Araştırma Makalesi
BibTex RIS Kaynak Göster

Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi

Yıl 2018, , 229 - 236, 31.03.2018
https://doi.org/10.2339/politeknik.385469

Öz

Bu çalışmada iç ortam şartlarında
güneş simülatöründe vakum tüplü U-borulu bir güneş kollektörü test edilerek
verim eğrisi oluşturuldu. Farklı akışkan debilerinde güneş kollektörünün basınç
düşümü belirlendi. Simülatörden güneş kollektörü üzerine gelen ışınlar halojen
lambalarla sağlanmakta olup, ışınımlar kollektör üzerine güneş ışınları gibi
birbirine paralel olarak gelmediğinden verim hesabında, absorber izdüşüm
alanının kullanılmasının yanıltıcı olacağı görüldü. Daha gerçekçi bir yaklaşım
olarak, ışınımların geldiği açısal absorber alanının hesaplanması ile ilgili
bir yöntem geliştirildi. Kollektör absorber izdüşüm alanına bağlı kollektör
verimi %116 ile %80 arasında değişirken, açısal absorber alanına bağlı
kollektör veriminin %56 ile %38 arasında değiştiği görüldü. Deneysel çalışmadan
elde edilen bu sonuçlar, güneş simülatöründe vakum tüplü güneş kollektörü
testlerinde verim hesabında kullanılacak alanın belirlenmesinin önemini ortaya
çıkardı. Ayrıca kollektördeki akışkan debisinin kollektör verimine ve basınç
düşümüne etkisi de incelendi. Kollektördeki akışkan debisi arttıkça basınç
düşümünün de arttığı, göreceli olarak akışkan debisi ile verimde de bir artış
gözlendi. 

