Araştırma Makalesi
BibTex RIS Kaynak Göster

Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi

Yıl 2024, , 819 - 827, 27.03.2024
https://doi.org/10.2339/politeknik.1456567

Öz

Bu çalışmada; eliptik delikli ince cidarlı küresel bir elemanın basınç altındaki davranışları Sonlu Elemanlar Analiz (SEA) yöntemi ile parametrik olarak analiz edilmiş ve Yapay Sinir Ağları (YSA) ile modellenmiştir. Modelleme esnasında, küresel elemanın yarıçapı 500 mm. olarak alınmış ve değişken parametrelere göre küresel elemana cidar kalınlığı verilmiştir. Küresel elemanın içinden boydan boya geçen yarıçapları a ve b olan eliptik bir delik tanımlanmıştır. Küresel elemanın iç yüzeyine sabit basınç gerilmesi uygulanmış ve elemanda oluşan gerilmeler ve gerilme yığılma faktörleri optimize edilmiştir. Parametrik modelden elde edilen sonuçlar bir YSA modelinde öğretilerek farklı boyut ve basınç değerleri için eliptik delikli ince cidarlı küresel bir elemanın gerilme, gerinim, deformasyon, gerilme yığılma faktörleri ve farklı teoremlere göre emniyet katsayıları belirlenmiştir.

Etik Beyan

Bu makalenin yazarı çalışmasında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan eder.

