Araştırma Makalesi
BibTex RIS Kaynak Göster

Production of Nickel Oxalate Dihydrate from Spent Ni-Mo Hydrodesulfurization Catalyst

Yıl 2020, , 105 - 110, 01.03.2020
https://doi.org/10.2339/politeknik.523668

Öz

Spent Ni-Mo HDS catalyst is one
of the most important secondary resources for the recovery of valuable metals.
Recovery processes are important from the economical and environmental point of
view. Ni content of Ni-Mo HDS catalyst was determined as 5.27 % after oxidative
roasting. Production of
NiC2O4∙2H2O
from roasted HDS catalyst was investigated in this work. It is seen from the
ICP-OES analysis that nickel concentration in the solution was increased to a
maximum value at the beginning of the experiment and then decreased. NiC2O4∙2H2O
was formed in a consecutive reaction in two steps. NiC2O4∙2H2O
was produced with efficiency of 99.1 % from the experiment carried out using
1/10 solid/liquid ratio, 40 oC temperature, 1 M oxalic acid, 300 rpm
stirring speed and 480 minutes reaction duration. TG-DTA analysis performed in
dry air atmosphere showed that NiC2O4∙2H2O
produced decomposed in two steps and formed NiO after second decomposition step
at about 350 oC.

Kaynakça

  • 1. Dufresne, P., "Hydroprocessing catalysts regeneration and recycling", Applied Catalysis A: General, 322: 67-75, (2007)
  • 2. EPA, U., "Hazardous waste management system; identification and listing of hazardous waste: Spent catalysts from dual-purpose petroleum hydroprocessing reactors", Federal register, 35379-35384, (2001)
  • 3. Park, K.H., D. Mohapatra, and B.R. Reddy, "Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method", Journal of Hazardous Materials, 138 (2): 311-316, (2006)
  • 4. Siemens, R.E., B.W. Jong, and J.H. Russell, "Potential of spent catalysts as a source of critical metals", Conservation & Recycling, 9 (2): 189-196, (1986)
  • 5. Hyatt, D.E., "Value recovery from spent alumina-base catalyst", Google Patents, (1987)
  • 6. Lai, Y.-C., et al., "Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process", Journal of Hazardous Materials, 154 (1–3): 588-594, (2008)
  • 7. Rabah, M.A., I.F. Hewaidy, and F.E. Farghaly, "Recovery of Molybdenum and Cobalt Powders from Spent Hydrogenation Catalyst", Powder Metallurgy, 40 (4): 283-288, (1997)
  • 8. Mulak, W., et al., "Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst", Physicochemical Problems of Mineral Processing, 40: 69-76, (2006)
  • 9. Szymczycha-Madeja, A., "Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide", Journal of Hazardous Materials, 186 (2–3): 2157-2161, (2011)
  • 10. Villarreal, M.S., et al., "Recovery of Vanadium and Molybdenum from Spent Petroleum Catalyst of PEMEX", Industrial & Engineering Chemistry Research, 38 (12): 4624-4628, (1999)
  • 11. Kim, H.-I., K.-H. Park, and D. Mishra, "Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst", Journal of Hazardous Materials, 166 (2–3): 1540-1544, (2009)
  • 12. Park, K.H., D. Mohapatra, and C.-W. Nam, "Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272", Journal of Hazardous Materials, 148 (1–2): 287-295, (2007)
  • 13. Toyabe, K., et al., "Process for recovering valuable metal from waste catalyst", Google Patents, (1995)
  • 14. Valverde, I.M., J.F. Paulino, and J.C. Afonso, "Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium", Journal of Hazardous Materials, 160 (2): 310-317, (2008)
  • 15. Sun, D.D., et al., "Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass–ceramic matrix", Journal of Hazardous Materials, 87 (1–3): 213-223, (2001)
  • 16. Coman, V., B. Robotin, and P. Ilea, "Nickel recovery/removal from industrial wastes: A review", Resources, Conservation and Recycling, 73: 229-238, (2013)
  • 17. Giannopoulou, I. and D. Panias, "Copper and nickel recovery from acidic polymetallic aqueous solutions", Minerals Engineering, 20 (8): 753-760, (2007)
  • 18. Giannopoulou, I. and D. Panias, "Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions", Hydrometallurgy, 90 (2): 137-146, (2008)
  • 19. Sist, C. and G.P. Demopoulos, "Nickel hydroxide precipitation from aqueous sulfate media", JOM, 55 (8): 42-46, (2003)
  • 20. Subbaiah, T., et al., "Electrochemical precipitation of nickel hydroxide", Journal of Power Sources, 112 (2): 562-569, (2002)
