Derleme
BibTex RIS Kaynak Göster

Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması

Yıl 2020, , 961 - 986, 01.12.2020
https://doi.org/10.2339/politeknik.573673

Öz



Bu çalışmada, ayaklı hareket üzerine yapılan geçmiş
dönem araştırmalara; özellikle, ayaklı robotlar literatürünün önemli kilometre
taşlarına değinilmiştir. Geçmiş dönem araştırmalardan, öncelikle canlıların
yürüyüşü ve bunu taklit edebilen makineler üzerine yapılan çalışmalardan
bahsedilmiştir. Daha sonra, çalışmanın konusu olan ayaklı robotların tarihçesi
ele alınmıştır. Ayaklı robotlar üzerine yapılan çalışmalarda, yürüyüş
stratejisi olarak iki temel yaklaşım söz konusudur; statik yürüyüş ve dinamik
yürüyüş. Bu sebepten dolayı ayaklı robotlar tarihçesi, Statik Yürüyen Ayaklı
Robotlar ve Dinamik Yürüyen Ayaklı Robotlar olmak üzere iki temel başlık
altında kronolojik sırayla anlatılmıştır. Statik Yürüyen Ayaklı Robotlar
başlığında, engebeli yüzeylerde hareket ve engelleri aşma gibi arazi adaptasyonunun
daha karmaşık problemleriyle başa çıkmak için çok bacaklı sistemlerin kontrol
edilmesine yönelik tekniklerin geliştirilmesi üzerine yapılan araştırmalar;
Dinamik Yürüyen Ayaklı Robotlar başlığında ise, koşma ve zıplama gibi oldukça
gelişmiş hareket kabiliyetlerine sahip ayaklı sistemler geliştirebilmek için
dinamik kontrol kavramlarının ve tekniklerinin ilerletilmesi üzerine yapılan
araştırmalar sunulmuştur.







Kaynakça

  • M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, 2nd ed., Wiley, 2005.
  • S.Y. Nof, ed., Handbook of Industrial Robotics, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1999.
  • M.F. Silva, J.T. Machado, A literature review on the optimization of legged robots, Journal of Vibration and Control, 18 (12), 1753–1767, 2012.
  • C.D. Remy, Optimal exploitation of natural dynamics in legged locomotion, ETH Zurich, 2011.
  • K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The Development of Honda Humanoid Robot, in: International Conference on Robotics and Automation, IEEE, Leuven, Belgium, 1998: pp. 1321–1326.
  • Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura, The intelligent ASIMO: system overview and integration, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2002: pp. 2478–2483.
  • J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, T. Kanade, Footstep Planning for the Honda ASIMO Humanoid, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, IEEE, 2005: pp. 629–634.
  • M.H. Raibert, K. Blankespoor, G. Nelson, R. Playter, BigDog, the Rough-Terrain Quadruped Robot, IFAC Proceedings Volumes, 41 (2), 10822–10825, 2008.
  • P.G. de Santos, E. Garcia, J. Estremera, Quadrupedal Locomotion, Springer London, London, 2006.
  • E. Muybridge, The attitudes of animals in motion, Journal of the Franklin Institute, 115 (4), 260–274, 1883.
  • E. Muybridge, The human figure in motion, Dover Publications, New York, USA, 1887.
  • E. Muybridge, Animals in motion, Dover Publications, New York, USA, 1957.
  • E. Lucas, Huitieme Recreation – La Machine a Marcher, Recreations Mathematiques, 4 198–204, 1891.
  • M. Kaneko, M. Abe, K. Tanie, A hexapod walking machine with decoupled freedoms, IEEE Journal on Robotics and Automation, 1 (4), 183–190, 1985.
  • D. Wettergreen, C. Thorpe, R. Whittaker, Exploring Mount Erebus by walking robot, Robotics and Autonomous Systems, 11 (3–4), 171–185, 1993.
  • Z.P. Dederick, I. Grass, Z.P. Drederick, I. Grass, Improvement in steam-carriage, US Patent US75874A, 1868.
  • A. Ehrlich, Vehicle propelled by steppers, US Patent US1691233A, 1926.
  • S. Edward, E. Snell, Reciprocating load carrier, US Patent US2430537A, 1944.
  • W.E. Urschel, Walking tractor, US Patent US2491064A, 1945.
  • L.A. Rygg, Mechanical Horse, US Patent US491927A, 1893.
  • J.P. Eckert, J.W. Mauchly, Electronic numerical integrator and computer, US Patent US3120606A, 1947.
  • J.N. Shurkin, Engines of the mind : the evolution of the computer from mainframes to microprocessors, Norton, 1996.
  • A.C. Hutchinson, Machines can walk, The Chartered Mechanical Engineer, 11 (10), 480–484, 1967.
  • D.J. Todd, Walking Machines: An Introduction to Legged Robots, Springer US, Boston, MA, 1985.
  • M. Mann, Tanks that Walk and Jump, Popular Science, 177 (1), 51–54, 1960.
  • M.G. Bekker, Land Locomotion on the Surface of Planets, ARS Journal, 32 (11), 1651–1659, 1962.
  • M.G. Bekker, Mechanics of Off-the-Road Locomotion, Proceedings of the Institution of Mechanical Engineers: Automobile Division, 16 (1), 25–44, 1962.
  • M.G. Bekker, Mechanics of Locomotion and Lunar Surface Vehicle Concepts, in: SAE Technical Paper Series, 1964: pp. 549–569.
  • M.G. Bekker, Off-road locomotion on the moon and on earth, Journal of Terramechanics, 3 (3), 83–91, 1966.
  • R.A. Liston, Requirements for Increased Ground Mobility, 1963.
  • R.A. Liston, Walking machines, Journal of Terramechanics, 1 (3), 18–31, 1964.
  • R.A. Liston, Correlation Between Predicted and Actual Off-Road Vehicle Performance, SAE Technical Paper 670170, 1967.
  • R.A. Liston, Walking Machine Studies and Force-Feedback Controls, in: Biomechanics, Springer US, Boston, MA, 1969: pp. 51–64.
  • J.E. Shigley, The mechanics of walking vehicles, 1960.
  • R.S. Mosher, Handyman to Hardiman, SAE Transactions, 76 588–597, 1968.
  • Mosher, R., Test and evaluation of a versatile walking truck, in: Proceedings of Off-Road Mobility Research Symposium, Washington DC, 1968: pp. 359–379.
  • R.S. Mosher, Exploring the Potential of a Quadruped, SAE Technical Paper 690191, 1969.
  • R.A. Liston, R.S. Mosher, A versatile walking truck, in: Proceedings of the Transportation Engineering Conference, Institution of Civil Engineers, London, 1968.
  • M.H. Raibert, Legged robots, Communications of the ACM, 29 (6), 499–514, 1986.
  • R.A. Morrison, Iron Mule Train, in: Proceedings of Off Road Mobility Research Symposium, 1968: pp. 381–400.
  • D.J. Todd, An evaluation of mechanically co-ordinated legged locomotion (The Iron Mule Train revisited), Robotica, 9 (04), 417, 1991.
  • R. Tomovic, R.B. Mcghee, A finite state approach to the synthesis of bioengineering control systems, IEEE Transactions on Human Factors in Electronics, HFE-7 (2), 65–69, 1966.
  • R.B. Mcghee, Finite state control of quadruped locomotion, Simulation, 9 (3), 135–140, 1967.
  • R.B. Mcghee, Some finite state aspects of legged locomotion, Mathematical Biosciences, 2 (1–2), 67–84, 1968.
  • R.B. Mcghee, A.A. Frank, On the stability properties of quadruped creeping gaits, Mathematical Biosciences, 3 (1–2), 331–351, 1968.
  • A.A. Frank, R.B. Mcghee, Some considerations relating to the design of autopilots for legged vehicles, Journal of Terramechanics, 6 (1), 23–35, 1969.
  • A.A. Frank, Automatic Control Systems for Legged Locomotion Machines, University of Southern California, 1968.
  • G.A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control, MIT Press, 2005.
  • R.B. Mcghee, A.K. Jain, Some properties of regularly realizable gait matrices, Mathematical Biosciences, 13 (1–2), 179–193, 1972.
  • R.B. Mcghee, A.L. Pai, An approach to computer control for legged vehicles, Journal of Terramechanics, 11 (1), 9–27, 1974.
  • F. Gubina, H. Hemaml, R.B. Mcghee, On the Dynamic Stability of Biped Locomotion, IEEE Transactions on Biomedical Engineering, BME-21 (2), 102–108, 1974.
  • M. Vukobratović, D. Juricic, Contribution to the synthesis of biped gait, IEEE Transactions on Biomedical Engineering, BME-16 (1), 1–6, 1969.
  • M. Vukobratović, J. Stepanenko, Mathematical models of general anthropomorphic systems, Mathematical Biosciences, 17 (3–4), 191–242, 1973.
  • M. Vukobratović, J. Stepanenko, On the stability of anthropomorphic systems, Mathematical Biosciences, 15 (1–2), 1–37, 1972.
  • M. Vukobratović, Locomotion Robots: Kinematics, Dynamics and Control Algorithms, in: 5th IFAC Symposium on Automatic Control in Space, 1973.
  • M. Vukobratović, B. Borovac, D. Šurdilović, Zero moment point - Proper interpretation and new applications, in: Proceedings of the IEEE/RAS International Conference on Humanoid Robots, 2001: pp. 237–244.
