Araştırma Makalesi
BibTex RIS Kaynak Göster

Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi

Yıl 2020, , 1339 - 1346, 01.12.2020
https://doi.org/10.2339/politeknik.570841

Öz

Bu çalışmada kremayer takımla imal edilen evolvent profilli
dişli çark mekanizmalarının modellenmesi ele alınmıştır. Dişli teorisi ve
imalat metodundan hareketle profil kaydırmalı pinyon ve çarkın tam matematik
modeli verilmiştir. Asimetrik diş profile de göz önüne alınmıştır. Bir
bilgisayar programı geliştirilerek profil kaydırmanın imal edilen dişli
geometrisindeki etkileri incelenmiştir. Sayısal uygulamalar matematik modelin
ve programlamanın doğrulunuğu ve geçerliliğini göstermiştir.

Kaynakça

  • [1] Juvinall, R.C. and Marshek, K.M., “Machine Component Design”, John Wiley & Sons, ISBN 9781118092262, Singapore , (2012).
  • [2] Jelaska, D. T., “Gears and Gear Drives”, John Wiley & Sons, West Sussex, (2012).
  • [3] Tsay, C.-B., “Helical gears with Involute shaped teeth: geometry, computer simulation, tooth contact analysis and stress analysis”, ASME Journal of Mechanical Design, 110: 482–491, (1988).
  • [4] Chen, C.-F. and Tsay, C.-B., “Tooth profile design for the manufacture of helical gear sets with small numbers of teeth”, International Journal of Machine Tools and Manufacture, 45: 1531-1541, (2005).[5] Yang, S.-C., “Mathematical model of a helical gear with asymmetric involute teeth and its analysis”, International Journal of Advanced Manufacturing Technology, 26: 448-456, (2005).
  • [6] Liu, C.C. and Tsay, C.-B., “Tooth undercutting of beveloid gears”, ASME Journal of Mechanical Design, 123 : 569–576, (2001).
  • [7] Brauer, J., “A general finite element model of involute gears”, Finite Elements in Analysis and Design, 40: 1857-1872, (2004).
  • [8] Huang, K. J. and Su, H. W., “Approaches to parametric element constructions and dynamic analyses of spur/helical gears including modifications and undercutting”, Finite Elements in Analysis and Design, 46: 1106-1113, (2010).
  • [9] Ulukan, L., “Makina Elemanları Dersleri: Tashihli Dişliler”, İTÜ Makina Fakültesi, İstanbul, (1970).
  • [10] Bair, B. -W., “Computer aided design of non-standard elliptical gear drives”, Imeche Journal of Mechanical Engineering Science, 216: 473-482, (2002).
  • [11] Fetvaci, M. C., “Determination of effective involute parameter limit in generation simulation of gears manufactured by rack-type cutters”, Mechanics & Industry, 18 : 405, (2017).
  • [12] Yang, S. -C., “Meshing analysis of a gear with a ring-involute gear”, Imeche Journal of Mechanical Engineering Science, 217: 1287-1299, (2003).
  • [13] Litvin, F.L., “Gear Geometry and Applied Theory”, Prentice Hall, New Jersey, (1994).
  • [14] Kabus, K., “Decker Maschinenelemente: Funktion, Gestaltung und Berechnung”, Carl Hanser Verlag, München, (2016). ISBN : 3-446-21525-5
  • [15] Şekercioğlu, T., “Makine Elemanları: Çözümlü Problemler”, Birsen Yayınevi, İstanbul, (2019). ISBN : 978-975-511-602-0

Mathematical Modelling of Profile-Shifted Cylindrical Involute Gears

Yıl 2020, , 1339 - 1346, 01.12.2020
https://doi.org/10.2339/politeknik.570841

Öz

This paper studies the equations of involute gears manufactured by rack-type cutters. Based on the gear theory and production method a complete mathematical model of a profile-shifted gear pair is given. Also asymmetric tooth profile is considered. A computer simulation program is developed to investigate the effect of profile shifting on the generated teeth surfaces. Numerical examples demonstrate the verification and validation of the simulation model.

