mechanical and tribological behaviors of graphene / Inconel 718 composites”, Transactions of Nonferrous Metals Society of China, 28(10): 1958–1969, (2018).
  • [25] Alexopoulos, N. D., Paragkamian, Z., Poulin, P., and Kourkoulis, S. K. “Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites”, Composites Science and Technology, 150: 194–204, (2017).
  • [26] Li, S., Zhang, J., Liu, M., Wang, R., and Wu, L. “Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite”, Polymer Bulletin, 78: 6493–6515, (2021).
  • [27] Eayal Awwad, K. Y., Yousif, B. F., Fallahnezhad, K., Saleh, K., & Zeng, X. “Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites”, Friction, 9(4): 856–875, (2021)
  • [28] Jia, Z., Feng, X., & Zou, Y. “Graphene Reinforced Epoxy Adhesive For Fracture Resistance”, Composites Part B, 155: 457–462, (2018).
  • [29] Shokrieh, M. M., Esmkhani, M., Shahverdi, H. R., and Vahedi, F. “Effect of Graphene Nanosheets (GNS) and Graphite Nanoplatelets (GNP) on the Mechanical Properties of Epoxy Nanocomposites”, Science of Advanced Materials, 5(3): 1–7. (2013).
  • [30] Kazemi-khasragh, E., Bahari-sambran, F., Eslami-farsani, R., Chirani, S. A., Mohammad, S., and Siadati, H. “The effects of surface-modified graphene nanoplatelets on the sliding wear properties of basalt fibers-reinforced epoxy composites”, Journal of Polymer Applied Science, 47986: 1–9, (2019).
  • [31] Sun, W., Yu, S., Tang, M., and Wang, X. “Friction and Wear Properties of Graphene / Epoxy Composites”, Earth and Environmental Science, 706: 012032021, (2021).
  • [32] Yazdani, B., Xu, F., Ahmad, I., Hou, X., Xia, Y., and Zhu, Y. “Tribological performance of Graphene /Carbon nanotube hybrid reinforced Al2O3 composites”, Nature Publishing Group, 1–11, (2015).
  • [33] Suresha, B. Chandramohan, G. Samapthkumaran, P. Seetharamu, S. and Vynatheya, S. “Friction And Wear Characteristics Of Carbon-Epoxy And Glass-Epoxy Woven Roving Fiber Composites”, Journal of Reinforced Plastics and Composites, 25: 771, (2006).
  • [34] Zakaria, M. R., and Kudus, M. H. A. “Study on Two Body Abrasive Wear behaviour of Carboxyl- Graphene Reinforced Epoxy Nano-composites”, 376: 012058, (2018).
  • [35] Lahiri, D., Hec, F., Thiesse, M., and Durygin, A. “Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites”, Tribology International, 70: 165–169, (2014).
  • [36] Surya Rajan, B., Sai Balaji, M.A, Mohamed Aslam Noorani, A.B. “Tribological performance of graphene/ graphite filled phenolic composites-A comparative study”, Composites Communications, 15: 34–39, (2019).
  • [37] Du, Y., Zhang, Z., Wang, D., Zhang, L., Cui, J., Chen, Y., Wu, M., Kang, R., Lu, Y., Yu, J., & Jiang, N. “Enhanced tribological properties of aligned graphene – epoxy composites”, Tribology, 10: 854–865, (2022).
  • [38] Kumar, S., Singh, K.K., Ramkumar, J., “Comparative study of the influence of graphene nanoplatelets filler on the mechanical and tribological behavior of glass fabric-reinforced epoxy composites”,Polymer Composites, 1–15, (2020).

Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites

Yıl 2024, , 2181 - 2192, 12.12.2024
https://doi.org/10.2339/politeknik.1307849

Öz

New features are gained to the enhanced characteristic of composites with the addition of nanoscale particles. Graphene nanoplatelet has an important place among nanoparticle reinforcing elements due to its two-dimensional structure and high strength. In this study, tribological behaviour and mechanical properties of the nano particle reinforced composite material investigated. Nanoparticles were incorporated into the non-reinforced sample at varying weight ratios, ranging from 0.1% to 0.5%. The findings indicated that the addition of graphene nanoplatelet into the epoxy matrix material enhances the mechanical properties of the specimens across all reinforcement ratios.The failure load of the neat epoxy samples was determined as 415.94 N and the modulus of elasticity as 2.4 GPa. The best mechanical results in graphene nanoplatelet reinforced composites were obtained in 0.2% reinforced composites, and the failure load and elasticity modulus values were found as 903.13 N and 4.46 GPa, respectively. Furthermore, the tribological performance of the samples was examined under dry sliding conditions. The worn surfaces were examined using SEM. The incorporation of graphene nanoplatelet reinforcement has been observed to positively impact the wear resistance of the epoxy matrix material.

Kaynakça

  • [1] Hull, D., Clyne, T., “An Introduction to Composite Materials”, Cambridge University Press, (2012).
  • [2] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Ra, M., and Elhar, A. (2021). “Polymer composite materials : A comprehensive review” Composite Structures, 262: 113640, (2021).
  • [3] Jain, V., Bisht, A., Jaiswal, S., Dasgupta, K., and Lahiri, D. “Assessment of Interfacial Interaction in Graphene Nanoplatelets and Carbon Fiber-Reinforced Epoxy Matrix Multiscale Composites and Its Effect on Mechanical Behavior” Journal of Materials Engineering and Performance, 30, 8913–8925: (2021).
  • [4] Kamaraj, M., Manimaran, R., & Datta, S. “Optimization of Dry Sliding Wear Parameters of Graphene-Filled Flax Fiber-Reinforced Epoxy Composites using Taguchi Grey Relational Analysis” Journal of The Institution of Engineers (India): Series D., (2022).
  • [5] Prolongo, M. G., Salom, C., Arribas, C., and Sa, M. “Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites”, Journal of Thermal Analysis and Calorimetry, (2015).
  • [6] Hou, L., Gao, J., Ruan, H., Xu, X., and Lu, S. “Mechanical and thermal properties of hyperbranched poly(ε-caprolactone) modified graphene/epoxy composites” Journal of Polymer Research, 27(2): (2020).
  • [7] Kalin, M., Zalaznik, M., & Novak, S. “Wear and friction behaviour of poly-ether-ether-ketone ( PEEK ) filled with graphene , WS2 and CNT nanoparticles”, Wear, 1–8, (2015).
  • [8] Mittal, G., Dhand, V., Yop, K., Park, S., and Ro, W. “Journal of Industrial and Engineering Chemistry A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites”, Journal of Industrial and Engineering Chemistry, 21: 11–25, (2015).
  • [9] Kuilla, T., Bhadra, S., Yao, D., Hoon, N., Bose, S., and Hee, J. “Progress in Polymer Science Recent advances in graphene based polymer composites”, Progress in Polymer Science, 35(11): 1350–1375, (2010).
  • [10] Potts, J. R., Dreyer, D. R., Bielawski, C. W., and Ruoff, R.S., Graphene-based polymer nanocomposites. Polymer, 52(1): 5–25, (2011).
  • [11] Avinc, I., Akpinar, S., Akbulut, H., & Ozel, A. “Experimental analysis on the single-lap joints bonded by a nanocomposite adhesives which obtained by adding nanostructures”, Composites Part B, 110: 420–428, (2017).
  • [12] Gnanakkan, V., Veerakumar, S., Shanmugavel, B. P., Paskaramoorthy, R., and Harish, S. “The Influence of Graphene Nanoplatelets on the Tensile and Impact Behavior of Glass-Fiber-Reinforced Polymer Composites” Journal of Materials Engineering and Performance, 596–609, (2021).
  • [13] Doagou-rad, S., Islam, A., Jensen, J. S., and Alnasser, A. “Interaction of nanofillers in injection-molded graphene /carbon nanotube reinforced PA66 hybrid nanocomposites” Journal of Polymer Engineering, 38(10): 971–981, (2018).
  • [14] Wan, Y., Tang, L., Gong, L., Yan, D., and Li, Y. “Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties” Carbon, 69: 467–480, (2013).
  • [15] Chatterjee, S., Wang, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., Li, W. L., Hollertz, R., Nüesch, F. A., and Chu, B. T. T. “Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites” Chemical Physics Letters, 531: 6–10, (2012).