Kaynakça

  • [1] Kharat Avinash, Kulkarni V. V., “Stress Concentration at Openings in Pressure Vessels-A Review”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 3, (2013).
  • [2] Avinash K., Kulkarni V. V., “Stress Concentration at Openings in Pressure Vessels-A Review”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 3, P. 670-678, (2013).
  • [3] Iyer M. S., “Analysis of a pressure vessel junction by the finite element method”, Texas Tech University, 1-159, (1975).
  • [4] Oterkus E. and Madenci E. “Stress analysis of composite cylindrical shells with an elliptical cutout”, Journal of mechanics of materials and structures, Vol. 2, No. 4, 695-727, (2007).
  • [5] Alashti R. A. & Rahimi G. H., “Plastic limit loads of cylinders with a circular opening under combined axial force and bending moment”, The Journal of Strain Analysis, 55-66, (2007).
  • [6] Camilleri D. and Mackenzie D., “Shakedown of a Thick Cylinder with a Radial Crosshole”, Strathprints Institutional Repository, 1-11, (2008).
  • [7] Zu L., “Design of filament-wound isotensoid pressure vessels with unequal polar openings”, International Journal of Pressure Vessels and Piping, Vol. 92, 2307-2313, (2009).
  • [8] Liu You-Hong, “Limit pressure and design criterion of cylindrical pressure vessels with nozzles”, International Journal of Pressure Vessels and Piping, Vol. 81, 619-624, (2004).
  • [9] Hydera J., Asifb M. "ANSYS kullanılarak basınçlı kap silindirindeki açıklığın konumu ve boyutunun optimizasyonu", Mühendislik Arıza Analizi, cilt-5, (2007).
  • [10] Snowberger D., “Stress concentration factor convergence comparison study of a flat plate under elastic loading conditions”, Rensselaer Polytechnic Institute Hartford, Connecticut, (2008).
  • [11] Folias E.S., "Silindirik basınçlı kaplar ve düz plakalar arasındaki arıza korelasyonu", Uluslararası Basınçlı Kaplar ve Piping Dergisi, Cilt 76, 803-811, (1999).
  • [12] Eruslu S.Ö., “İnce Cidarlı Basınçlı Tüplerin Sonlu Elemanlar Yöntemiyle Analizi”, Mühendislik Bilimleri Dergisi, 14 (2) 169-174, (2008).
  • [13] Petrovic A., “Stress Analysis in Cylindrical Pressure Vessels With Loads Applied to the Free end Nozzle”, Int Journal Press Vessel Piping, 78, 485-493) (2001).
  • [14] Yeom D. J., Robinson M., “Numerical Analysis of the elastic-plastic behaviour of pressure vessels with ellipsoidal and torispherical heads”. Int. Journal Press. Vessel Piping, 65, 147-156, (1996).
  • [15] Sang Z. F., Xue L .P., Lin Y. J., Widera G. E. O. “Limit and burst pressures for a cylindrical shell intersection with intermediate diameter ratio”. Int. Journal Press Vessel Piping, 79, 341-349, (2002).
  • [16] Muskat M., Mackenzie D., Hamilton R. “A work criterion for plastic collapse”. Int. Journal Press Vessel Piping, 80, 49-58, (2003).
  • [17] Chekhov V. N., Zakora S. V., “Stress Concentration In A Spherical Shell With Two Neighborıng Circular Holes”, Journal of Mathematical Sciences, Vol. 180, No. 2, 91-99, January, (2012).
  • [18] Snowberger, D., “Stress concentration factor convergence comparison study of a flat plate under elastic loading conditions”, Rensselaer Polytechnic Institute Hartford, Connecticut, (2008).
  • [19] Shevchenko V. P., Zakora S. V., “Stresses in A Spherical Shell Loaded Through Rigid Inclusions”, International Applied Mechanics, Vol. 51, No. 2, 159-167, (2015).
  • [20] Velichko P. M., Shevchenko V. P. “The action of concentrated forces and moments on a shell of positive curvature,” Izv. ANSSSR, Mekh. Tverd. Tela, No. 2, 147-151, (1969).
  • [21] Handbook of Strength, Stability, and Vibrations [in Russian], Ch. 24, Vol. 3, Mashinostroenie, Moscow, (1968).
  • [22] Guz A. N., Chernyshenko I. S., Chekhov V. N., Chekhov V.N., Shnerenko K. I. “Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design” [in Russian], Naukova Dumka, Kyiv, (1980).
  • [23] Yahnioglu N., Babuscu Y. U. “Stress concentration in two neighboring circular holes in a composite plate,” An. Univ. Oradea, Fasc. Mat., 13, 261-272, (2006).
  • [24] Fuad K.. Siregar R. A., Rangkuti C., Ariwahjoedi B., Firdaus M. “Stress concentration factors ofvarious adjacent holes configurations in a spherical pressure vessel,” in: Proc. 5th Australasian Congr. on Appl. Mech, ACAM-2007, Brisbane, Australia, December 10-12, 68-73, (2007).
  • [25] Li F., He Y., Fan C., Li H., Zhang H. “Investigation on three-dimensional stress concentration of LY12-CZ plate with two equal circular holes under tension,” Mater. Sci. Eng., A, 483-484, No. 1-2, 474-476, (2008).
  • [26] Kubair D. V., Bhanu-Chandar B., “Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension,” Int. J. Mech. Sci., 50, No. 4, 732-742 (2008).
  • [27] Miyagawa M., Suzuki T., Shimura J. “Analysis of in-plane problems with singular disturbances for an isotropic elastic medium with two circular holes or rigid inclusions,” J. Envir. Eng., 6, No. 4, 778-791, (2011).
  • [28] Maximuk V. A., Storozhuk E. A., Chernyshenko I. S. “Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells,” Int. Appl. Mech., 48, No. 6, 613-687 (2012).
  • [29] Deryugin Y. Y., Lasko G. V., “Field of stresses in an isotropic plane with circular inclusion under tensile stress,” Engineering, 4, No. 9, 583-589 (2012).
  • [30] Maximuk V. A., Storozhuk E. A., Chernyshenko I. S., “Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions,” Int. Appl. Mech., 49, No. 6, 685-692 (2013).
  • [31] Maximuk V. A., Storozhuk E. A., Chernyshenko I. S. “Stress state of flexible composite shells with reinforced holes,” Int. Appl. Mech., 50, No. 5, 558-565 (2014).
  • [32] Walter D. Pilkey, Deborah F. Pilkey, Zhuming Bi,, “Peterson’s Stress Concentration Factors”, Wiley, (2020).
  • [33] Leckie F. A., Paine D. J. and Penny R. K., “Elliptical discontinuities in spherical shells”, J. Strain Anal., Vol. 2, 34, (1967).
  • [34] Toktas İ., Özkan M. T., Erdemir F. and Yüksel N., “Determination of Stress Concentration Factor (Kt) for a Crankshaft Under Bending Loading: An Artificial Neural Networks Approach”, Politeknik Dergisi, 23(3), 813-819, (2020).
  • [35] Ozkan M. T., Toktas İ. & Doganay K., “Estimations of Stress Concentration Factors (Cw/Kts) For Helical Circular/Square Cross Sectional Tension-Compression Springs And Artificial Neural Network Modelling”, Politeknik Dergisi, 23(3), 901-908, (2020).
  • [36] Ozkan M.T., Erdemir F., “Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques”, Neural Computing & Applications, 33, 12641–12659, (2021).
  • [37] Ozkan M. T. and Erdemir F., "Determination of stress concentration factors for shafts under tension" Materials Testing, vol. 62, no. 4, 413-421, (2020).
  • [38] Ozkan M. T. and Toktas İ., "Determination of the stress concentration factor (Kt) in a rectangular plate with a hole under tensile stress using different methods", Materials Testing, vol. 58, no. 10, 839-847, (2016).