  • A.A. Frank, M. Vukobratović, On the synthesis of biped locomotion machines, in: Proceedings of 8th International Conference on Medical and Biological Engineering, Evanston, IL, 1969: p. 64.
  • M. Vukobratović, A.A. Frank, D. Juricic, On the stability of biped locomotion, IEEE Transactions on Biomedical Engineering, BME-17 (1), 25–36, 1970.
  • M. Vukobratović, D. Juricic, A.A. Frank, On the control and stability of one class of biped locomotion systems, Journal of Basic Engineering, 92 (2), 328–332, 1970.
  • A.A. Frank, M. Vukobratović, On the gait stability of biped machines, IEEE Transactions on Automatic Control, 15 (6), 678–679, 1970.
  • R.B. McGhee, Control of legged locomotion systems, in: Proceedings of the 18th Automatic Control Conference, San Francisco, CA, USA, 1977: pp. 205–215.
  • R.B. Mcghee, G.I. Iswandhi, Adaptive Locomotion of a Multilegged Robot over Rough Terrain, IEEE Transactions on Systems, Man, and Cybernetics, 9 (4), 176–182, 1979.
  • R.B. Mcghee, S.H. Koozekanani, F.C. Weimer, S. Rahmani, Dynamic modelling of human locomotion, Proceedings of the Joint Automatic Control Conference, 16 405–413, 1979.
  • R.B. Mcghee, Mathematical models for dynamics and control of posture and gait, in: Proceedings of the VII International Congress of Biomechanics, Warsaw, Poland, 1979: pp. 18–22.
  • R.B. Mcghee, K.W. Olson, R.L. Briggs, Electronic coordination of joint motions for terrain - Adaptive robot vehicles, SAE Technical Papers, 1980.
  • D.E. Orin, R.B. Mcghee, Dynamic computer simulation of robotic mechanisms, Theory and Practice of Robots and Manipulators, 286–296, 1981.
  • J.M. Holland, Basic robotic concepts, Indianapolis : Howard W. Sams & Company, 1983.
  • K.J. Waldron, V.J. Vohnout, A. Pery, R.B. Mcghee, Configuration design of the adaptive suspension vehicle, The International Journal of Robotics Research, 3 (2), 37–48, 1984.
  • K.J. Waldron, R.B. Mcghee, The mechanics of mobile robots, Robotics, 2 (2), 113–121, 1986.
  • K.J. Waldron, R.B. Mcghee, The adaptive suspension vehicle, IEEE Control Systems Magazine, 6 (6), 7–12, 1986.
  • S. Song, K.J. Waldron, Machines that walk: the adaptive suspension vehicle, MIT press, 1989.
  • D.J. Todd, Current developments, in: Walking Machines: An Introduction to Legged Robots, Springer US, Boston, MA, 1985: pp. 151–168.
  • V.S.S. Gurfinkel, E.V. V Gurfinkel, A.Y.Y. Shneider, E.A.A. Devjanin, A.V. V Lensky, L.G.G. Shtilman, Walking robot with supervisory control, Mechanism and Machine Theory, 16 (1), 31–36, 1981.
  • E.A. Devjanin, V.S. Gurfinkel, E. V Gurfinkel, V.A. Kartashev, A. V Lensky, A.Y. Shneider, L.G. Shtilman, The six-legged walking robot capable of terrain adaptation, Mechanism and Machine Theory, 18 (4), 257–260, 1983.
  • S. Hirose, Y. Umetani, Some considerations on a feasible walking mechanism as a terrain vehicle, in: 3rd CISM-IFToMM International Symposium on Theory and Practice of Robots and Manipulators, 1978: pp. 357–375.
  • S. Hirose, Y. Umetani, A Cartesian coordinates manipulator with articulated structure, in: Proceedings of 11th International Symposium Industrial Robots, 1981: pp. 603–609.
  • S. Hirose, K. Kato, Study on quadruped walking robot in Tokyo Institute of Technology – past, present and future, in: Proceedings of IEEE International Conference on Robotics and Automation, 2000: pp. 414–419.
  • S. Hirose, K. Arikawa, Coupled and decoupled actuation of robotic mechanisms, Advanced Robotics, 15 (2), 125–138, 2001.
  • S. Hirose, A study of design and control of a quadruped walking vehicle, The International Journal of Robotics Research, 3 (2), 113–133, 1984.
  • P.G. de Santos, E. Garcia, J. Estremera, Walking Robots, in: Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots, Springer London, London, 2006: pp. 3–32.
  • S. Hirose, TITAN–III: A Quadruped Walking Vehicle -- Its Structure and Basic Characteristics, in: Proceedings of the 2nd International Symposium on Robotics Research, The MIT Press, 1985: pp. 325–331.
  • S. Hirose, K. Yoneda, K. Arai, T. Ibe, Design of prismatic quadruped walking vehicle TITAN–VI, in: Proceedings of Fifth International Conference on Advanced Robotics, “Robots in Unstructured Environments,” 1991: pp. 723–728.
  • S. Hirose, O. Kunieda, Generalized Standard Foot Trajectory for a Quadruped Walking Vehicle, The International Journal of Robotics Research, 10 (1), 3–12, 1991.
  • S. Hirose, K. Yoneda, H. Tsukagoshi, TITAN–VII: quadruped walking and manipulating robot on a steep slope, in: Proceedings of International Conference on Robotics and Automation, IEEE, 1997: pp. 494–500.
  • S. Hirose, K. Arikawa, Development of Quadruped Walking Robot TITAN–VIII for Commercially Available Research Platform, Journal of the Robotics Society of Japan, 17 1191–1197, 1999.
  • K. Kato, S. Hirose, Development of the quadruped walking robot, TITAN–IX, in: Proceedings of 26th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2000: pp. 40–45.
  • R. Hodoshima, T. Doi, Y. Fukuda, S. Hirose, T. Okamoto, J. Mori, Development of TITAN–XI: a quadruped walking robot to work on slopes, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004: pp. 792–797.
  • R. Hodoshima, Y. Fukumura, H. Amano, S. Hirose, Development of track-changeable quadruped walking robot TITAN X-design of leg driving mechanism and basic experiment-, in: Proceedings of the International Conference on Intelligent Robots and Systems, IEEE, 2010: pp. 3340–3345.
  • S. Kitano, S. Hirose, G. Endo, E.F. Fukushima, Development of lightweight sprawling-type quadruped robot TITAN–XIII and its dynamic walking, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: pp. 6025–6030.
  • S. Kitano, S. Hirose, A. Horigome, G. Endo, TITAN–XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking, ROBOMECH Journal, 3 (1), 8, 2016.
  • D.A. Christian, The Mt. Erebus Explorer Control System, Pittsburgh, PA, 1993.
  • D. Wettergreen, Robotic Walking on Natural Terrain: Gait planning and behavior-based control for statically-stable walking robots, Carnegie Mellon University, 1995.
  • F. Tedeschi, G. Carbone, Design of Hexapod Walking Robots: Background and Challenges, in: Handbook of Research on Advancements in Robotics and Mechatronics, Hershey, PA: IGI Global, 2015: pp. 527–566.
  • K. Nonami, Development of mine detection robot COMET–II and COMET–III, in: Proceedings of the 41st SICE Annual Conference, 2002: pp. 346–351.
  • Q. Huang, K. Nonami, Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control, Mechatronics, 13 (8), 773–790, 2003.
  • K. Nonami, Q. Huang, D. Komizo, Y. Fukao, Y. Asai, Y. Shiraishi, M. Fujimoto, Y. Ikedo, Development and Control of Mine Detection Robot COMET–II and COMET–III, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46 (3), 881–890, 2003.
  • A. Irawan, K. Nonami, M.R. Daud, Optimal Impedance Control with TSK-Type FLC for Hard Shaking Reduction on Hydraulically Driven Hexapod Robot, in: K. Nonami, M. Kartidjo, K.-J. Yoon, A. Budiyono (Eds.), Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems, Springer Japan, Tokyo, 2013: pp. 223–236.
  • M. Oku, H. Yang, G. Piao, Y. Harada, K. Adachi, R. Barai, S. Sakai, K. Nonami, Development of Hydraulically Actuated Hexapod Robot COMET–IV : The 1st Report : System Design and Configuration, The Proceedings of JSME Annual Conference on Robotics and Mechatronics, 2007 G01-1--3, 2007.
  • K. Nonami, R.K. Barai, A. Irawan, M.R. Daud, Hydraulically Actuated Hexapod Robots, Springer Japan, Tokyo, 2014.
  • I. James, Claude Elwood Shannon 30 April 1916 – 24 February 2001, Biographical Memoirs of Fellows of the Royal Society, 55 257–265, 2009.
  • D.T. Higdon, R.H. Cannon, On the control of unstable multiple-output mechanical systems, in: ASME Winter Annual Meeting, 1963.
  • J. Schaffer, R.H. Cannon, On the Control of Unstable Mechanical Systems, in: Automatic and Remote Control III: Proceedings of the Third Congress of the International Federation of Automatic Control, 1966.
  • H. Hemami, C.L. Golliday, The inverted pendulum and biped stability, Mathematical Biosciences, 34 (1–2), 95–110, 1977.
  • I. Poulakakis, J.W. Grizzle, The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper, IEEE Transactions on Automatic Control, 54 (8), 1779–1793, 2009.
  • G. Piovan, K. Byl, Enforced symmetry of the stance phase for the Spring-Loaded Inverted Pendulum, in: IEEE International Conference on Robotics and Automation, IEEE, 2012: pp. 1908–1914.
