Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Dynamic Feature Extraction Method for Biometric Images

Yıl 2021, , 983 - 988, 01.09.2021
https://doi.org/10.2339/politeknik.665898

Öz

The image of biometric properties in humans is used in many fields today. Regardless of these features, it is necessary to first translate it into data that the computer understands. In this study, automatic and dynamic image segmentation was performed by using 300x300 fingerprint images. A fingerprint database with a total of 80 images and 10 different classes was used. The features of the images were subtracted from the sub-segments obtained from these images by the feature extraction algorithm that was originally developed. The 300x300 images were divided into 25x25 sub-images and the feature vector was obtained. 144x80 inputs obtained after image segmentation were kept in areas in separate tables. The developed segmentation and feature extraction algorithm can be applied to any image of equal size.

Kaynakça

  • Jain A., Hong, L., & Pankanti, S., “Biometric identification”, Communications of the ACM, 43(2): 90-98, (2000).
  • Sahasrabudhe M., “Fingerprint Image Enhancement Using Unsupervised Hierarchical Feature Learning”, Doctoral dissertation. Hyderabad: International Institute of Information Technology, (2015).
  • Pankanti S., Prabhakar S., Jain A. K., “On the individuality of fingerprints”, “IEEE Transactions on pattern analysis and machine intelligence”, 24(8): 1010-1025, (2002).
  • Wang R., Han C., Wu Y., Guo T., “Fingerprint Classification Based on Depth Neural Network”, preprint arXiv:1409.5188, (2014).
  • Kaur M., Singh M., Girdhar A., Sandhu P. S., “Fingerprint verification system using minutiae extraction technique”, World Academy of Science, Engineering and Technology, 46: 497-502, (2008).
  • Jiang L., Zhao T., Bai C., Yong A., Wu M., “A direct fingerprint minutiae extraction approach based on convolutional neural networks”, In Neural Networks (IJCNN), 2016 International Joint Conference, IEEE, 571-578, (2016).
  • Ratha N. K., Karu K., Chen S., Jain A. K., “A real-time matching system for large fingerprint databases”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8): 799-813, (1996).
  • Vatsa M., Singh R., Noore A., Singh S. K., “Combining pores and ridges with minutiae for improved fingerprint verification”, Signal Processing, 89(12): 2676-2685, (2009).
  • Coetzee L., Botha E. C., “Fingerprint recognition in low quality images”, Pattern recognition, 26(10): 1441-1460, (1993).
  • Hoi L., Duy B., “Online fingerprint identification with a fast and distortion tolerant hashing”, Journal of Information Assurance and Security, 4: 117-123, (2009).
  • Jain A., Chen Y., Demirkus M., “August. Pores and ridges: Fingerprint matching using level 3 features”, In Pattern Recognition, 2006. ICPR 2006. 18th International Conference, IEEE, 4: 477-480, (2006).
  • Bolle, R. M., Connell, J. H., Pankanti, S., Ratha, N. K., & Senior, A. W., Guide to biometrics. Springer Science & Business Media, (2013).
  • Cui, W., Wu, G., Hua, R., & Yang, H., 2008, September. The research of edge detection algorithm for Fingerprint images. In Automation Congress, 2008. WAC World IEEE, 1-5, (2008).
  • Shunshan L., Min W., Haiying T., Tiange Z., Buonocore M. H., “Image enhancement method for fingerprint recognition system”, In 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS, (2005).
  • Mil'Shtein S., Pillai A., Shendye A., Liessner C., Baier M., “Fingerprint recognition algorithms for partial and full fingerprints”, In Technologies for Homeland Security, 2008 IEEE Conference, 449- 452, (2008).
  • Maio D. and Maltoni D., “A structural approach to fingerprint classification”, in Proceedings of the 13th International Conference on Pattern Recognition, vol. 3. IEEE, 578–585,(1996).
  • Cappelli R., Lumini A., Maio D., and Maltoni D., “Fingerprint classification by directional image partitioning”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5): 402–421, (1999).
  • Senior A., “A combination fingerprint classifier”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10): 1165– 1174, (2001).
  • Chang J. H. and Fan K. C., “A new model for fingerprint classification by ridge distribution sequences”, Pattern Recognition, 35(6): 1209–1223, (2002).
  • Nagaty K. A., “Fingerprints classification using artificial neural networks: a combined structural and statistical approach”, Neural Networks, 14(9): 1293–1305, (2001).
  • Web site, http://bias.csr.unibo.it/fvc2000/download.asp, access date:14.5.2019.

A New Dynamic Feature Extraction Method for Biometric Images

Yıl 2021, , 983 - 988, 01.09.2021
https://doi.org/10.2339/politeknik.665898

Öz

The image of biometric properties in humans is used in many fields today. Regardless of these features, it is necessary to first translate it into data that the computer understands. In this study, automatic and dynamic image segmentation was performed by using 300x300 fingerprint images. A fingerprint database with a total of 80 images and 10 different classes was used. The features of the images were subtracted from the sub-segments obtained from these images by the feature extraction algorithm that was originally developed. The 300x300 images were divided into 25x25 sub-images and the feature vector was obtained. 144x80 inputs obtained after image segmentation were kept in areas in separate tables. The developed segmentation and feature extraction algorithm can be applied to any image of equal size.