Kaynakça

  • [1] Yaghoubi M., Ahmadi F. and Bandehee M., “Analysis of heat losses of absorber tubes of parabolic through collector of Shiraz (Iran) solar power plant”, Journal of Clean Energy Technologies, 1, 1: 1729-1734, (2013).
  • [2] Gao Y., Zhang Q., Fan R., Lin X. and Yu Y., “Effects of thermal mass and flow rate on forced-circulation solar hot-water system: comparison of water-in-glass and U-pipe evacuated-tube solar collectors”, Solar Energy, 98: 290-301, (2013).
  • [3] Ong K.S. and Tong W.L., “System performance of U-tube and heat pipe solar water heaters”, Journal of Applied Science and Engineering, 15/2, 105-110, (2012).
  • [4] Pei G., Li G., Zhou X., Ji J. and Su Y., “Comparative experimental analysis of the thermal performance of evacuated tube solar water heater systems with and without a mini-compound parabolic concentrating (CPC) reflector (C<1)”, Energies, 5: 911-924, (2012).
  • [5] Aboulmagd A., Padovan A., Oliveski R. and Col D. “A new model for the analysis of performance in evacuated tube solar collectors”, 3rd International High Performance Buildings Conference, Paper 142, 3559, (2014).
  • [6] Ma L., Lu Z., Zhang J. and Liang R., “Thermal performance analysis of the glass evacuated tube solar collector with U-tube”, Building and Environment, 45: 1959-1967, (2010).
  • [7] Gao Y., Fan R., Zhang X.Y., An Y.J., Wang M.X., Gao Y.K. and Yu Y., “Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector”, Solar Energy, 107: 714-727, (2014).
  • [8] Ong K.S., Li T.W. and Cheong D., “Performance of U-tube solar water heaters facing different directions”, Journal of Energy and Power Engineering, 7: 1729-1734, (2013).
  • [9] Liang R., Ma L., Zhang J. and Zhao D., “Performance analysis of a new-design filled-type solar collector with double U-tubes”, Energy and Buildings, 57: 220-226, (2013).
  • [10] Liang R., Zhang J., Zhao L. and Ma L., “Research on the universal model of filled-type evacuated tube with U-tube in uniform boundary condition”, Applied Thermal Engineering, 63: 362-369, (2014).
  • [11] Liang R., Ma L., Zhang J. and Zhao D., “Theoretical and experimental investigation of the filled type evacuated tube solar collector with U-tube”, Solar Energy, 85: 1735-1744, (2011).
  • [12] Shatat M., Riffat S. and Agyenim F., “Experimental testing method for solar light simulator with an attached evacuated solar collector”, International Journal of Energy and Environment, 4: 2, 219-230, (2013).
  • [13] Shatat M., Mayere A. and Riffat S., “A standardized empirical method of testing solar simulator coupled with solar tube and concentrator collectors”, International Journal of Thermal and Environmental Engineering, 5: 1, 13-20, (2013).
  • [14] Ozsoy A., Demirer S. and Adam N.M., “An experimental study on double-glazed flat plate solar water heating system in Turkey”, Applied Mechanics and Materials, 564: 204-209, (2014).
  • [15] Rodríguez-Hidalgo M. C., Rodríguez-Aumente P. A., Lecuona A., Gutiérrez-Urueta G. L., and Ventas R., “Flat plate thermal solar collector efficiency: Transient behavior under working conditions. Part I: Model description and experimental validation”, Applied Thermal Engineering, 31: 2394-2404, (2011).
  • [16] Li X., Dai Y.J., Li Y. and Wang R.Z, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber”, Solar Energy, 93: 220-234, (2013).
  • [17] Selvakumar P., Somasundaram P. and Thangavel P., “Performance study on evacuated tube solar collector using Therminol D-12 as heat transfer fluid coupled with parabolic trough”, Energy Conversion and Management, 85: 505–510, (2014).
  • [18] Wang P., Guan H., Liu Z., Wang G., Zhao F. and Xiao H., “High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger”, Energy Conversion and Management, 77: 315–323, (2014).
  • [19] Liu Z., Hu R., Lu L., Zhao F. and Xiao H., “Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector”, Energy Conversion and Management, 73: 135–143, (2013).
  • [20] Zambolin E. and Del Col D., “Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions”, Solar Energy, 84: 1382-1396, (2010).
  • [21] Fraunhofer-Institute for Solar Energy Systems, “Efficiency test according to EN 12975-2:2002. Test Report: KTB No. 2005-07-en”, (2005).
  • [22] TS EN ISO 9806, “Güneş enerjisi- Güneş kollektörleri- Deney metotlar”, (2014).
  • [23] TS ISO 9459-1, “Güneş enerjisiyle ısıtma-Konut su ısıtma sistemleri-Bölüm 1: İç ortam deney metotları kullanılarak performans değerlendirme işlemi”, (1999).
  • [24] TS ISO 9459-2, “Güneş enerjisi - Konut su ısıtma sistemleri - Bölüm 2: Sadece güneş enerjili sistemlerin yıllık performans tahmini ve sistem performans karakteristikleri için dış ortam deney metodu”, (2000).
  • [25] www.sunmax.com.tr/index.php?t=urd&u=1&uk=9&i=11
  • [26] www.himinsun.com/2-1-u-pipe-solar.html
  • [27] www.himinsun.com/4-5-u-pipe-solar-collector.html
  • [28] Keklikcioglu O. and Ozceyhan V., “Experimental investigation on heat transfer enhancement of a tube with coiled-wire inserts installed with a separation from the tube wall”, International Communications in Heat and Mass Transfer, 78: 88–94, (2016).

Analysis of the Test Results on the Solar Simulator of the U-Pipe Evacuated Tube Solar Collector

Yıl 2018, , 229 - 236, 31.03.2018
https://doi.org/10.2339/politeknik.385469

Öz

In this study, a U-pipe evacuated
tube solar collector was tested in a solar simulator under indoor conditions
and an efficiency curve was formed. The pressure drop of the solar collector
was determined for different mass flow rates. Beams that come from the
simulator to the solar collector are provided with halogen lamps. Since beams
from the lamps do not come parallel to the collector like solar beams, it would
be misleading to use the absorber projection area in the calculation of
efficiency. As a more realistic approach, a method that calculates the angular
absorber area of beams was developed. While collector efficiency that depends
on the collector absorber projection area varies between 116% and 80%,
collector efficiency that depends on the field of the angular absorber has
changed between 56% and 38%. These results obtained from the experimental study
reveal the importance of determining the collector’s area to be used in the
solar simulator for the efficiency calculation of evacuated tube solar
collector tests. The effect of fluid flow on collector efficiency and pressure
drop is also investigated. As the fluid flow in the collector increases, the
pressure drop also increases and a relatively increase in the efficiency is
observed.