  • H. Bae, J.-H. Oh, Biped robot state estimation using compliant inverted pendulum model, Robotics and Autonomous Systems, 108 38–50, 2018.
  • A.A. Frank, An approach to the dynamic analysis and synthesis of biped locomotion machines, Medical & Biological Engineering, 8 (5), 465–476, 1970.
  • A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato, The Realization of Dynamic Walking by the Biped Walking Robot WL-10 RD, Journal of the Robotics Society of Japan, 3 (4), 325–336, 1985.
  • J. Yamaguchi, A. Takanishi, I. Kato, Development of a biped walking robot compensating for three-axis moment by trunk motion, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1 (C), 561–566, 1993.
  • J. Yamaguchi, N. Kinoshita, A. Takanishi, I. Kato, Development of a Dynamic Biped Walking System for Humanoid - Development of a Biped Walking Robot Adapting to the Humans’ Living Floor, Proceedings of the IEEE International Conference on Robotics and Automation, 1 (April), 232–239, 1996.
  • H.O. Lim, A. Ishii, A. Takanishi, Emotion–based biped walking, Robotica, 22 (5), 577–586, 2004.
  • H.O. Lim, A. Takanishi, Compensatory motion control for a biped walking robot, Robotica, 23 (1), 1–11, 2005.
  • H.O. Lim, A. Takanishi, Biped walking robots created at Waseda University: WL and WABIAN family, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (1850), 49–64, 2007.
  • K. Hashimoto, Y. Takezaki, H. Motohashi, T. Otani, T. Kishi, H.O. Lim, A. Takanishi, Biped walking stabilization based on gait analysis, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2012: pp. 154–159.
  • P. Kryczka, K. Hashimoto, A. Takanishi, H.O. Lim, P. Kormushev, N.G. Tsagarakis, D.G. Caldwell, Walking despite the passive compliance: Techniques for using conventional pattern generators to control instrinsically compliant humanoid robots, in: Nature--Inspired Mobile Robotics, World Scientific Publishing Co., 2013: pp. 487–494.
  • H. Miura, I. Shimoyama, Dynamic Walk of a Biped, The International Journal of Robotics Research, 3 (2), 60–74, 1984.
  • H. Kimura, I. Shimoyama, H. Miura, Dynamics in the dynamic walk of a quadruped robot, Advanced Robotics, 4 (3), 283–301, 1989.
  • C.A.D. Bezerra, D.E. Zampieri, Biped Robots: The State of Art, in: International Symposium on History of Machines and Mechanisms, Springer Netherlands, Dordrecht, 2004: pp. 371–389.
  • K. Matsuoka, A model of repetitive hopping movements in man, in: Proceedings of 5th World Congress of Theory of Machines and Mechanisms, 1979: pp. 1168–1171.
  • K. Matsuoka, A mechanical model of repetitive hopping movements, Biomechanisms, 5 251–258, 1980.
  • A. Sayyad, B. Seth, P. Seshu, Single-legged hopping robotics research – A review, Robotica, 25 (5), 587–613, 2007.
  • D.J. Todd, A brief history of walking machines, in: Walking Machines: An Introduction to Legged Robots, Springer US, Boston, MA, 1985: pp. 11–33.
  • C. Semini, HyQ - Design and Development of a Hydraulically Actuated Quadruped Robot, University of Genoa, 2010.
  • M.B. Popović, Biomechanics and Robotics, 1st ed., Pan Stanford Publishing Pte. Ltd., New York, 2013.
  • G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee, R. Playter, M.H. Raibert, PETMAN: A Humanoid Robot for Testing Chemical Protective Clothing, Journal of the Robotics Society of Japan, 30 (4), 372–377, 2012.
  • S. Feng, X. Xinjilefu, C.G. Atkeson, J. Kim, Optimization based controller design and implementation for the Atlas robot in the DARPA Robotics Challenge Finals, in: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015: pp. 1028–1035.
  • U. Saranli, M. Buehler, D.E. Koditschek, RHex: A Simple and Highly Mobile Hexapod Robot, The International Journal of Robotics Research, 20 (7), 616–631, 2001.
  • M.H. Raibert, H.B. Brown, M. Chepponis, E. Hastings, J. Koechling, K.N. Murphy, S.S. Murthy, A.J. Stentz, Dynamically Stable Legged Locomotion Progress Report: October 1982–October 1983, 1983.
  • M.H. Raibert, M. Chepponis, H. Brown, Running on four legs as though they were one, IEEE Journal on Robotics and Automation, 2 (2), 70–82, 1986.
  • M.H. Raibert, H.B. Brown, M. Chepponis, J. Koechling, J.K. Hodgins, D. Dustman, W.K. Brennan, D.S. Barrett, C.M. Thompson, J.D. Hebert, W. Lee, L. Borvansky, Dynamically Stable Legged Locomotion, 1989.
  • M.H. Raibert, H.B. Brown, Experiments in Balance with a 2D One-Legged Hopping Machine, Journal of Dynamic Systems, Measurement, and Control, 106 (1), 75–81, 1984.
  • M.H. Raibert, H.B. Brown, M. Chepponis, Experiments in Balance with a 3D One-Legged Hopping Machine, The International Journal of Robotics Research, 3 (2), 75–92, 1984.
  • I. Poulakakis, Spring Loaded Inverted Pendulum embedding: Extensions toward the control of compliant running robots, in: IEEE International Conference on Robotics and Automation, IEEE, 2010: pp. 5219–5224.
  • W.J. Schwind, D.E.E. Koditschek, Approximating the Stance Map of a 2-DOF Monoped Runner, Journal of Nonlinear Science, 10 (5), 533–568, 2000.
  • J.K.K. Hodgins, M.H. Raibert, Adjusting step length for rough terrain locomotion, IEEE Transactions on Robotics and Automation, 7 (3), 289–298, 1991.
  • I.E. Sutherland, M.K. Ullner, Footprints in the Asphalt, The International Journal of Robotics Research, 3 (2), 29–36, 1984.
  • M. Buehler, R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, K. Yamazaki, SCOUT: a simple quadruped that walks, climbs, and runs, in: Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, 1998: pp. 1707–1712.
  • M. Buehler, A. Cocosco, K. Yamazaki, R. Battaglia, Stable open loop walking in quadruped robots with stick legs, in: Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, 1999: pp. 2348–2353.
  • R.F. Battaglia, Design of the SCOUT II Quadruped with Preliminary Stair-Climbing, McGill University, 1999.
  • I. Poulakakis, J.A. Smith, M. Buehler, Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot, The International Journal of Robotics Research, 24 (4), 239–256, 2005.
  • H. Kimura, Y. Fukuoka, Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain by Using Neural System Model, IFAC Proceedings Volumes, 33 (26), 585–590, 2000.
  • H. Kimura, Y. Fukuoka, K. Konaga, Adaptive dynamic walking of a quadruped robot using a neural system model, Advanced Robotics, 15 (8), 859–878, 2001.
  • H. Kimura, Y. Fukuoka, H. Katabuti, Mechanical Design of a Quadruped “Tekken3&4’’’ and Navigation System Using Laser Range Sensor,” in: International Symposium on Robotics, 2005: p. 10.
  • H. Kimura, Y. Fukuoka, A.H. Cohen, Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, International Journal of Robotics Research, 26 (5), 475–490, 2007.
  • Y. Fukuoka, H. Katabuchi, and Hiroshi Kimura, Dynamic Locomotion of Quadrupeds Tekken3&4 Using Simple Navigation, Journal of Robotics and Mechatronics, 22 (1), 36–42, 2010.
  • R. Playter, M. Buehler, M.H. Raibert, BigDog, in: G.R. Gerhart, C.M. Shoemaker, D.W. Gage (Eds.), Proceedings of the Unmanned Systems Technology VIII, Defense and Security Symposium, 2006: p. 62302O.
  • C. Semini, N.G. Tsagarakis, B. Vanderborght, Y. Yang, D.G. Caldwell, HyQ – Hydraulically actuated quadruped robot: Hopping leg prototype, in: 2nd IEEE International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2008: pp. 593–599.
  • C. Semini, N.G. Tsagarakis, E. Guglielmino, D.G. Caldwell, Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot, Proceedings of the International Conference on Intelligent Robots and Systems, 3640–3645, 2010.
  • Y. Yang, C. Semini, N.G. Tsagarakis, E. Guglielmino, D.G. Caldwell, Leg mechanisms for hydraulically actuated robots, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009: pp. 4669–4675.
  • C. Semini, N.G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, D.G. Caldwell, Design of HyQ – a hydraulically and electrically actuated quadruped robot, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225 (6), 831–849, 2011.
  • C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, J. Buchli, Is Active Impedance the Key to a Breakthrough for Legged Robots?, in: Robotics Research, Springer International Publishing, 2016: pp. 3–19.
  • M. Focchi, T. Boaventura, C. Semini, M. Frigerio, J. Buchli, D.G. Caldwell, Torque-control based compliant actuation of a quadruped robot, in: International Workshop on Advanced Motion Control, Sarajevo, Bosnia-Herzegovina, 2012: pp. 1–6.
  • T. Boaventura, M. Focchi, M. Frigerio, J. Buchli, C. Semini, G.A. Medrano-Cerda, D.G. Caldwell, On the role of load motion compensation in high-performance force control, in: Proceedings of the International Conference on Intelligent Robots and Systems, 2012: pp. 4066–4071.