Finite Element Analysis and Artificial Neural Networks Modeling of the Stress Concentration Factor Under Pressure of a Thin-Walled Spherical Element with Elliptical Hole

Yıl 2024, , 819 - 827, 27.03.2024
https://doi.org/10.2339/politeknik.1456567

Öz

In this study; The behavior of a thin-walled spherical element with elliptical holes under pressure was analyzed parametrically with the Finite Element Analysis (FEA) method and modeled with Artificial Neural Network (ANN). During modeling, the radius of the spherical element was 500 mm. and the wall thickness of the spherical element is given according to variable parameters. An elliptical hole with radii a and b passing through the spherical element is defined. Constant compressive stress was applied to the inner surface of the spherical element and the stresses and stress concentration factors in the element were optimized. The results obtained from the parametric model were taught in an ANN model and the stress, strain, deformation, stress concentration factors and safety coefficients of a thin-walled spherical element with elliptical holes were determined for different size and pressure values according to different theorems.

Kaynakça

  • [1] Kharat Avinash, Kulkarni V. V., “Stress Concentration at Openings in Pressure Vessels-A Review”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 3, (2013).
  • [2] Avinash K., Kulkarni V. V., “Stress Concentration at Openings in Pressure Vessels-A Review”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 3, P. 670-678, (2013).
  • [3] Iyer M. S., “Analysis of a pressure vessel junction by the finite element method”, Texas Tech University, 1-159, (1975).
  • [4] Oterkus E. and Madenci E. “Stress analysis of composite cylindrical shells with an elliptical cutout”, Journal of mechanics of materials and structures, Vol. 2, No. 4, 695-727, (2007).
  • [5] Alashti R. A. & Rahimi G. H., “Plastic limit loads of cylinders with a circular opening under combined axial force and bending moment”, The Journal of Strain Analysis, 55-66, (2007).
  • [6] Camilleri D. and Mackenzie D., “Shakedown of a Thick Cylinder with a Radial Crosshole”, Strathprints Institutional Repository, 1-11, (2008).
  • [7] Zu L., “Design of filament-wound isotensoid pressure vessels with unequal polar openings”, International Journal of Pressure Vessels and Piping, Vol. 92, 2307-2313, (2009).
  • [8] Liu You-Hong, “Limit pressure and design criterion of cylindrical pressure vessels with nozzles”, International Journal of Pressure Vessels and Piping, Vol. 81, 619-624, (2004).
  • [9] Hydera J., Asifb M. "ANSYS kullanılarak basınçlı kap silindirindeki açıklığın konumu ve boyutunun optimizasyonu", Mühendislik Arıza Analizi, cilt-5, (2007).
  • [10] Snowberger D., “Stress concentration factor convergence comparison study of a flat plate under elastic loading conditions”, Rensselaer Polytechnic Institute Hartford, Connecticut, (2008).
  • [11] Folias E.S., "Silindirik basınçlı kaplar ve düz plakalar arasındaki arıza korelasyonu", Uluslararası Basınçlı Kaplar ve Piping Dergisi, Cilt 76, 803-811, (1999).
  • [12] Eruslu S.Ö., “İnce Cidarlı Basınçlı Tüplerin Sonlu Elemanlar Yöntemiyle Analizi”, Mühendislik Bilimleri Dergisi, 14 (2) 169-174, (2008).
  • [13] Petrovic A., “Stress Analysis in Cylindrical Pressure Vessels With Loads Applied to the Free end Nozzle”, Int Journal Press Vessel Piping, 78, 485-493) (2001).
  • [14] Yeom D. J., Robinson M., “Numerical Analysis of the elastic-plastic behaviour of pressure vessels with ellipsoidal and torispherical heads”. Int. Journal Press. Vessel Piping, 65, 147-156, (1996).
  • [15] Sang Z. F., Xue L .P., Lin Y. J., Widera G. E. O. “Limit and burst pressures for a cylindrical shell intersection with intermediate diameter ratio”. Int. Journal Press Vessel Piping, 79, 341-349, (2002).
  • [16] Muskat M., Mackenzie D., Hamilton R. “A work criterion for plastic collapse”. Int. Journal Press Vessel Piping, 80, 49-58, (2003).
  • [17] Chekhov V. N., Zakora S. V., “Stress Concentration In A Spherical Shell With Two Neighborıng Circular Holes”, Journal of Mathematical Sciences, Vol. 180, No. 2, 91-99, January, (2012).