Kaynakça

  • Jain A., Hong, L., & Pankanti, S., “Biometric identification”, Communications of the ACM, 43(2): 90-98, (2000).
  • Sahasrabudhe M., “Fingerprint Image Enhancement Using Unsupervised Hierarchical Feature Learning”, Doctoral dissertation. Hyderabad: International Institute of Information Technology, (2015).
  • Pankanti S., Prabhakar S., Jain A. K., “On the individuality of fingerprints”, “IEEE Transactions on pattern analysis and machine intelligence”, 24(8): 1010-1025, (2002).
  • Wang R., Han C., Wu Y., Guo T., “Fingerprint Classification Based on Depth Neural Network”, preprint arXiv:1409.5188, (2014).
  • Kaur M., Singh M., Girdhar A., Sandhu P. S., “Fingerprint verification system using minutiae extraction technique”, World Academy of Science, Engineering and Technology, 46: 497-502, (2008).
  • Jiang L., Zhao T., Bai C., Yong A., Wu M., “A direct fingerprint minutiae extraction approach based on convolutional neural networks”, In Neural Networks (IJCNN), 2016 International Joint Conference, IEEE, 571-578, (2016).
  • Ratha N. K., Karu K., Chen S., Jain A. K., “A real-time matching system for large fingerprint databases”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8): 799-813, (1996).
  • Vatsa M., Singh R., Noore A., Singh S. K., “Combining pores and ridges with minutiae for improved fingerprint verification”, Signal Processing, 89(12): 2676-2685, (2009).
  • Coetzee L., Botha E. C., “Fingerprint recognition in low quality images”, Pattern recognition, 26(10): 1441-1460, (1993).
  • Hoi L., Duy B., “Online fingerprint identification with a fast and distortion tolerant hashing”, Journal of Information Assurance and Security, 4: 117-123, (2009).
  • Jain A., Chen Y., Demirkus M., “August. Pores and ridges: Fingerprint matching using level 3 features”, In Pattern Recognition, 2006. ICPR 2006. 18th International Conference, IEEE, 4: 477-480, (2006).
  • Bolle, R. M., Connell, J. H., Pankanti, S., Ratha, N. K., & Senior, A. W., Guide to biometrics. Springer Science & Business Media, (2013).
  • Cui, W., Wu, G., Hua, R., & Yang, H., 2008, September. The research of edge detection algorithm for Fingerprint images. In Automation Congress, 2008. WAC World IEEE, 1-5, (2008).
  • Shunshan L., Min W., Haiying T., Tiange Z., Buonocore M. H., “Image enhancement method for fingerprint recognition system”, In 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS, (2005).
  • Mil'Shtein S., Pillai A., Shendye A., Liessner C., Baier M., “Fingerprint recognition algorithms for partial and full fingerprints”, In Technologies for Homeland Security, 2008 IEEE Conference, 449- 452, (2008).
  • Maio D. and Maltoni D., “A structural approach to fingerprint classification”, in Proceedings of the 13th International Conference on Pattern Recognition, vol. 3. IEEE, 578–585,(1996).
  • Cappelli R., Lumini A., Maio D., and Maltoni D., “Fingerprint classification by directional image partitioning”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5): 402–421, (1999).
  • Senior A., “A combination fingerprint classifier”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10): 1165– 1174, (2001).
  • Chang J. H. and Fan K. C., “A new model for fingerprint classification by ridge distribution sequences”, Pattern Recognition, 35(6): 1209–1223, (2002).
  • Nagaty K. A., “Fingerprints classification using artificial neural networks: a combined structural and statistical approach”, Neural Networks, 14(9): 1293–1305, (2001).
  • Web site, http://bias.csr.unibo.it/fvc2000/download.asp, access date:14.5.2019.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Emre Avuçlu 0000-0002-1622-9059

Abdullah Elen 0000-0003-1644-0476

Ayhan Özçifçi 0000-0001-7733-9959

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 27 Aralık 2019
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Avuçlu, E., Elen, A., & Özçifçi, A. (2021). A New Dynamic Feature Extraction Method for Biometric Images. Politeknik Dergisi, 24(3), 983-988. https://doi.org/10.2339/politeknik.665898
AMA Avuçlu E, Elen A, Özçifçi A. A New Dynamic Feature Extraction Method for Biometric Images. Politeknik Dergisi. Eylül 2021;24(3):983-988. doi:10.2339/politeknik.665898
Chicago Avuçlu, Emre, Abdullah Elen, ve Ayhan Özçifçi. “A New Dynamic Feature Extraction Method for Biometric Images”. Politeknik Dergisi 24, sy. 3 (Eylül 2021): 983-88. https://doi.org/10.2339/politeknik.665898.
EndNote Avuçlu E, Elen A, Özçifçi A (01 Eylül 2021) A New Dynamic Feature Extraction Method for Biometric Images. Politeknik Dergisi 24 3 983–988.
IEEE E. Avuçlu, A. Elen, ve A. Özçifçi, “A New Dynamic Feature Extraction Method for Biometric Images”, Politeknik Dergisi, c. 24, sy. 3, ss. 983–988, 2021, doi: 10.2339/politeknik.665898.
ISNAD Avuçlu, Emre vd. “A New Dynamic Feature Extraction Method for Biometric Images”. Politeknik Dergisi 24/3 (Eylül 2021), 983-988. https://doi.org/10.2339/politeknik.665898.
JAMA Avuçlu E, Elen A, Özçifçi A. A New Dynamic Feature Extraction Method for Biometric Images. Politeknik Dergisi. 2021;24:983–988.
MLA Avuçlu, Emre vd. “A New Dynamic Feature Extraction Method for Biometric Images”. Politeknik Dergisi, c. 24, sy. 3, 2021, ss. 983-8, doi:10.2339/politeknik.665898.
Vancouver Avuçlu E, Elen A, Özçifçi A. A New Dynamic Feature Extraction Method for Biometric Images. Politeknik Dergisi. 2021;24(3):983-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.