  • I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, D.G. Caldwell, Onboard perception-based trotting and crawling with the Hydraulic Quadruped Robot (HyQ), in: Proceedings of the International Conference on Intelligent Robots and Systems, 2013: pp. 6052–6057.
  • B. Ugurlu, I. Havoutis, C. Semini, D.G. Caldwell, Dynamic trot-walking with the hydraulic quadruped robot – HyQ: Analytical trajectory generation and active compliance control, in: International Conference on Intelligent Robots and Systems, 2013: pp. 6044–6051.
  • C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M. Focchi, D.G. Caldwell, J. Buchli, Towards versatile legged robots through active impedance control, The International Journal of Robotics Research, 34 (7), 1003–1020, 2015.
  • A.W. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D.G. Caldwell, C. Semini, Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain, in: Proceedings of the International Conference on Robotics and Automation, 2015: pp. 5148–5154.
  • T. Boaventura, J. Buchli, C. Semini, D.G. Caldwell, Model-Based Hydraulic Impedance Control for Dynamic Robots, IEEE Transactions on Robotics, 31 (6), 1324–1336, 2015.
  • V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E.R. De Pieri, D.G. Caldwell, A reactive controller framework for quadrupedal locomotion on challenging terrain, in: Proceedings of the International Conference on Robotics and Automation, 2013: pp. 2554–2561.
  • I. Havoutis, C. Semini, J. Buchli, D.G. Caldwell, Quadrupedal trotting with active compliance, in: Proceedings of the International Conference on Mechatronics, 2013: pp. 610–616.
  • S. Bazeille, V. Barasuol, M. Focchi, I. Havoutis, M. Frigerio, J. Buchli, D.G. Caldwell, C. Semini, Quadruped robot trotting over irregular terrain assisted by stereo-vision, Intelligent Service Robotics, 7 (2), 67–77, 2014.
  • A. Winkler, I. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, R. Dillmann, D. Caldwell, C. Semini, Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots, in: Proceedings of the International Conference on Robotics and Automation (ICRA), IEEE, 2014: pp. 6476–6482.
  • C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, D.G. Caldwell, Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max, IEEE/ASME Transactions on Mechatronics, 22 (2), 635–646, 2017.
  • C.D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther, M. Tranzatto, P. Fankhauser, M. Hutter, Advances in real-world applications for legged robots, Journal of Field Robotics, 35 (8), 1311–1326, 2018.
  • J. Fisler, Maximum high jump with a robotic leg, ETH Zurich, 2008.
  • M. Hutter, C.D. Remy, R. Siegwart, Design of an Articulated Robotic Leg with Nonlinear Series Elastic Actuation, in: Mobile Robotics: Solutions and Challenges, Proceedings of the 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, World Scientific, 2009: pp. 645–652.
  • M. Hutter, C.D. Remy, M.A. Hoepflinger, R. Siegwart, ScarlETH: Design and control of a planar running robot, in: Proceedings of the International Conference on Intelligent Robots and Systems, IEEE, 2011: pp. 562–567.
  • F.A.W. Belo, A. Birk, C. Brunskill, F. Kirchner, V. Lappas, C.D. Remy, S. Roccella, C. Rossi, A. Tikanmäki, G. Visentin, The ESA Lunar Robotics Challenge: Simulating operations at the lunar south pole, Journal of Field Robotics, 29 (4), 601–626, 2012.
  • M.A. Hoepflinger, C.D. Remy, M. Hutter, R. Siegwart, The quadruped ALoF and a step towards real world haptic terrain classification, in: Proceedings of the 12th Mechatronics Forum Biennial International Conference, Swiss Federal Institute of Technology ETH, Zurich Switzerland, 2010: pp. 1–8.
  • C.D. Remy, O. Baur, M. Latta, A. Lauber, M. Hutter, M.A. Hoepflinger, C. Pradalier, R. Siegwart, Walking and crawling with ALoF: a robot for autonomous locomotion on four legs, Industrial Robot: An International Journal, 38 (3), 264–268, 2011.
  • M. Hutter, StarlETH & Co.--Design and Control of Legged Robots with Compliant Actuation, ETH Zurich, 2013.
  • 172. C.D. Remy, M. Hutter, M. Hoepflinger, M. Bloesch, C. Gehring, R. Siegwart, Quadrupedal Robots with Stiff and Compliant Actuation, At - Automatisierungstechnik Methoden Und Anwendungen Der Steuerungs-, Regelungs- Und Informationstechnik, 60 (11), 682–691, 2012.
  • M. Hutter, C.D. Remy, M.A. Hoepflinger, R. Siegwart, Efficient and versatile locomotion with highly compliant legs, IEEE/ASME Transactions on Mechatronics, 18 (2), 449–458, 2013.
  • C. Gehring, S. Coros, M. Hutter, M. Bloesch, P. Fankhauser, M.A. Hoepflinger, R. Siegwart, Towards automatic discovery of agile gaits for quadrupedal robots, in: Proceedings of the International Conference on Robotics and Automation, 2014: pp. 4243–4248.
  • M. Hutter, C. Gehring, M.A. Hopflinger, M. Blosch, R. Siegwart, Toward Combining Speed, Efficiency, Versatility, and Robustness in an Autonomous Quadruped, IEEE Transactions on Robotics, 30 (6), 1427–1440, 2014.
  • M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, R. Siegwart, Quadrupedal locomotion using hierarchical operational space control, The International Journal of Robotics Research, 33 (8), 1047–1062, 2014.
  • C. Gehring, C.D. Bellicoso, S. Coros, M. Bloesch, P. Fankhauser, M. Hutter, R. Siegwart, Dynamic trotting on slopes for quadrupedal robots, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: pp. 5129–5135.
  • C. Gehring, S. Coros, M. Hutter, C. Dario Bellicoso, H. Heijnen, R. Diethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, R. Siegwart, Practice Makes Perfect: An Optimization-Based Approach to Controlling Agile Motions for a Quadruped Robot, IEEE Robotics & Automation Magazine, 23 (1), 34–43, 2016.
  • M. Hutter, C. Gehring, D. Jud, A. Lauber, C.D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, M. Hoepflinger, ANYmal - a highly mobile and dynamic quadrupedal robot, in: Proceedings of the International Conference on Intelligent Robots and Systems, IEEE, 2016: pp. 38–44.
  • M. Hutter, C. Gehring, A. Lauber, F. Gunther, C.D. Bellicoso, V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Bloesch, H. Kolvenbach, M. Bjelonic, L. Isler, K. Meyer, ANYmal - toward legged robots for harsh environments, Advanced Robotics, 31 (17), 918–931, 2017.
  • C.D. Bellicoso, F. Jenelten, C. Gehring, M. Hutter, Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots, IEEE Robotics and Automation Letters, 3 (3), 2261–2268, 2018.
  • P. Fankhauser, Perceptive Locomotion for Legged Robots in Rough Terrain, ETH Zurich, 2018.
  • A.W. Winkler, Optimization-based motion planning for legged robots, ETH Zurich, 2018.
  • P. Fankhauser, M. Hutter, ANYmal: A Unique Quadruped Robot Conquering Harsh Environments, Research Features, 126 54–57, 2018.
  • V. Bakırcıoğlu, M. Arif Şen, M. Kalyoncu, Optimization of PID controller based on The Bees Algorithm for one leg of a quadruped robot, MATEC Web of Conferences, 42 03004, 2016.
  • M.A. Şen, M. Kalyoncu, Optimal Tuning of PID Controller Using Grey Wolf Optimizer Algorithm for Quadruped Robot, Balkan Journal of Electrical and Computer Engineering, 6 (1), 29–35, 2018.
  • M.A. Şen, V. Bakırcıoğlu, M. Kalyoncu, Automatic LQR Controller Tuning Based on Grey Wolf Optimizer Algorithm for a Quadruped Robot, in: 2nd International Vocational Science Symposium, Antalya, Turkey, 2018.
  • V. Bakırcıoğlu, M.A. Şen, M. Kalyoncu, Motion Analysis of the Robotic Leg Mass Centre during Reference Trajectory Tracking, in: 2nd International Vocational Science Symposium, Antalya, Turkey, 2018.
  • V. Bakırcıoğlu, A. Şen, M., M. Kalyoncu, Obtaining Dynamic Characteristics of of Parker D1FP Proportional Valve, in: İ. Sarıtaş (Ed.), International Conference on Engineering Technologies, Konya, Turkey, 2017: pp. 662–668.
  • V. Bakırcıoğlu, M.A. Şen, M. Kalyoncu, Adaptive Neural-Network Based Fuzzy Logic (ANFIS) Based Trajectory Controller Design for One Leg of a Quadruped Robot, in: Proceedings of the 5th International Conference on Mechatronics and Control Engineering - ICMCE ’16, ACM Press, 2016: pp. 82–85.
  • M.A. Sen, V. Bakircioglu, M. Kalyoncu, Inverse Kinematic Analysis of a Quadruped Robot, International Journal of Scientific & Technology Research, 6 (09), 285–289, 2017.

A Literature Review on Walking Strategies of Legged Robots

Yıl 2020, , 961 - 986, 01.12.2020
https://doi.org/10.2339/politeknik.573673

Öz

In this study, previous
studies on legged motion; in particular, important milestones of the legged
robots’ literature were referred. From the past period research, primarily,
studies on the walking of the living beings and the machines that can mimic it
were mentioned. Subsequently, the history of legged robots that is the subject
of the study was addressed. In the studies on the legged robots, two basic
approaches as the walking strategy were concerned; static gait and dynamic
gait. Due to this reason, the history of the legged robots was reported in
chronological order under two main topics as Static Walking Legged Robots and
Dynamic Walking Legged Robots. In the Static Walking Legged Robots topic,
researches on the development of techniques for controlling of the multi-legged
systems to cope with more complex problems of the land adaptation such as
locomotion on rough surfaces and overcoming obstacles; as for in the Dynamic
Walking Legged Robots topic, researches on the improvement of dynamic control
concepts and techniques to develop legged systems with highly sophisticated
mobility capabilities such as running and jumping are presented.