Kaynakça

  • [1] Yaghoubi M., Ahmadi F. and Bandehee M., “Analysis of heat losses of absorber tubes of parabolic through collector of Shiraz (Iran) solar power plant”, Journal of Clean Energy Technologies, 1, 1: 1729-1734, (2013).
  • [2] Gao Y., Zhang Q., Fan R., Lin X. and Yu Y., “Effects of thermal mass and flow rate on forced-circulation solar hot-water system: comparison of water-in-glass and U-pipe evacuated-tube solar collectors”, Solar Energy, 98: 290-301, (2013).
  • [3] Ong K.S. and Tong W.L., “System performance of U-tube and heat pipe solar water heaters”, Journal of Applied Science and Engineering, 15/2, 105-110, (2012).
  • [4] Pei G., Li G., Zhou X., Ji J. and Su Y., “Comparative experimental analysis of the thermal performance of evacuated tube solar water heater systems with and without a mini-compound parabolic concentrating (CPC) reflector (C<1)”, Energies, 5: 911-924, (2012).
  • [5] Aboulmagd A., Padovan A., Oliveski R. and Col D. “A new model for the analysis of performance in evacuated tube solar collectors”, 3rd International High Performance Buildings Conference, Paper 142, 3559, (2014).
  • [6] Ma L., Lu Z., Zhang J. and Liang R., “Thermal performance analysis of the glass evacuated tube solar collector with U-tube”, Building and Environment, 45: 1959-1967, (2010).
  • [7] Gao Y., Fan R., Zhang X.Y., An Y.J., Wang M.X., Gao Y.K. and Yu Y., “Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector”, Solar Energy, 107: 714-727, (2014).
  • [8] Ong K.S., Li T.W. and Cheong D., “Performance of U-tube solar water heaters facing different directions”, Journal of Energy and Power Engineering, 7: 1729-1734, (2013).
  • [9] Liang R., Ma L., Zhang J. and Zhao D., “Performance analysis of a new-design filled-type solar collector with double U-tubes”, Energy and Buildings, 57: 220-226, (2013).
  • [10] Liang R., Zhang J., Zhao L. and Ma L., “Research on the universal model of filled-type evacuated tube with U-tube in uniform boundary condition”, Applied Thermal Engineering, 63: 362-369, (2014).
  • [11] Liang R., Ma L., Zhang J. and Zhao D., “Theoretical and experimental investigation of the filled type evacuated tube solar collector with U-tube”, Solar Energy, 85: 1735-1744, (2011).
  • [12] Shatat M., Riffat S. and Agyenim F., “Experimental testing method for solar light simulator with an attached evacuated solar collector”, International Journal of Energy and Environment, 4: 2, 219-230, (2013).
  • [13] Shatat M., Mayere A. and Riffat S., “A standardized empirical method of testing solar simulator coupled with solar tube and concentrator collectors”, International Journal of Thermal and Environmental Engineering, 5: 1, 13-20, (2013).
  • [14] Ozsoy A., Demirer S. and Adam N.M., “An experimental study on double-glazed flat plate solar water heating system in Turkey”, Applied Mechanics and Materials, 564: 204-209, (2014).
  • [15] Rodríguez-Hidalgo M. C., Rodríguez-Aumente P. A., Lecuona A., Gutiérrez-Urueta G. L., and Ventas R., “Flat plate thermal solar collector efficiency: Transient behavior under working conditions. Part I: Model description and experimental validation”, Applied Thermal Engineering, 31: 2394-2404, (2011).
  • [16] Li X., Dai Y.J., Li Y. and Wang R.Z, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber”, Solar Energy, 93: 220-234, (2013).
  • [17] Selvakumar P., Somasundaram P. and Thangavel P., “Performance study on evacuated tube solar collector using Therminol D-12 as heat transfer fluid coupled with parabolic trough”, Energy Conversion and Management, 85: 505–510, (2014).
  • [18] Wang P., Guan H., Liu Z., Wang G., Zhao F. and Xiao H., “High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger”, Energy Conversion and Management, 77: 315–323, (2014).
  • [19] Liu Z., Hu R., Lu L., Zhao F. and Xiao H., “Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector”, Energy Conversion and Management, 73: 135–143, (2013).
  • [20] Zambolin E. and Del Col D., “Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions”, Solar Energy, 84: 1382-1396, (2010).
  • [21] Fraunhofer-Institute for Solar Energy Systems, “Efficiency test according to EN 12975-2:2002. Test Report: KTB No. 2005-07-en”, (2005).
  • [22] TS EN ISO 9806, “Güneş enerjisi- Güneş kollektörleri- Deney metotlar”, (2014).
  • [23] TS ISO 9459-1, “Güneş enerjisiyle ısıtma-Konut su ısıtma sistemleri-Bölüm 1: İç ortam deney metotları kullanılarak performans değerlendirme işlemi”, (1999).
  • [24] TS ISO 9459-2, “Güneş enerjisi - Konut su ısıtma sistemleri - Bölüm 2: Sadece güneş enerjili sistemlerin yıllık performans tahmini ve sistem performans karakteristikleri için dış ortam deney metodu”, (2000).
  • [25] www.sunmax.com.tr/index.php?t=urd&u=1&uk=9&i=11
  • [26] www.himinsun.com/2-1-u-pipe-solar.html
  • [27] www.himinsun.com/4-5-u-pipe-solar-collector.html
  • [28] Keklikcioglu O. and Ozceyhan V., “Experimental investigation on heat transfer enhancement of a tube with coiled-wire inserts installed with a separation from the tube wall”, International Communications in Heat and Mass Transfer, 78: 88–94, (2016).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Özsoy