  • [16] Polat, S., Avc, A., and Ekrem, M. “Fatigue behavior of composite to aluminum single lap joints reinforced with graphene doped nylon 66 nano fibers”, Composite Structures Journal, 194: 624–632, (2018).
  • [17] Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., and Schulte, K. “Fracture toughness and failure mechanism of graphene based epoxy composites”, Composıtes Scıence And Technology, 97: 90–99, (2014).
  • [18] Boumaza, M., Khan, R., & Zahrani, S. “An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating” Thin Solid Films, 620: 160–164, (2016).
  • [19] Sepetcioglu, H., & Tarakcioglu, N. “Effect of Graphene Nanoplatelets on Progressive Failure Behavior under Internal Pressure of Composite Cylindrical Pressure Vessels” Journal of Materials Engineering and Performance, 31(3): 2225–2239, (2022).
  • [20] Du, X., Zhou, H., Sun, W., Liu, H., & Zhou, G. “Graphene / epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre / epoxy composite laminates” Composites Science and Technology, 140: 123–133, (2017).
  • [21] Upadhyay, R. K., and Kumar, A. “Effect of humidity on the synergy of friction and wear properties in ternary epoxy-graphene-MoS2 composites” Carbon, 146: 717–727, (2019).
  • [22] Wang, H., Xie, G., Zhu, Z., Ying, Z., and Zeng, Y. “Enhanced tribological performance of the multi-layer graphene filled poly (vinyl chloride) composites”, Composıtes Part A, 67: 268–273, (2014).
  • [23] Akbulut, H., Keskin, Z., and Ozel, A. “The effects of graphene nanostructure reinforcement on the adhesive method and the graphene reinforcement ratio on the failure load in adhesively bonded joints”, Composites Part B, 98: 362–369, (2016).
  • [24] Xiao, W., Lu, S., Wang, Y., & Shi, J. “Mechanical and tribological behaviors of graphene / Inconel 718 composites”, Transactions of Nonferrous Metals Society of China, 28(10): 1958–1969, (2018).
  • [25] Alexopoulos, N. D., Paragkamian, Z., Poulin, P., and Kourkoulis, S. K. “Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites”, Composites Science and Technology, 150: 194–204, (2017).
  • [26] Li, S., Zhang, J., Liu, M., Wang, R., and Wu, L. “Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite”, Polymer Bulletin, 78: 6493–6515, (2021).
  • [27] Eayal Awwad, K. Y., Yousif, B. F., Fallahnezhad, K., Saleh, K., & Zeng, X. “Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites”, Friction, 9(4): 856–875, (2021)
  • [28] Jia, Z., Feng, X., & Zou, Y. “Graphene Reinforced Epoxy Adhesive For Fracture Resistance”, Composites Part B, 155: 457–462, (2018).
  • [29] Shokrieh, M. M., Esmkhani, M., Shahverdi, H. R., and Vahedi, F. “Effect of Graphene Nanosheets (GNS) and Graphite Nanoplatelets (GNP) on the Mechanical Properties of Epoxy Nanocomposites”, Science of Advanced Materials, 5(3): 1–7. (2013).
  • [30] Kazemi-khasragh, E., Bahari-sambran, F., Eslami-farsani, R., Chirani, S. A., Mohammad, S., and Siadati, H. “The effects of surface-modified graphene nanoplatelets on the sliding wear properties of basalt fibers-reinforced epoxy composites”, Journal of Polymer Applied Science, 47986: 1–9, (2019).
  • [31] Sun, W., Yu, S., Tang, M., and Wang, X. “Friction and Wear Properties of Graphene / Epoxy Composites”, Earth and Environmental Science, 706: 012032021, (2021).
  • [32] Yazdani, B., Xu, F., Ahmad, I., Hou, X., Xia, Y., and Zhu, Y. “Tribological performance of Graphene /Carbon nanotube hybrid reinforced Al2O3 composites”, Nature Publishing Group, 1–11, (2015).
  • [33] Suresha, B. Chandramohan, G. Samapthkumaran, P. Seetharamu, S. and Vynatheya, S. “Friction And Wear Characteristics Of Carbon-Epoxy And Glass-Epoxy Woven Roving Fiber Composites”, Journal of Reinforced Plastics and Composites, 25: 771, (2006).
  • [34] Zakaria, M. R., and Kudus, M. H. A. “Study on Two Body Abrasive Wear behaviour of Carboxyl- Graphene Reinforced Epoxy Nano-composites”, 376: 012058, (2018).
  • [35] Lahiri, D., Hec, F., Thiesse, M., and Durygin, A. “Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites”, Tribology International, 70: 165–169, (2014).
  • [36] Surya Rajan, B., Sai Balaji, M.A, Mohamed Aslam Noorani, A.B. “Tribological performance of graphene/ graphite filled phenolic composites-A comparative study”, Composites Communications, 15: 34–39, (2019).
  • [37] Du, Y., Zhang, Z., Wang, D., Zhang, L., Cui, J., Chen, Y., Wu, M., Kang, R., Lu, Y., Yu, J., & Jiang, N. “Enhanced tribological properties of aligned graphene – epoxy composites”, Tribology, 10: 854–865, (2022).
  • [38] Kumar, S., Singh, K.K., Ramkumar, J., “Comparative study of the influence of graphene nanoplatelets filler on the mechanical and tribological behavior of glass fabric-reinforced epoxy composites”,Polymer Composites, 1–15, (2020).
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Emin Demir 0000-0001-9630-6378

