Araştırma Makalesi
BibTex RIS Kaynak Göster

Production and Characterization of Composite Filaments for 3D Printing

Yıl 2018, Cilt: 21 Sayı: 2, 397 - 402, 01.06.2018
https://doi.org/10.2339/politeknik.389591
https://izlik.org/JA36YU85ZX

Öz

In this study, various nano and
micro particles with different properties, including density, surface area,
purity and particle morphology were used as reinforcement particles for the
production of polymer composite filaments to be used for 3D printing.
Acrylonitrile Butadiene Styrene (ABS) was matrix material and Multi wall carbon
nanotubes (MWCNTs), SiO2, ZrB2, and, Al particles were reinforcements.
Production of the composite filaments was carried out by using a twin screw
extruder. Produced composite filaments were characterized via Differential Scanning
Calorimeter (DSC), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray
Spectroscopy (EDS), tensile test and surface roughness tests. Results showed
that addition of micro/nano particles into ABS matrix improved the Ultimate
Tensile Strength (UTS) of the composites by around 16% compared to
non-reinforced one. As a result of reinforcing with micro particles, ZrB2 and
Al, the tensile strain of neat-ABS filament increased by 17.8% and 40%,
respectively 

Kaynakça

  • [1]. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S.,“Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling”, Composites Part B: Engineering, 80: 369-378, (2015).
  • [2]. Hill, N., & Haghi, M., “Deposition Direction-Dependent Failure Criteria For Fused Deposition Modeling Polycarbonate”, Rapid Prototyping Journal, 20(3):221-227, (2014).
  • [3]. Chatterjee, A., & Deopura, B. L., “High modulus and high strength PP nanocomposite filament”, Composites Part A: Applied Science and Manufacturing, 37(5): 813-817, (2006).
  • [4]. Nawani, P., Burger, C., Rong, L., Hsiao, B. S., & Tsou, A. H., “Structure and Permeability Relationships in Polymer Nanocomposites Containing Carbon Black and Organoclay”, Polymer, 64: 19-28, (2015).
  • [5]. Weng, Z., Wang, J., Senthil, T., & Wu, L., “Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing”, Materials & Design,102: 276-283, (2016).
  • [6]. Ciprari, D., Jacob, K., & Tannenbaum, R., “Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties”, Macromolecules, 39(19): 6565-6573, (2006).
  • [7]. Mueller, J., Shea, K., & Daraio, C., “Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design”, Materials & Design, 86: 902-912, (2015).
  • [8]. Dawoud, M., Taha, I., & Ebeid, S. J., “Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques”, Journal of Manufacturing Processes, 21:39-45, (2016).
  • [9]. Li, L., Sun, Q., Bellehumeur, C., & Gu, P., “Composite Modeling and Analysis for Fabrication of FDM Prototypes With Locally Controlled Properties”, Journal of Manufacturing Processes, 4(2): 129-141, (2002).
  • [10]. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P., “Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments”, Rapid Prototyping Journal, 14(2): 72-80, (2008).
  • [11]. Faes, M., Ferraris, E., & Moens, D., “Influence of Inter-Layer Cooling Time on the Quasi-Static Properties of ABS Components Produced via Fused Deposition Modelling”, Procedia CIRP, 42:748-753, (2016).
  • [12]. Dul, S., Fambri, L., & Pegoretti, A., “Fused Deposition Modelling with ABS–Graphene Nanocomposites”, Composites Part A: Applied Science and Manufacturing, 85: 181-191, (2016).
  • [13]. Forest, C., Chaumont, P., Cassagnau, P., Swoboda, B., & Sonntag, P., “Generation Of Nanocellular Foams From ABS Terpolymers”, European Polymer Journal, 65: 209-220, (2015).

Production and Characterization of Composite Filaments for 3D Printing

Yıl 2018, Cilt: 21 Sayı: 2, 397 - 402, 01.06.2018
https://doi.org/10.2339/politeknik.389591
https://izlik.org/JA36YU85ZX

Öz

In this study, various nano and
micro particles with different properties, including density, surface area,
purity and particle morphology were used as reinforcement particles for the
production of polymer composite filaments to be used for 3D printing.
Acrylonitrile Butadiene Styrene (ABS) was matrix material and Multi wall carbon
nanotubes (MWCNTs), SiO2, ZrB2, and, Al particles were reinforcements.
Production of the composite filaments was carried out by using a twin screw
extruder. Produced composite filaments were characterized via Differential Scanning
Calorimeter (DSC), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray
Spectroscopy (EDS), tensile test and surface roughness tests. Results showed
that addition of micro/nano particles into ABS matrix improved the Ultimate
Tensile Strength (UTS) of the composites by around 16% compared to
non-reinforced one. As a result of reinforcing with micro particles, ZrB2 and
Al, the tensile strain of neat-ABS filament increased by 17.8% and 40%,
respectively 