  • [18] Snowberger, D., “Stress concentration factor convergence comparison study of a flat plate under elastic loading conditions”, Rensselaer Polytechnic Institute Hartford, Connecticut, (2008).
  • [19] Shevchenko V. P., Zakora S. V., “Stresses in A Spherical Shell Loaded Through Rigid Inclusions”, International Applied Mechanics, Vol. 51, No. 2, 159-167, (2015).
  • [20] Velichko P. M., Shevchenko V. P. “The action of concentrated forces and moments on a shell of positive curvature,” Izv. ANSSSR, Mekh. Tverd. Tela, No. 2, 147-151, (1969).
  • [21] Handbook of Strength, Stability, and Vibrations [in Russian], Ch. 24, Vol. 3, Mashinostroenie, Moscow, (1968).
  • [22] Guz A. N., Chernyshenko I. S., Chekhov V. N., Chekhov V.N., Shnerenko K. I. “Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design” [in Russian], Naukova Dumka, Kyiv, (1980).
  • [23] Yahnioglu N., Babuscu Y. U. “Stress concentration in two neighboring circular holes in a composite plate,” An. Univ. Oradea, Fasc. Mat., 13, 261-272, (2006).
  • [24] Fuad K.. Siregar R. A., Rangkuti C., Ariwahjoedi B., Firdaus M. “Stress concentration factors ofvarious adjacent holes configurations in a spherical pressure vessel,” in: Proc. 5th Australasian Congr. on Appl. Mech, ACAM-2007, Brisbane, Australia, December 10-12, 68-73, (2007).
  • [25] Li F., He Y., Fan C., Li H., Zhang H. “Investigation on three-dimensional stress concentration of LY12-CZ plate with two equal circular holes under tension,” Mater. Sci. Eng., A, 483-484, No. 1-2, 474-476, (2008).
  • [26] Kubair D. V., Bhanu-Chandar B., “Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension,” Int. J. Mech. Sci., 50, No. 4, 732-742 (2008).
  • [27] Miyagawa M., Suzuki T., Shimura J. “Analysis of in-plane problems with singular disturbances for an isotropic elastic medium with two circular holes or rigid inclusions,” J. Envir. Eng., 6, No. 4, 778-791, (2011).
  • [28] Maximuk V. A., Storozhuk E. A., Chernyshenko I. S. “Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells,” Int. Appl. Mech., 48, No. 6, 613-687 (2012).
  • [29] Deryugin Y. Y., Lasko G. V., “Field of stresses in an isotropic plane with circular inclusion under tensile stress,” Engineering, 4, No. 9, 583-589 (2012).
  • [30] Maximuk V. A., Storozhuk E. A., Chernyshenko I. S., “Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions,” Int. Appl. Mech., 49, No. 6, 685-692 (2013).
  • [31] Maximuk V. A., Storozhuk E. A., Chernyshenko I. S. “Stress state of flexible composite shells with reinforced holes,” Int. Appl. Mech., 50, No. 5, 558-565 (2014).
  • [32] Walter D. Pilkey, Deborah F. Pilkey, Zhuming Bi,, “Peterson’s Stress Concentration Factors”, Wiley, (2020).
  • [33] Leckie F. A., Paine D. J. and Penny R. K., “Elliptical discontinuities in spherical shells”, J. Strain Anal., Vol. 2, 34, (1967).
  • [34] Toktas İ., Özkan M. T., Erdemir F. and Yüksel N., “Determination of Stress Concentration Factor (Kt) for a Crankshaft Under Bending Loading: An Artificial Neural Networks Approach”, Politeknik Dergisi, 23(3), 813-819, (2020).
  • [35] Ozkan M. T., Toktas İ. & Doganay K., “Estimations of Stress Concentration Factors (Cw/Kts) For Helical Circular/Square Cross Sectional Tension-Compression Springs And Artificial Neural Network Modelling”, Politeknik Dergisi, 23(3), 901-908, (2020).
  • [36] Ozkan M.T., Erdemir F., “Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques”, Neural Computing & Applications, 33, 12641–12659, (2021).
  • [37] Ozkan M. T. and Erdemir F., "Determination of stress concentration factors for shafts under tension" Materials Testing, vol. 62, no. 4, 413-421, (2020).
  • [38] Ozkan M. T. and Toktas İ., "Determination of the stress concentration factor (Kt) in a rectangular plate with a hole under tensile stress using different methods", Materials Testing, vol. 58, no. 10, 839-847, (2016).
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı Mekanik, Makine Mühendisliğinde Optimizasyon Teknikleri, Makine Tasarımı ve Makine Elemanları
Bölüm Araştırma Makalesi
Yazarlar