  • 21. Agrawal, A., et al., "Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis", Powder Technology, 177 (3): 133-139, (2007)
  • 22. Agrawal, A., et al., "Extractive separation of copper and nickel from copper bleed stream by solvent extraction route", Minerals Engineering, 21 (15): 1126-1130, (2008)
  • 23. Nyirenda, R.L. and W.S. Phiri, "The removal of nickel from copper electrorefining bleed-off electrolyte", Minerals Engineering, 11 (1): 23-37, (1998)
  • 24. Zhang, P., et al., "Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries", Hydrometallurgy, 50 (1): 61-75, (1998)
  • 25. Zhang, P., et al., "Recovery of metal values from spent nickel–metal hydride rechargeable batteries", Journal of Power Sources, 77 (2): 116-122, (1999)
  • 26. Rydh, C.J. and M. Karlström, "Life cycle inventory of recycling portable nickel–cadmium batteries", Resources, Conservation and Recycling, 34 (4): 289-309, (2002)
  • 27. Bernardes, A.M., D.C.R. Espinosa, and J.A.S. Tenório, "Recycling of batteries: a review of current processes and technologies", Journal of Power Sources, 130 (1): 291-298, (2004)
  • 28. Sahu, K.K., A. Agarwal, and B.D. Pandey, "Nickel recovery from spent nickel catalyst", Waste Management & Research, 23 (2): 148-154, (2005)
  • 29. Chaudhary, A.J., et al., "Heavy metals in the environment. Part II: a hydrochloric acid leaching process for the recovery of nickel value from a spent catalyst", Hydrometallurgy, 34 (2): 137-150, (1993)
  • 30. Alex, P. and A. Suri, "Processing of spent nickel catalyst", Transactions of the Indian Institute of Metals (India), 51 (1): 55-67, (1998)
  • 31. Alex, P., T. Mukherjee, and M. Sundaresan, "Reduction Roasting--Sulphuric Acid Leaching of Nickel From a Spent Catalyst", Metals Materials and Processess (India), 3 (2): 81-91, (1991)
  • 32. Tilley, G.L.," Recovery of metal values from spent catalysts", Google Patents, (1988)
  • 33. Al-Mansi, N.M. and N.M. Abdel Monem, "Recovery of nickel oxide from spent catalyst", Waste Management, 22 (1): 85-90, (2002)
  • 34. Ilhan, S., et al., "The Use of Oxalic Acid as a Chelating Agent in the Dissolution Reaction of Calcium Molybdate", Metallurgical and Materials Transactions B, 44 (3): 495-505, (2013)
  • 35. Ilhan, S. "Leaching of Spent Ni–Mo Hydrodesulphurization (HDS) Catalyst in Oxalic Acid Solutions", Cham: Springer International Publishing, (2017)
  • 36. Yao, Y.-l., et al., "Thermodynamics analysis of Ni2+−C2H8N2−C2O42−−H2O system and preparation of Ni microfiber", Transactions of Nonferrous Metals Society of China, 23 (11): 3456-3461, (2013)
  • 37. Mompean, F.J., M. Illemassène, and J. Perrone, "Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands", Vol. 9, Elsevier, (2005)
  • 38. Allen, J.A., "The Precipitation of Nickel Oxalate", The Journal of Physical Chemistry, 57 (7): 715-716, (1953)
  • 39. Rakshit, S., et al., "Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis", RSC Advances, 3 (17): 6106-6116, (2013)

Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi

Yıl 2020, , 105 - 110, 01.03.2020
https://doi.org/10.2339/politeknik.523668

Öz

Kullanılmış
Ni-Mo HDS katalizörü, değerli metallerin geri kazanımı için önemli ikincil
kaynaklardan biridir. Geri kazanım prosesleri hem çevresel hem de ekonomik
açıdan önem arzetmektedir. Oksitleyeci kavurma sonrasında Ni-Mo HDS
katalizörünün % 5.27 Ni içerdiği belirlenmiştir. Bu çalışmada oksitleyici
kavurmaya tabi tutulan Ni-Mo HDS katalizöründen okzalik asitli çözeltilerde
NiC2O4∙2H2O
üretimi incelenmiştir. ICP-OES analizinden çözeltideki nikel konsantrasyonunun
deneyin başında arttığı, bir maksimum değere ulaştıktan sonra azalmaya
başladığı görülmüştür. NiC2O4∙2H2O’ın iki
adımda konsekütif reaksiyon sonucunda oluştuğu tespit edilmiştir. 1/10
katı/sıvı oranı ile 40 oC sıcaklık, 1 M okzalik asit çözeltisi, 300
rpm karıştırma hızı kullanılarak 480 dakika süre ile gerçekleştirilen deney
sonucunda % 99.1 verimle NiC2O4∙2H2O
üretilmiştir. Kuru hava atmosferinde gerçekleştirilen TG-DTA analizi, üretilen
NiC2O4∙2H2O’ın iki kademede bozunduğunu ve 350
oC civarında tamamlanan ikinci bozunma kademesinden sonra tamamen
NiO’e dönüştüğünü göstermiştir.