Mustafa Galip Bu kişi benim

Yayımlanma Tarihi 31 Mart 2018
Gönderilme Tarihi 23 Haziran 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Özsoy, A., & Galip, M. (2018). Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi. Politeknik Dergisi, 21(1), 229-236. https://doi.org/10.2339/politeknik.385469
AMA Özsoy A, Galip M. Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi. Politeknik Dergisi. Mart 2018;21(1):229-236. doi:10.2339/politeknik.385469
Chicago Özsoy, Ahmet, ve Mustafa Galip. “Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi”. Politeknik Dergisi 21, sy. 1 (Mart 2018): 229-36. https://doi.org/10.2339/politeknik.385469.
EndNote Özsoy A, Galip M (01 Mart 2018) Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi. Politeknik Dergisi 21 1 229–236.
IEEE A. Özsoy ve M. Galip, “Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi”, Politeknik Dergisi, c. 21, sy. 1, ss. 229–236, 2018, doi: 10.2339/politeknik.385469.
ISNAD Özsoy, Ahmet - Galip, Mustafa. “Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi”. Politeknik Dergisi 21/1 (Mart 2018), 229-236. https://doi.org/10.2339/politeknik.385469.
JAMA Özsoy A, Galip M. Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi. Politeknik Dergisi. 2018;21:229–236.
MLA Özsoy, Ahmet ve Mustafa Galip. “Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi”. Politeknik Dergisi, c. 21, sy. 1, 2018, ss. 229-36, doi:10.2339/politeknik.385469.
Vancouver Özsoy A, Galip M. Vakum Tüplü U-Borulu Güneş Kollektörünün Güneş Simülatöründeki Test Sonuçlarının Analizi. Politeknik Dergisi. 2018;21(1):229-36.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.