Kaynakça

  • M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, 2nd ed., Wiley, 2005.
  • S.Y. Nof, ed., Handbook of Industrial Robotics, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1999.
  • M.F. Silva, J.T. Machado, A literature review on the optimization of legged robots, Journal of Vibration and Control, 18 (12), 1753–1767, 2012.
  • C.D. Remy, Optimal exploitation of natural dynamics in legged locomotion, ETH Zurich, 2011.
  • K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The Development of Honda Humanoid Robot, in: International Conference on Robotics and Automation, IEEE, Leuven, Belgium, 1998: pp. 1321–1326.
  • Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura, The intelligent ASIMO: system overview and integration, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2002: pp. 2478–2483.
  • J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, T. Kanade, Footstep Planning for the Honda ASIMO Humanoid, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, IEEE, 2005: pp. 629–634.
  • M.H. Raibert, K. Blankespoor, G. Nelson, R. Playter, BigDog, the Rough-Terrain Quadruped Robot, IFAC Proceedings Volumes, 41 (2), 10822–10825, 2008.
  • P.G. de Santos, E. Garcia, J. Estremera, Quadrupedal Locomotion, Springer London, London, 2006.
  • E. Muybridge, The attitudes of animals in motion, Journal of the Franklin Institute, 115 (4), 260–274, 1883.
  • E. Muybridge, The human figure in motion, Dover Publications, New York, USA, 1887.
  • E. Muybridge, Animals in motion, Dover Publications, New York, USA, 1957.
  • E. Lucas, Huitieme Recreation – La Machine a Marcher, Recreations Mathematiques, 4 198–204, 1891.
  • M. Kaneko, M. Abe, K. Tanie, A hexapod walking machine with decoupled freedoms, IEEE Journal on Robotics and Automation, 1 (4), 183–190, 1985.
  • D. Wettergreen, C. Thorpe, R. Whittaker, Exploring Mount Erebus by walking robot, Robotics and Autonomous Systems, 11 (3–4), 171–185, 1993.
  • Z.P. Dederick, I. Grass, Z.P. Drederick, I. Grass, Improvement in steam-carriage, US Patent US75874A, 1868.
  • A. Ehrlich, Vehicle propelled by steppers, US Patent US1691233A, 1926.
  • S. Edward, E. Snell, Reciprocating load carrier, US Patent US2430537A, 1944.
  • W.E. Urschel, Walking tractor, US Patent US2491064A, 1945.
  • L.A. Rygg, Mechanical Horse, US Patent US491927A, 1893.
  • J.P. Eckert, J.W. Mauchly, Electronic numerical integrator and computer, US Patent US3120606A, 1947.
  • J.N. Shurkin, Engines of the mind : the evolution of the computer from mainframes to microprocessors, Norton, 1996.
  • A.C. Hutchinson, Machines can walk, The Chartered Mechanical Engineer, 11 (10), 480–484, 1967.
  • D.J. Todd, Walking Machines: An Introduction to Legged Robots, Springer US, Boston, MA, 1985.
  • M. Mann, Tanks that Walk and Jump, Popular Science, 177 (1), 51–54, 1960.
  • M.G. Bekker, Land Locomotion on the Surface of Planets, ARS Journal, 32 (11), 1651–1659, 1962.
  • M.G. Bekker, Mechanics of Off-the-Road Locomotion, Proceedings of the Institution of Mechanical Engineers: Automobile Division, 16 (1), 25–44, 1962.
  • M.G. Bekker, Mechanics of Locomotion and Lunar Surface Vehicle Concepts, in: SAE Technical Paper Series, 1964: pp. 549–569.
  • M.G. Bekker, Off-road locomotion on the moon and on earth, Journal of Terramechanics, 3 (3), 83–91, 1966.
  • R.A. Liston, Requirements for Increased Ground Mobility, 1963.
  • R.A. Liston, Walking machines, Journal of Terramechanics, 1 (3), 18–31, 1964.
  • R.A. Liston, Correlation Between Predicted and Actual Off-Road Vehicle Performance, SAE Technical Paper 670170, 1967.
  • R.A. Liston, Walking Machine Studies and Force-Feedback Controls, in: Biomechanics, Springer US, Boston, MA, 1969: pp. 51–64.
  • J.E. Shigley, The mechanics of walking vehicles, 1960.
  • R.S. Mosher, Handyman to Hardiman, SAE Transactions, 76 588–597, 1968.
  • Mosher, R., Test and evaluation of a versatile walking truck, in: Proceedings of Off-Road Mobility Research Symposium, Washington DC, 1968: pp. 359–379.
  • R.S. Mosher, Exploring the Potential of a Quadruped, SAE Technical Paper 690191, 1969.
  • R.A. Liston, R.S. Mosher, A versatile walking truck, in: Proceedings of the Transportation Engineering Conference, Institution of Civil Engineers, London, 1968.
  • M.H. Raibert, Legged robots, Communications of the ACM, 29 (6), 499–514, 1986.
  • R.A. Morrison, Iron Mule Train, in: Proceedings of Off Road Mobility Research Symposium, 1968: pp. 381–400.
  • D.J. Todd, An evaluation of mechanically co-ordinated legged locomotion (The Iron Mule Train revisited), Robotica, 9 (04), 417, 1991.
  • R. Tomovic, R.B. Mcghee, A finite state approach to the synthesis of bioengineering control systems, IEEE Transactions on Human Factors in Electronics, HFE-7 (2), 65–69, 1966.
  • R.B. Mcghee, Finite state control of quadruped locomotion, Simulation, 9 (3), 135–140, 1967.
  • R.B. Mcghee, Some finite state aspects of legged locomotion, Mathematical Biosciences, 2 (1–2), 67–84, 1968.
  • R.B. Mcghee, A.A. Frank, On the stability properties of quadruped creeping gaits, Mathematical Biosciences, 3 (1–2), 331–351, 1968.
  • A.A. Frank, R.B. Mcghee, Some considerations relating to the design of autopilots for legged vehicles, Journal of Terramechanics, 6 (1), 23–35, 1969.
  • A.A. Frank, Automatic Control Systems for Legged Locomotion Machines, University of Southern California, 1968.
  • G.A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control, MIT Press, 2005.
  • R.B. Mcghee, A.K. Jain, Some properties of regularly realizable gait matrices, Mathematical Biosciences, 13 (1–2), 179–193, 1972.
  • R.B. Mcghee, A.L. Pai, An approach to computer control for legged vehicles, Journal of Terramechanics, 11 (1), 9–27, 1974.
  • F. Gubina, H. Hemaml, R.B. Mcghee, On the Dynamic Stability of Biped Locomotion, IEEE Transactions on Biomedical Engineering, BME-21 (2), 102–108, 1974.
  • M. Vukobratović, D. Juricic, Contribution to the synthesis of biped gait, IEEE Transactions on Biomedical Engineering, BME-16 (1), 1–6, 1969.
  • M. Vukobratović, J. Stepanenko, Mathematical models of general anthropomorphic systems, Mathematical Biosciences, 17 (3–4), 191–242, 1973.
  • M. Vukobratović, J. Stepanenko, On the stability of anthropomorphic systems, Mathematical Biosciences, 15 (1–2), 1–37, 1972.
  • M. Vukobratović, Locomotion Robots: Kinematics, Dynamics and Control Algorithms, in: 5th IFAC Symposium on Automatic Control in Space, 1973.
  • M. Vukobratović, B. Borovac, D. Šurdilović, Zero moment point - Proper interpretation and new applications, in: Proceedings of the IEEE/RAS International Conference on Humanoid Robots, 2001: pp. 237–244.
  • A.A. Frank, M. Vukobratović, On the synthesis of biped locomotion machines, in: Proceedings of 8th International Conference on Medical and Biological Engineering, Evanston, IL, 1969: p. 64.
  • M. Vukobratović, A.A. Frank, D. Juricic, On the stability of biped locomotion, IEEE Transactions on Biomedical Engineering, BME-17 (1), 25–36, 1970.
  • M. Vukobratović, D. Juricic, A.A. Frank, On the control and stability of one class of biped locomotion systems, Journal of Basic Engineering, 92 (2), 328–332, 1970.
  • A.A. Frank, M. Vukobratović, On the gait stability of biped machines, IEEE Transactions on Automatic Control, 15 (6), 678–679, 1970.
  • R.B. McGhee, Control of legged locomotion systems, in: Proceedings of the 18th Automatic Control Conference, San Francisco, CA, USA, 1977: pp. 205–215.
  • R.B. Mcghee, G.I. Iswandhi, Adaptive Locomotion of a Multilegged Robot over Rough Terrain, IEEE Transactions on Systems, Man, and Cybernetics, 9 (4), 176–182, 1979.
  • R.B. Mcghee, S.H. Koozekanani, F.C. Weimer, S. Rahmani, Dynamic modelling of human locomotion, Proceedings of the Joint Automatic Control Conference, 16 405–413, 1979.