Kaynakça

  • [1]. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S.,“Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling”, Composites Part B: Engineering, 80: 369-378, (2015).
  • [2]. Hill, N., & Haghi, M., “Deposition Direction-Dependent Failure Criteria For Fused Deposition Modeling Polycarbonate”, Rapid Prototyping Journal, 20(3):221-227, (2014).
  • [3]. Chatterjee, A., & Deopura, B. L., “High modulus and high strength PP nanocomposite filament”, Composites Part A: Applied Science and Manufacturing, 37(5): 813-817, (2006).
  • [4]. Nawani, P., Burger, C., Rong, L., Hsiao, B. S., & Tsou, A. H., “Structure and Permeability Relationships in Polymer Nanocomposites Containing Carbon Black and Organoclay”, Polymer, 64: 19-28, (2015).
  • [5]. Weng, Z., Wang, J., Senthil, T., & Wu, L., “Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing”, Materials & Design,102: 276-283, (2016).
  • [6]. Ciprari, D., Jacob, K., & Tannenbaum, R., “Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties”, Macromolecules, 39(19): 6565-6573, (2006).
  • [7]. Mueller, J., Shea, K., & Daraio, C., “Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design”, Materials & Design, 86: 902-912, (2015).
  • [8]. Dawoud, M., Taha, I., & Ebeid, S. J., “Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques”, Journal of Manufacturing Processes, 21:39-45, (2016).
  • [9]. Li, L., Sun, Q., Bellehumeur, C., & Gu, P., “Composite Modeling and Analysis for Fabrication of FDM Prototypes With Locally Controlled Properties”, Journal of Manufacturing Processes, 4(2): 129-141, (2002).
  • [10]. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P., “Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments”, Rapid Prototyping Journal, 14(2): 72-80, (2008).
  • [11]. Faes, M., Ferraris, E., & Moens, D., “Influence of Inter-Layer Cooling Time on the Quasi-Static Properties of ABS Components Produced via Fused Deposition Modelling”, Procedia CIRP, 42:748-753, (2016).
  • [12]. Dul, S., Fambri, L., & Pegoretti, A., “Fused Deposition Modelling with ABS–Graphene Nanocomposites”, Composites Part A: Applied Science and Manufacturing, 85: 181-191, (2016).
  • [13]. Forest, C., Chaumont, P., Cassagnau, P., Swoboda, B., & Sonntag, P., “Generation Of Nanocellular Foams From ABS Terpolymers”, European Polymer Journal, 65: 209-220, (2015).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ebubekir Çanti Bu kişi benim

Mustafa Aydın

Ferhat Yıldırım Bu kişi benim

Gönderilme Tarihi 18 Nisan 2017
Yayımlanma Tarihi 1 Haziran 2018
DOI https://doi.org/10.2339/politeknik.389591
IZ https://izlik.org/JA36YU85ZX
Yayımlandığı Sayı Yıl 2018 Cilt: 21 Sayı: 2

Kaynak Göster

APA Çanti, E., Aydın, M., & Yıldırım, F. (2018). Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi, 21(2), 397-402. https://doi.org/10.2339/politeknik.389591
AMA 1.Çanti E, Aydın M, Yıldırım F. Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi. 2018;21(2):397-402. doi:10.2339/politeknik.389591
Chicago Çanti, Ebubekir, Mustafa Aydın, ve Ferhat Yıldırım. 2018. “Production and Characterization of Composite Filaments for 3D Printing”. Politeknik Dergisi 21 (2): 397-402. https://doi.org/10.2339/politeknik.389591.
EndNote Çanti E, Aydın M, Yıldırım F (01 Haziran 2018) Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi 21 2 397–402.
IEEE [1]E. Çanti, M. Aydın, ve F. Yıldırım, “Production and Characterization of Composite Filaments for 3D Printing”, Politeknik Dergisi, c. 21, sy 2, ss. 397–402, Haz. 2018, doi: 10.2339/politeknik.389591.
ISNAD Çanti, Ebubekir - Aydın, Mustafa - Yıldırım, Ferhat. “Production and Characterization of Composite Filaments for 3D Printing”. Politeknik Dergisi 21/2 (01 Haziran 2018): 397-402. https://doi.org/10.2339/politeknik.389591.
JAMA 1.Çanti E, Aydın M, Yıldırım F. Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi. 2018;21:397–402.
MLA Çanti, Ebubekir, vd. “Production and Characterization of Composite Filaments for 3D Printing”. Politeknik Dergisi, c. 21, sy 2, Haziran 2018, ss. 397-02, doi:10.2339/politeknik.389591.
Vancouver 1.Çanti E, Aydın M, Yıldırım F. Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi [Internet]. 01 Haziran 2018;21(2):397-402. Erişim adresi: https://izlik.org/JA36YU85ZX
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.