Hüsna Topkaya 0000-0002-7867-4086

Tuba Bağatır 0009-0005-7634-0815

Yahya Hışman Çelik 0000-0003-1753-7712

Erken Görünüm Tarihi 11 Mart 2024
Yayımlanma Tarihi 12 Aralık 2024
Gönderilme Tarihi 31 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Demir, M. E., Topkaya, H., Bağatır, T., Çelik, Y. H. (2024). Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites. Politeknik Dergisi, 27(6), 2181-2192. https://doi.org/10.2339/politeknik.1307849
AMA Demir ME, Topkaya H, Bağatır T, Çelik YH. Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites. Politeknik Dergisi. Aralık 2024;27(6):2181-2192. doi:10.2339/politeknik.1307849
Chicago Demir, Mehmet Emin, Hüsna Topkaya, Tuba Bağatır, ve Yahya Hışman Çelik. “Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites”. Politeknik Dergisi 27, sy. 6 (Aralık 2024): 2181-92. https://doi.org/10.2339/politeknik.1307849.
EndNote Demir ME, Topkaya H, Bağatır T, Çelik YH (01 Aralık 2024) Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites. Politeknik Dergisi 27 6 2181–2192.
IEEE M. E. Demir, H. Topkaya, T. Bağatır, ve Y. H. Çelik, “Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites”, Politeknik Dergisi, c. 27, sy. 6, ss. 2181–2192, 2024, doi: 10.2339/politeknik.1307849.
ISNAD Demir, Mehmet Emin vd. “Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites”. Politeknik Dergisi 27/6 (Aralık 2024), 2181-2192. https://doi.org/10.2339/politeknik.1307849.
JAMA Demir ME, Topkaya H, Bağatır T, Çelik YH. Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites. Politeknik Dergisi. 2024;27:2181–2192.
MLA Demir, Mehmet Emin vd. “Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites”. Politeknik Dergisi, c. 27, sy. 6, 2024, ss. 2181-92, doi:10.2339/politeknik.1307849.
Vancouver Demir ME, Topkaya H, Bağatır T, Çelik YH. Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites. Politeknik Dergisi. 2024;27(6):2181-92.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.