  • R.B. Mcghee, Mathematical models for dynamics and control of posture and gait, in: Proceedings of the VII International Congress of Biomechanics, Warsaw, Poland, 1979: pp. 18–22.
  • R.B. Mcghee, K.W. Olson, R.L. Briggs, Electronic coordination of joint motions for terrain - Adaptive robot vehicles, SAE Technical Papers, 1980.
  • D.E. Orin, R.B. Mcghee, Dynamic computer simulation of robotic mechanisms, Theory and Practice of Robots and Manipulators, 286–296, 1981.
  • J.M. Holland, Basic robotic concepts, Indianapolis : Howard W. Sams & Company, 1983.
  • K.J. Waldron, V.J. Vohnout, A. Pery, R.B. Mcghee, Configuration design of the adaptive suspension vehicle, The International Journal of Robotics Research, 3 (2), 37–48, 1984.
  • K.J. Waldron, R.B. Mcghee, The mechanics of mobile robots, Robotics, 2 (2), 113–121, 1986.
  • K.J. Waldron, R.B. Mcghee, The adaptive suspension vehicle, IEEE Control Systems Magazine, 6 (6), 7–12, 1986.
  • S. Song, K.J. Waldron, Machines that walk: the adaptive suspension vehicle, MIT press, 1989.
  • D.J. Todd, Current developments, in: Walking Machines: An Introduction to Legged Robots, Springer US, Boston, MA, 1985: pp. 151–168.
  • V.S.S. Gurfinkel, E.V. V Gurfinkel, A.Y.Y. Shneider, E.A.A. Devjanin, A.V. V Lensky, L.G.G. Shtilman, Walking robot with supervisory control, Mechanism and Machine Theory, 16 (1), 31–36, 1981.
  • E.A. Devjanin, V.S. Gurfinkel, E. V Gurfinkel, V.A. Kartashev, A. V Lensky, A.Y. Shneider, L.G. Shtilman, The six-legged walking robot capable of terrain adaptation, Mechanism and Machine Theory, 18 (4), 257–260, 1983.
  • S. Hirose, Y. Umetani, Some considerations on a feasible walking mechanism as a terrain vehicle, in: 3rd CISM-IFToMM International Symposium on Theory and Practice of Robots and Manipulators, 1978: pp. 357–375.
  • S. Hirose, Y. Umetani, A Cartesian coordinates manipulator with articulated structure, in: Proceedings of 11th International Symposium Industrial Robots, 1981: pp. 603–609.
  • S. Hirose, K. Kato, Study on quadruped walking robot in Tokyo Institute of Technology – past, present and future, in: Proceedings of IEEE International Conference on Robotics and Automation, 2000: pp. 414–419.
  • S. Hirose, K. Arikawa, Coupled and decoupled actuation of robotic mechanisms, Advanced Robotics, 15 (2), 125–138, 2001.
  • S. Hirose, A study of design and control of a quadruped walking vehicle, The International Journal of Robotics Research, 3 (2), 113–133, 1984.
  • P.G. de Santos, E. Garcia, J. Estremera, Walking Robots, in: Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots, Springer London, London, 2006: pp. 3–32.
  • S. Hirose, TITAN–III: A Quadruped Walking Vehicle -- Its Structure and Basic Characteristics, in: Proceedings of the 2nd International Symposium on Robotics Research, The MIT Press, 1985: pp. 325–331.
  • S. Hirose, K. Yoneda, K. Arai, T. Ibe, Design of prismatic quadruped walking vehicle TITAN–VI, in: Proceedings of Fifth International Conference on Advanced Robotics, “Robots in Unstructured Environments,” 1991: pp. 723–728.
  • S. Hirose, O. Kunieda, Generalized Standard Foot Trajectory for a Quadruped Walking Vehicle, The International Journal of Robotics Research, 10 (1), 3–12, 1991.
  • S. Hirose, K. Yoneda, H. Tsukagoshi, TITAN–VII: quadruped walking and manipulating robot on a steep slope, in: Proceedings of International Conference on Robotics and Automation, IEEE, 1997: pp. 494–500.
  • S. Hirose, K. Arikawa, Development of Quadruped Walking Robot TITAN–VIII for Commercially Available Research Platform, Journal of the Robotics Society of Japan, 17 1191–1197, 1999.
  • K. Kato, S. Hirose, Development of the quadruped walking robot, TITAN–IX, in: Proceedings of 26th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2000: pp. 40–45.
  • R. Hodoshima, T. Doi, Y. Fukuda, S. Hirose, T. Okamoto, J. Mori, Development of TITAN–XI: a quadruped walking robot to work on slopes, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004: pp. 792–797.
  • R. Hodoshima, Y. Fukumura, H. Amano, S. Hirose, Development of track-changeable quadruped walking robot TITAN X-design of leg driving mechanism and basic experiment-, in: Proceedings of the International Conference on Intelligent Robots and Systems, IEEE, 2010: pp. 3340–3345.
  • S. Kitano, S. Hirose, G. Endo, E.F. Fukushima, Development of lightweight sprawling-type quadruped robot TITAN–XIII and its dynamic walking, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: pp. 6025–6030.
  • S. Kitano, S. Hirose, A. Horigome, G. Endo, TITAN–XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking, ROBOMECH Journal, 3 (1), 8, 2016.
  • D.A. Christian, The Mt. Erebus Explorer Control System, Pittsburgh, PA, 1993.
  • D. Wettergreen, Robotic Walking on Natural Terrain: Gait planning and behavior-based control for statically-stable walking robots, Carnegie Mellon University, 1995.
  • F. Tedeschi, G. Carbone, Design of Hexapod Walking Robots: Background and Challenges, in: Handbook of Research on Advancements in Robotics and Mechatronics, Hershey, PA: IGI Global, 2015: pp. 527–566.
  • K. Nonami, Development of mine detection robot COMET–II and COMET–III, in: Proceedings of the 41st SICE Annual Conference, 2002: pp. 346–351.
  • Q. Huang, K. Nonami, Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control, Mechatronics, 13 (8), 773–790, 2003.
  • K. Nonami, Q. Huang, D. Komizo, Y. Fukao, Y. Asai, Y. Shiraishi, M. Fujimoto, Y. Ikedo, Development and Control of Mine Detection Robot COMET–II and COMET–III, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46 (3), 881–890, 2003.
  • A. Irawan, K. Nonami, M.R. Daud, Optimal Impedance Control with TSK-Type FLC for Hard Shaking Reduction on Hydraulically Driven Hexapod Robot, in: K. Nonami, M. Kartidjo, K.-J. Yoon, A. Budiyono (Eds.), Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems, Springer Japan, Tokyo, 2013: pp. 223–236.
  • M. Oku, H. Yang, G. Piao, Y. Harada, K. Adachi, R. Barai, S. Sakai, K. Nonami, Development of Hydraulically Actuated Hexapod Robot COMET–IV : The 1st Report : System Design and Configuration, The Proceedings of JSME Annual Conference on Robotics and Mechatronics, 2007 G01-1--3, 2007.
  • K. Nonami, R.K. Barai, A. Irawan, M.R. Daud, Hydraulically Actuated Hexapod Robots, Springer Japan, Tokyo, 2014.
  • I. James, Claude Elwood Shannon 30 April 1916 – 24 February 2001, Biographical Memoirs of Fellows of the Royal Society, 55 257–265, 2009.
  • D.T. Higdon, R.H. Cannon, On the control of unstable multiple-output mechanical systems, in: ASME Winter Annual Meeting, 1963.
  • J. Schaffer, R.H. Cannon, On the Control of Unstable Mechanical Systems, in: Automatic and Remote Control III: Proceedings of the Third Congress of the International Federation of Automatic Control, 1966.
  • H. Hemami, C.L. Golliday, The inverted pendulum and biped stability, Mathematical Biosciences, 34 (1–2), 95–110, 1977.
  • I. Poulakakis, J.W. Grizzle, The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper, IEEE Transactions on Automatic Control, 54 (8), 1779–1793, 2009.
  • G. Piovan, K. Byl, Enforced symmetry of the stance phase for the Spring-Loaded Inverted Pendulum, in: IEEE International Conference on Robotics and Automation, IEEE, 2012: pp. 1908–1914.
  • H. Bae, J.-H. Oh, Biped robot state estimation using compliant inverted pendulum model, Robotics and Autonomous Systems, 108 38–50, 2018.
  • A.A. Frank, An approach to the dynamic analysis and synthesis of biped locomotion machines, Medical & Biological Engineering, 8 (5), 465–476, 1970.
  • A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato, The Realization of Dynamic Walking by the Biped Walking Robot WL-10 RD, Journal of the Robotics Society of Japan, 3 (4), 325–336, 1985.
  • J. Yamaguchi, A. Takanishi, I. Kato, Development of a biped walking robot compensating for three-axis moment by trunk motion, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1 (C), 561–566, 1993.
  • J. Yamaguchi, N. Kinoshita, A. Takanishi, I. Kato, Development of a Dynamic Biped Walking System for Humanoid - Development of a Biped Walking Robot Adapting to the Humans’ Living Floor, Proceedings of the IEEE International Conference on Robotics and Automation, 1 (April), 232–239, 1996.
  • H.O. Lim, A. Ishii, A. Takanishi, Emotion–based biped walking, Robotica, 22 (5), 577–586, 2004.
  • H.O. Lim, A. Takanishi, Compensatory motion control for a biped walking robot, Robotica, 23 (1), 1–11, 2005.