Kaynakça

  • 1. Dufresne, P., "Hydroprocessing catalysts regeneration and recycling", Applied Catalysis A: General, 322: 67-75, (2007)
  • 2. EPA, U., "Hazardous waste management system; identification and listing of hazardous waste: Spent catalysts from dual-purpose petroleum hydroprocessing reactors", Federal register, 35379-35384, (2001)
  • 3. Park, K.H., D. Mohapatra, and B.R. Reddy, "Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method", Journal of Hazardous Materials, 138 (2): 311-316, (2006)
  • 4. Siemens, R.E., B.W. Jong, and J.H. Russell, "Potential of spent catalysts as a source of critical metals", Conservation & Recycling, 9 (2): 189-196, (1986)
  • 5. Hyatt, D.E., "Value recovery from spent alumina-base catalyst", Google Patents, (1987)
  • 6. Lai, Y.-C., et al., "Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process", Journal of Hazardous Materials, 154 (1–3): 588-594, (2008)
  • 7. Rabah, M.A., I.F. Hewaidy, and F.E. Farghaly, "Recovery of Molybdenum and Cobalt Powders from Spent Hydrogenation Catalyst", Powder Metallurgy, 40 (4): 283-288, (1997)
  • 8. Mulak, W., et al., "Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst", Physicochemical Problems of Mineral Processing, 40: 69-76, (2006)
  • 9. Szymczycha-Madeja, A., "Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide", Journal of Hazardous Materials, 186 (2–3): 2157-2161, (2011)
  • 10. Villarreal, M.S., et al., "Recovery of Vanadium and Molybdenum from Spent Petroleum Catalyst of PEMEX", Industrial & Engineering Chemistry Research, 38 (12): 4624-4628, (1999)
  • 11. Kim, H.-I., K.-H. Park, and D. Mishra, "Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst", Journal of Hazardous Materials, 166 (2–3): 1540-1544, (2009)
  • 12. Park, K.H., D. Mohapatra, and C.-W. Nam, "Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272", Journal of Hazardous Materials, 148 (1–2): 287-295, (2007)
  • 13. Toyabe, K., et al., "Process for recovering valuable metal from waste catalyst", Google Patents, (1995)
  • 14. Valverde, I.M., J.F. Paulino, and J.C. Afonso, "Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium", Journal of Hazardous Materials, 160 (2): 310-317, (2008)
  • 15. Sun, D.D., et al., "Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass–ceramic matrix", Journal of Hazardous Materials, 87 (1–3): 213-223, (2001)
  • 16. Coman, V., B. Robotin, and P. Ilea, "Nickel recovery/removal from industrial wastes: A review", Resources, Conservation and Recycling, 73: 229-238, (2013)
  • 17. Giannopoulou, I. and D. Panias, "Copper and nickel recovery from acidic polymetallic aqueous solutions", Minerals Engineering, 20 (8): 753-760, (2007)
  • 18. Giannopoulou, I. and D. Panias, "Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions", Hydrometallurgy, 90 (2): 137-146, (2008)
  • 19. Sist, C. and G.P. Demopoulos, "Nickel hydroxide precipitation from aqueous sulfate media", JOM, 55 (8): 42-46, (2003)
  • 20. Subbaiah, T., et al., "Electrochemical precipitation of nickel hydroxide", Journal of Power Sources, 112 (2): 562-569, (2002)
  • 21. Agrawal, A., et al., "Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis", Powder Technology, 177 (3): 133-139, (2007)
  • 22. Agrawal, A., et al., "Extractive separation of copper and nickel from copper bleed stream by solvent extraction route", Minerals Engineering, 21 (15): 1126-1130, (2008)
  • 23. Nyirenda, R.L. and W.S. Phiri, "The removal of nickel from copper electrorefining bleed-off electrolyte", Minerals Engineering, 11 (1): 23-37, (1998)
  • 24. Zhang, P., et al., "Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries", Hydrometallurgy, 50 (1): 61-75, (1998)
  • 25. Zhang, P., et al., "Recovery of metal values from spent nickel–metal hydride rechargeable batteries", Journal of Power Sources, 77 (2): 116-122, (1999)
  • 26. Rydh, C.J. and M. Karlström, "Life cycle inventory of recycling portable nickel–cadmium batteries", Resources, Conservation and Recycling, 34 (4): 289-309, (2002)
  • 27. Bernardes, A.M., D.C.R. Espinosa, and J.A.S. Tenório, "Recycling of batteries: a review of current processes and technologies", Journal of Power Sources, 130 (1): 291-298, (2004)
  • 28. Sahu, K.K., A. Agarwal, and B.D. Pandey, "Nickel recovery from spent nickel catalyst", Waste Management & Research, 23 (2): 148-154, (2005)
  • 29. Chaudhary, A.J., et al., "Heavy metals in the environment. Part II: a hydrochloric acid leaching process for the recovery of nickel value from a spent catalyst", Hydrometallurgy, 34 (2): 137-150, (1993)
  • 30. Alex, P. and A. Suri, "Processing of spent nickel catalyst", Transactions of the Indian Institute of Metals (India), 51 (1): 55-67, (1998)
  • 31. Alex, P., T. Mukherjee, and M. Sundaresan, "Reduction Roasting--Sulphuric Acid Leaching of Nickel From a Spent Catalyst", Metals Materials and Processess (India), 3 (2): 81-91, (1991)
  • 32. Tilley, G.L.," Recovery of metal values from spent catalysts", Google Patents, (1988)
  • 33. Al-Mansi, N.M. and N.M. Abdel Monem, "Recovery of nickel oxide from spent catalyst", Waste Management, 22 (1): 85-90, (2002)
  • 34. Ilhan, S., et al., "The Use of Oxalic Acid as a Chelating Agent in the Dissolution Reaction of Calcium Molybdate", Metallurgical and Materials Transactions B, 44 (3): 495-505, (2013)
  • 35. Ilhan, S. "Leaching of Spent Ni–Mo Hydrodesulphurization (HDS) Catalyst in Oxalic Acid Solutions", Cham: Springer International Publishing, (2017)
  • 36. Yao, Y.-l., et al., "Thermodynamics analysis of Ni2+−C2H8N2−C2O42−−H2O system and preparation of Ni microfiber", Transactions of Nonferrous Metals Society of China, 23 (11): 3456-3461, (2013)
  • 37. Mompean, F.J., M. Illemassène, and J. Perrone, "Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands", Vol. 9, Elsevier, (2005)
  • 38. Allen, J.A., "The Precipitation of Nickel Oxalate", The Journal of Physical Chemistry, 57 (7): 715-716, (1953)
  • 39. Rakshit, S., et al., "Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis", RSC Advances, 3 (17): 6106-6116, (2013)
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sedat İlhan 0000-0001-9976-0955