İhsan Toktaş 0000-0002-4371-1836

Erken Görünüm Tarihi 26 Mart 2024
Yayımlanma Tarihi 27 Mart 2024
Gönderilme Tarihi 21 Mart 2024
Kabul Tarihi 23 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Toktaş, İ. (2024). Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi. Politeknik Dergisi, 27(2), 819-827. https://doi.org/10.2339/politeknik.1456567
AMA Toktaş İ. Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi. Politeknik Dergisi. Mart 2024;27(2):819-827. doi:10.2339/politeknik.1456567
Chicago Toktaş, İhsan. “Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi”. Politeknik Dergisi 27, sy. 2 (Mart 2024): 819-27. https://doi.org/10.2339/politeknik.1456567.
EndNote Toktaş İ (01 Mart 2024) Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi. Politeknik Dergisi 27 2 819–827.
IEEE İ. Toktaş, “Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi”, Politeknik Dergisi, c. 27, sy. 2, ss. 819–827, 2024, doi: 10.2339/politeknik.1456567.
ISNAD Toktaş, İhsan. “Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi”. Politeknik Dergisi 27/2 (Mart 2024), 819-827. https://doi.org/10.2339/politeknik.1456567.
JAMA Toktaş İ. Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi. Politeknik Dergisi. 2024;27:819–827.
MLA Toktaş, İhsan. “Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi”. Politeknik Dergisi, c. 27, sy. 2, 2024, ss. 819-27, doi:10.2339/politeknik.1456567.
Vancouver Toktaş İ. Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi. Politeknik Dergisi. 2024;27(2):819-27.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.