  • H.O. Lim, A. Takanishi, Biped walking robots created at Waseda University: WL and WABIAN family, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (1850), 49–64, 2007.
  • K. Hashimoto, Y. Takezaki, H. Motohashi, T. Otani, T. Kishi, H.O. Lim, A. Takanishi, Biped walking stabilization based on gait analysis, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2012: pp. 154–159.
  • P. Kryczka, K. Hashimoto, A. Takanishi, H.O. Lim, P. Kormushev, N.G. Tsagarakis, D.G. Caldwell, Walking despite the passive compliance: Techniques for using conventional pattern generators to control instrinsically compliant humanoid robots, in: Nature--Inspired Mobile Robotics, World Scientific Publishing Co., 2013: pp. 487–494.
  • H. Miura, I. Shimoyama, Dynamic Walk of a Biped, The International Journal of Robotics Research, 3 (2), 60–74, 1984.
  • H. Kimura, I. Shimoyama, H. Miura, Dynamics in the dynamic walk of a quadruped robot, Advanced Robotics, 4 (3), 283–301, 1989.
  • C.A.D. Bezerra, D.E. Zampieri, Biped Robots: The State of Art, in: International Symposium on History of Machines and Mechanisms, Springer Netherlands, Dordrecht, 2004: pp. 371–389.
  • K. Matsuoka, A model of repetitive hopping movements in man, in: Proceedings of 5th World Congress of Theory of Machines and Mechanisms, 1979: pp. 1168–1171.
  • K. Matsuoka, A mechanical model of repetitive hopping movements, Biomechanisms, 5 251–258, 1980.
  • A. Sayyad, B. Seth, P. Seshu, Single-legged hopping robotics research – A review, Robotica, 25 (5), 587–613, 2007.
  • D.J. Todd, A brief history of walking machines, in: Walking Machines: An Introduction to Legged Robots, Springer US, Boston, MA, 1985: pp. 11–33.
  • C. Semini, HyQ - Design and Development of a Hydraulically Actuated Quadruped Robot, University of Genoa, 2010.
  • M.B. Popović, Biomechanics and Robotics, 1st ed., Pan Stanford Publishing Pte. Ltd., New York, 2013.
  • G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee, R. Playter, M.H. Raibert, PETMAN: A Humanoid Robot for Testing Chemical Protective Clothing, Journal of the Robotics Society of Japan, 30 (4), 372–377, 2012.
  • S. Feng, X. Xinjilefu, C.G. Atkeson, J. Kim, Optimization based controller design and implementation for the Atlas robot in the DARPA Robotics Challenge Finals, in: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015: pp. 1028–1035.
  • U. Saranli, M. Buehler, D.E. Koditschek, RHex: A Simple and Highly Mobile Hexapod Robot, The International Journal of Robotics Research, 20 (7), 616–631, 2001.
  • M.H. Raibert, H.B. Brown, M. Chepponis, E. Hastings, J. Koechling, K.N. Murphy, S.S. Murthy, A.J. Stentz, Dynamically Stable Legged Locomotion Progress Report: October 1982–October 1983, 1983.
  • M.H. Raibert, M. Chepponis, H. Brown, Running on four legs as though they were one, IEEE Journal on Robotics and Automation, 2 (2), 70–82, 1986.
  • M.H. Raibert, H.B. Brown, M. Chepponis, J. Koechling, J.K. Hodgins, D. Dustman, W.K. Brennan, D.S. Barrett, C.M. Thompson, J.D. Hebert, W. Lee, L. Borvansky, Dynamically Stable Legged Locomotion, 1989.
  • M.H. Raibert, H.B. Brown, Experiments in Balance with a 2D One-Legged Hopping Machine, Journal of Dynamic Systems, Measurement, and Control, 106 (1), 75–81, 1984.
  • M.H. Raibert, H.B. Brown, M. Chepponis, Experiments in Balance with a 3D One-Legged Hopping Machine, The International Journal of Robotics Research, 3 (2), 75–92, 1984.
  • I. Poulakakis, Spring Loaded Inverted Pendulum embedding: Extensions toward the control of compliant running robots, in: IEEE International Conference on Robotics and Automation, IEEE, 2010: pp. 5219–5224.
  • W.J. Schwind, D.E.E. Koditschek, Approximating the Stance Map of a 2-DOF Monoped Runner, Journal of Nonlinear Science, 10 (5), 533–568, 2000.
  • J.K.K. Hodgins, M.H. Raibert, Adjusting step length for rough terrain locomotion, IEEE Transactions on Robotics and Automation, 7 (3), 289–298, 1991.
  • I.E. Sutherland, M.K. Ullner, Footprints in the Asphalt, The International Journal of Robotics Research, 3 (2), 29–36, 1984.
  • M. Buehler, R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, K. Yamazaki, SCOUT: a simple quadruped that walks, climbs, and runs, in: Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, 1998: pp. 1707–1712.
  • M. Buehler, A. Cocosco, K. Yamazaki, R. Battaglia, Stable open loop walking in quadruped robots with stick legs, in: Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, 1999: pp. 2348–2353.
  • R.F. Battaglia, Design of the SCOUT II Quadruped with Preliminary Stair-Climbing, McGill University, 1999.
  • I. Poulakakis, J.A. Smith, M. Buehler, Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot, The International Journal of Robotics Research, 24 (4), 239–256, 2005.
  • H. Kimura, Y. Fukuoka, Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain by Using Neural System Model, IFAC Proceedings Volumes, 33 (26), 585–590, 2000.
  • H. Kimura, Y. Fukuoka, K. Konaga, Adaptive dynamic walking of a quadruped robot using a neural system model, Advanced Robotics, 15 (8), 859–878, 2001.
  • H. Kimura, Y. Fukuoka, H. Katabuti, Mechanical Design of a Quadruped “Tekken3&4’’’ and Navigation System Using Laser Range Sensor,” in: International Symposium on Robotics, 2005: p. 10.
  • H. Kimura, Y. Fukuoka, A.H. Cohen, Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, International Journal of Robotics Research, 26 (5), 475–490, 2007.
  • Y. Fukuoka, H. Katabuchi, and Hiroshi Kimura, Dynamic Locomotion of Quadrupeds Tekken3&4 Using Simple Navigation, Journal of Robotics and Mechatronics, 22 (1), 36–42, 2010.
  • R. Playter, M. Buehler, M.H. Raibert, BigDog, in: G.R. Gerhart, C.M. Shoemaker, D.W. Gage (Eds.), Proceedings of the Unmanned Systems Technology VIII, Defense and Security Symposium, 2006: p. 62302O.
  • C. Semini, N.G. Tsagarakis, B. Vanderborght, Y. Yang, D.G. Caldwell, HyQ – Hydraulically actuated quadruped robot: Hopping leg prototype, in: 2nd IEEE International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2008: pp. 593–599.
  • C. Semini, N.G. Tsagarakis, E. Guglielmino, D.G. Caldwell, Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot, Proceedings of the International Conference on Intelligent Robots and Systems, 3640–3645, 2010.
  • Y. Yang, C. Semini, N.G. Tsagarakis, E. Guglielmino, D.G. Caldwell, Leg mechanisms for hydraulically actuated robots, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009: pp. 4669–4675.
  • C. Semini, N.G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, D.G. Caldwell, Design of HyQ – a hydraulically and electrically actuated quadruped robot, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225 (6), 831–849, 2011.
  • C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, J. Buchli, Is Active Impedance the Key to a Breakthrough for Legged Robots?, in: Robotics Research, Springer International Publishing, 2016: pp. 3–19.
  • M. Focchi, T. Boaventura, C. Semini, M. Frigerio, J. Buchli, D.G. Caldwell, Torque-control based compliant actuation of a quadruped robot, in: International Workshop on Advanced Motion Control, Sarajevo, Bosnia-Herzegovina, 2012: pp. 1–6.
  • T. Boaventura, M. Focchi, M. Frigerio, J. Buchli, C. Semini, G.A. Medrano-Cerda, D.G. Caldwell, On the role of load motion compensation in high-performance force control, in: Proceedings of the International Conference on Intelligent Robots and Systems, 2012: pp. 4066–4071.
  • I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, D.G. Caldwell, Onboard perception-based trotting and crawling with the Hydraulic Quadruped Robot (HyQ), in: Proceedings of the International Conference on Intelligent Robots and Systems, 2013: pp. 6052–6057.
  • B. Ugurlu, I. Havoutis, C. Semini, D.G. Caldwell, Dynamic trot-walking with the hydraulic quadruped robot – HyQ: Analytical trajectory generation and active compliance control, in: International Conference on Intelligent Robots and Systems, 2013: pp. 6044–6051.
  • C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M. Focchi, D.G. Caldwell, J. Buchli, Towards versatile legged robots through active impedance control, The International Journal of Robotics Research, 34 (7), 1003–1020, 2015.
  • A.W. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D.G. Caldwell, C. Semini, Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain, in: Proceedings of the International Conference on Robotics and Automation, 2015: pp. 5148–5154.
  • T. Boaventura, J. Buchli, C. Semini, D.G. Caldwell, Model-Based Hydraulic Impedance Control for Dynamic Robots, IEEE Transactions on Robotics, 31 (6), 1324–1336, 2015.
  • V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E.R. De Pieri, D.G. Caldwell, A reactive controller framework for quadrupedal locomotion on challenging terrain, in: Proceedings of the International Conference on Robotics and Automation, 2013: pp. 2554–2561.
  • I. Havoutis, C. Semini, J. Buchli, D.G. Caldwell, Quadrupedal trotting with active compliance, in: Proceedings of the International Conference on Mechatronics, 2013: pp. 610–616.