Kaynakça

  • [1] Juvinall, R.C. and Marshek, K.M., “Machine Component Design”, John Wiley & Sons, ISBN 9781118092262, Singapore , (2012).
  • [2] Jelaska, D. T., “Gears and Gear Drives”, John Wiley & Sons, West Sussex, (2012).
  • [3] Tsay, C.-B., “Helical gears with Involute shaped teeth: geometry, computer simulation, tooth contact analysis and stress analysis”, ASME Journal of Mechanical Design, 110: 482–491, (1988).
  • [4] Chen, C.-F. and Tsay, C.-B., “Tooth profile design for the manufacture of helical gear sets with small numbers of teeth”, International Journal of Machine Tools and Manufacture, 45: 1531-1541, (2005).[5] Yang, S.-C., “Mathematical model of a helical gear with asymmetric involute teeth and its analysis”, International Journal of Advanced Manufacturing Technology, 26: 448-456, (2005).
  • [6] Liu, C.C. and Tsay, C.-B., “Tooth undercutting of beveloid gears”, ASME Journal of Mechanical Design, 123 : 569–576, (2001).
  • [7] Brauer, J., “A general finite element model of involute gears”, Finite Elements in Analysis and Design, 40: 1857-1872, (2004).
  • [8] Huang, K. J. and Su, H. W., “Approaches to parametric element constructions and dynamic analyses of spur/helical gears including modifications and undercutting”, Finite Elements in Analysis and Design, 46: 1106-1113, (2010).
  • [9] Ulukan, L., “Makina Elemanları Dersleri: Tashihli Dişliler”, İTÜ Makina Fakültesi, İstanbul, (1970).
  • [10] Bair, B. -W., “Computer aided design of non-standard elliptical gear drives”, Imeche Journal of Mechanical Engineering Science, 216: 473-482, (2002).
  • [11] Fetvaci, M. C., “Determination of effective involute parameter limit in generation simulation of gears manufactured by rack-type cutters”, Mechanics & Industry, 18 : 405, (2017).
  • [12] Yang, S. -C., “Meshing analysis of a gear with a ring-involute gear”, Imeche Journal of Mechanical Engineering Science, 217: 1287-1299, (2003).
  • [13] Litvin, F.L., “Gear Geometry and Applied Theory”, Prentice Hall, New Jersey, (1994).
  • [14] Kabus, K., “Decker Maschinenelemente: Funktion, Gestaltung und Berechnung”, Carl Hanser Verlag, München, (2016). ISBN : 3-446-21525-5
  • [15] Şekercioğlu, T., “Makine Elemanları: Çözümlü Problemler”, Birsen Yayınevi, İstanbul, (2019). ISBN : 978-975-511-602-0
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mahmut Fetvacı 0000-0002-1622-1583

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 28 Mayıs 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Fetvacı, M. (2020). Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi. Politeknik Dergisi, 23(4), 1339-1346. https://doi.org/10.2339/politeknik.570841
AMA Fetvacı M. Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi. Politeknik Dergisi. Aralık 2020;23(4):1339-1346. doi:10.2339/politeknik.570841
Chicago Fetvacı, Mahmut. “Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi”. Politeknik Dergisi 23, sy. 4 (Aralık 2020): 1339-46. https://doi.org/10.2339/politeknik.570841.
EndNote Fetvacı M (01 Aralık 2020) Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi. Politeknik Dergisi 23 4 1339–1346.
IEEE M. Fetvacı, “Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi”, Politeknik Dergisi, c. 23, sy. 4, ss. 1339–1346, 2020, doi: 10.2339/politeknik.570841.
ISNAD Fetvacı, Mahmut. “Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi”. Politeknik Dergisi 23/4 (Aralık 2020), 1339-1346. https://doi.org/10.2339/politeknik.570841.
JAMA Fetvacı M. Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi. Politeknik Dergisi. 2020;23:1339–1346.
MLA Fetvacı, Mahmut. “Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi”. Politeknik Dergisi, c. 23, sy. 4, 2020, ss. 1339-46, doi:10.2339/politeknik.570841.
Vancouver Fetvacı M. Profil Kaydırmalı Silindirik Evolvent Dişli Çarkların Matematik Modellenmesi. Politeknik Dergisi. 2020;23(4):1339-46.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.