Yayımlanma Tarihi 1 Mart 2020
Gönderilme Tarihi 7 Şubat 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA İlhan, S. (2020). Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi. Politeknik Dergisi, 23(1), 105-110. https://doi.org/10.2339/politeknik.523668
AMA İlhan S. Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi. Politeknik Dergisi. Mart 2020;23(1):105-110. doi:10.2339/politeknik.523668
Chicago İlhan, Sedat. “Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi”. Politeknik Dergisi 23, sy. 1 (Mart 2020): 105-10. https://doi.org/10.2339/politeknik.523668.
EndNote İlhan S (01 Mart 2020) Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi. Politeknik Dergisi 23 1 105–110.
IEEE S. İlhan, “Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi”, Politeknik Dergisi, c. 23, sy. 1, ss. 105–110, 2020, doi: 10.2339/politeknik.523668.
ISNAD İlhan, Sedat. “Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi”. Politeknik Dergisi 23/1 (Mart 2020), 105-110. https://doi.org/10.2339/politeknik.523668.
JAMA İlhan S. Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi. Politeknik Dergisi. 2020;23:105–110.
MLA İlhan, Sedat. “Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi”. Politeknik Dergisi, c. 23, sy. 1, 2020, ss. 105-10, doi:10.2339/politeknik.523668.
Vancouver İlhan S. Kullanılmış Ni-Mo Hidrodesülfürizasyon Katalizöründen Nikel Okzalat Dihidrat Üretimi. Politeknik Dergisi. 2020;23(1):105-10.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.