  • S. Bazeille, V. Barasuol, M. Focchi, I. Havoutis, M. Frigerio, J. Buchli, D.G. Caldwell, C. Semini, Quadruped robot trotting over irregular terrain assisted by stereo-vision, Intelligent Service Robotics, 7 (2), 67–77, 2014.
  • A. Winkler, I. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, R. Dillmann, D. Caldwell, C. Semini, Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots, in: Proceedings of the International Conference on Robotics and Automation (ICRA), IEEE, 2014: pp. 6476–6482.
  • C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, D.G. Caldwell, Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max, IEEE/ASME Transactions on Mechatronics, 22 (2), 635–646, 2017.
  • C.D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther, M. Tranzatto, P. Fankhauser, M. Hutter, Advances in real-world applications for legged robots, Journal of Field Robotics, 35 (8), 1311–1326, 2018.
  • J. Fisler, Maximum high jump with a robotic leg, ETH Zurich, 2008.
  • M. Hutter, C.D. Remy, R. Siegwart, Design of an Articulated Robotic Leg with Nonlinear Series Elastic Actuation, in: Mobile Robotics: Solutions and Challenges, Proceedings of the 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, World Scientific, 2009: pp. 645–652.
  • M. Hutter, C.D. Remy, M.A. Hoepflinger, R. Siegwart, ScarlETH: Design and control of a planar running robot, in: Proceedings of the International Conference on Intelligent Robots and Systems, IEEE, 2011: pp. 562–567.
  • F.A.W. Belo, A. Birk, C. Brunskill, F. Kirchner, V. Lappas, C.D. Remy, S. Roccella, C. Rossi, A. Tikanmäki, G. Visentin, The ESA Lunar Robotics Challenge: Simulating operations at the lunar south pole, Journal of Field Robotics, 29 (4), 601–626, 2012.
  • M.A. Hoepflinger, C.D. Remy, M. Hutter, R. Siegwart, The quadruped ALoF and a step towards real world haptic terrain classification, in: Proceedings of the 12th Mechatronics Forum Biennial International Conference, Swiss Federal Institute of Technology ETH, Zurich Switzerland, 2010: pp. 1–8.
  • C.D. Remy, O. Baur, M. Latta, A. Lauber, M. Hutter, M.A. Hoepflinger, C. Pradalier, R. Siegwart, Walking and crawling with ALoF: a robot for autonomous locomotion on four legs, Industrial Robot: An International Journal, 38 (3), 264–268, 2011.
  • M. Hutter, StarlETH & Co.--Design and Control of Legged Robots with Compliant Actuation, ETH Zurich, 2013.
  • 172. C.D. Remy, M. Hutter, M. Hoepflinger, M. Bloesch, C. Gehring, R. Siegwart, Quadrupedal Robots with Stiff and Compliant Actuation, At - Automatisierungstechnik Methoden Und Anwendungen Der Steuerungs-, Regelungs- Und Informationstechnik, 60 (11), 682–691, 2012.
  • M. Hutter, C.D. Remy, M.A. Hoepflinger, R. Siegwart, Efficient and versatile locomotion with highly compliant legs, IEEE/ASME Transactions on Mechatronics, 18 (2), 449–458, 2013.
  • C. Gehring, S. Coros, M. Hutter, M. Bloesch, P. Fankhauser, M.A. Hoepflinger, R. Siegwart, Towards automatic discovery of agile gaits for quadrupedal robots, in: Proceedings of the International Conference on Robotics and Automation, 2014: pp. 4243–4248.
  • M. Hutter, C. Gehring, M.A. Hopflinger, M. Blosch, R. Siegwart, Toward Combining Speed, Efficiency, Versatility, and Robustness in an Autonomous Quadruped, IEEE Transactions on Robotics, 30 (6), 1427–1440, 2014.
  • M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, R. Siegwart, Quadrupedal locomotion using hierarchical operational space control, The International Journal of Robotics Research, 33 (8), 1047–1062, 2014.
  • C. Gehring, C.D. Bellicoso, S. Coros, M. Bloesch, P. Fankhauser, M. Hutter, R. Siegwart, Dynamic trotting on slopes for quadrupedal robots, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: pp. 5129–5135.
  • C. Gehring, S. Coros, M. Hutter, C. Dario Bellicoso, H. Heijnen, R. Diethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, R. Siegwart, Practice Makes Perfect: An Optimization-Based Approach to Controlling Agile Motions for a Quadruped Robot, IEEE Robotics & Automation Magazine, 23 (1), 34–43, 2016.
  • M. Hutter, C. Gehring, D. Jud, A. Lauber, C.D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, M. Hoepflinger, ANYmal - a highly mobile and dynamic quadrupedal robot, in: Proceedings of the International Conference on Intelligent Robots and Systems, IEEE, 2016: pp. 38–44.
  • M. Hutter, C. Gehring, A. Lauber, F. Gunther, C.D. Bellicoso, V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Bloesch, H. Kolvenbach, M. Bjelonic, L. Isler, K. Meyer, ANYmal - toward legged robots for harsh environments, Advanced Robotics, 31 (17), 918–931, 2017.
  • C.D. Bellicoso, F. Jenelten, C. Gehring, M. Hutter, Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots, IEEE Robotics and Automation Letters, 3 (3), 2261–2268, 2018.
  • P. Fankhauser, Perceptive Locomotion for Legged Robots in Rough Terrain, ETH Zurich, 2018.
  • A.W. Winkler, Optimization-based motion planning for legged robots, ETH Zurich, 2018.
  • P. Fankhauser, M. Hutter, ANYmal: A Unique Quadruped Robot Conquering Harsh Environments, Research Features, 126 54–57, 2018.
  • V. Bakırcıoğlu, M. Arif Şen, M. Kalyoncu, Optimization of PID controller based on The Bees Algorithm for one leg of a quadruped robot, MATEC Web of Conferences, 42 03004, 2016.
  • M.A. Şen, M. Kalyoncu, Optimal Tuning of PID Controller Using Grey Wolf Optimizer Algorithm for Quadruped Robot, Balkan Journal of Electrical and Computer Engineering, 6 (1), 29–35, 2018.
  • M.A. Şen, V. Bakırcıoğlu, M. Kalyoncu, Automatic LQR Controller Tuning Based on Grey Wolf Optimizer Algorithm for a Quadruped Robot, in: 2nd International Vocational Science Symposium, Antalya, Turkey, 2018.
  • V. Bakırcıoğlu, M.A. Şen, M. Kalyoncu, Motion Analysis of the Robotic Leg Mass Centre during Reference Trajectory Tracking, in: 2nd International Vocational Science Symposium, Antalya, Turkey, 2018.
  • V. Bakırcıoğlu, A. Şen, M., M. Kalyoncu, Obtaining Dynamic Characteristics of of Parker D1FP Proportional Valve, in: İ. Sarıtaş (Ed.), International Conference on Engineering Technologies, Konya, Turkey, 2017: pp. 662–668.
  • V. Bakırcıoğlu, M.A. Şen, M. Kalyoncu, Adaptive Neural-Network Based Fuzzy Logic (ANFIS) Based Trajectory Controller Design for One Leg of a Quadruped Robot, in: Proceedings of the 5th International Conference on Mechatronics and Control Engineering - ICMCE ’16, ACM Press, 2016: pp. 82–85.
  • M.A. Sen, V. Bakircioglu, M. Kalyoncu, Inverse Kinematic Analysis of a Quadruped Robot, International Journal of Scientific & Technology Research, 6 (09), 285–289, 2017.
Toplam 191 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Veli Bakırcıoğlu 0000-0002-1170-5327

Mete Kalyoncu 0000-0002-2214-7631

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 4 Haziran 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Bakırcıoğlu, V., & Kalyoncu, M. (2020). Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması. Politeknik Dergisi, 23(4), 961-986. https://doi.org/10.2339/politeknik.573673
AMA Bakırcıoğlu V, Kalyoncu M. Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması. Politeknik Dergisi. Aralık 2020;23(4):961-986. doi:10.2339/politeknik.573673
Chicago Bakırcıoğlu, Veli, ve Mete Kalyoncu. “Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması”. Politeknik Dergisi 23, sy. 4 (Aralık 2020): 961-86. https://doi.org/10.2339/politeknik.573673.
EndNote Bakırcıoğlu V, Kalyoncu M (01 Aralık 2020) Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması. Politeknik Dergisi 23 4 961–986.
IEEE V. Bakırcıoğlu ve M. Kalyoncu, “Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması”, Politeknik Dergisi, c. 23, sy. 4, ss. 961–986, 2020, doi: 10.2339/politeknik.573673.
ISNAD Bakırcıoğlu, Veli - Kalyoncu, Mete. “Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması”. Politeknik Dergisi 23/4 (Aralık 2020), 961-986. https://doi.org/10.2339/politeknik.573673.
JAMA Bakırcıoğlu V, Kalyoncu M. Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması. Politeknik Dergisi. 2020;23:961–986.
MLA Bakırcıoğlu, Veli ve Mete Kalyoncu. “Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması”. Politeknik Dergisi, c. 23, sy. 4, 2020, ss. 961-86, doi:10.2339/politeknik.573673.
Vancouver Bakırcıoğlu V, Kalyoncu M. Bacaklı Robotların Yürüme Stratejileri Üzerine Bir Literatür Taraması. Politeknik Dergisi. 2020;23(4):961-86.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.