Araştırma Makalesi
BibTex RIS Kaynak Göster

3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu

Yıl 2022, , 291 - 298, 01.03.2022
https://doi.org/10.2339/politeknik.682638

Öz

Bu çalışmanın amacı, termoplastik poliüretan (TPU) malzemesinden üretilmiş olan ve kendi rotasyon ekseninde dönebilen mekanizma parçalarının torsiyonel direngenlik sabitlerinin deneysel ve teorik olarak elde edilip karşılaştırılmasıdır. Hassas bir ölçüm sistemi kurularak dört numune için farklı yüklerde eğilme açıları ölçülmüş ve tepki momenti değerleri belirlenmiş, böylece deneysel torsiyonel direngenlikler hesaplanmıştır. Ankastre levha kullanılarak elde edilen teorik model ile deneysel sonuçların genel itibariyle uyumlu olduğu kaydedilmiştir. Dönme mafsalı boğaz bölgesi geometrik parametrelerinin sonucu ne şekilde etkilediği tartışılmıştır. Önerilen deney düzeneğinin dönme mafsalı torsiyonel direngenlik ölçümünde etkin bir şekilde kullanılabileceği sonucuna varılmıştır.

Teşekkür

Deneylerin yapılmasında emeği geçen takım arkadaşımız Faruk Zeytinci'ye ve numuneleri hazırlayan Cevat Volkan Karadağ'a teşekkürü bir borç biliriz.

Kaynakça

  • [1] Mutlu R., Tawk C., Alici G. ve Sariyildiz E. "A 3D printed monolithic soft gripper with adjustable stiffness", IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, China Beijing, 6235-6240, (2017).
  • [2] Rodríguez-Panes A., Claver J. ve Camacho, A. M., "The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis", Materials, 11(8): 1333, (2018).
  • [3] Günay M., Gündüz S., Yılmaz H., Yaşar N. ve Kaçar R., "PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu", Politeknik Dergisi, 23(1): 73-79, (2019).
  • [4] Wei H., Wang L., Niu X., Deng Y., Zhang Y. ve Cheng J., "Stiffness characteristics of a laser beam melted (LBM) additive-manufactured flexure mechanism", Procedia CIRP, 78: 144-148, (2018).
  • [5] Lobontiu N.,"Compliant Mechanisms: Design of Flexure Hinges", CRC Press, ABD, (2003).
  • [6] Kaplan G., "Esnek Mekanizmaların Sonlu Elemanlar Yöntemi ile İncelenmesi", yüksek lisans tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • [7] Hu Y., Zhang L., Li W. ve Yang G. Z., "Design and fabrication of a 3-D printed metallic flexible joint for snake-like surgical robot", IEEE Robotics and Automation Letters, 4(2): 1557-1563, (2019).
  • [8] Mutlu R., Alici G., in het Panhuis M. ve Spinks G., "Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger", 2015 IEEE International Conference on Advanced Intelligent Mechatronics, Korea Busan, 790-795, (2015).
  • [9] Tawk C., Gillett A., in het Panhuis M., Spinks G. M. ve Alici G., "A 3D-printed omni-purpose soft gripper", IEEE Transactions on Robotics, 35(5): 1268-1275, (2019).
  • [10] Pham M. T., Teo T. J., Yeo S. H., Wang P. ve Nai M. L. S., "A 3-D printed Ti-6Al-4V 3-DOF compliant parallel mechanism for high precision manipulation", IEEE/ASME Transactions on Mechatronics, 22(5): 2359-2368, (2017).
  • [11] Sharkey J. P., Foo D. C., Kabla A., Baumberg J. J. ve Bowman R. W. "A one-piece 3D printed flexure translation stage for open-source microscopy", Review of Scientific Instruments, 87(2): 025104, (2016).
  • [12] Lee C. ve Tarbutton J. A.,"Compliance and control characteristics of an additive manufactured-flexure stage", Review of Scientific Instruments, 86(4): 045107, (2015).
  • [13] Bates S. R., Farrow I. R. ve Trask R. S., "3D printed polyurethane honeycombs for repeated tailored energy absorption", Materials and Design, 112: 172-183, (2016).
  • [14] Lobontiu N.,"Out-of-plane (diaphragm) compliances of circular-axis notch flexible hinges with midpoint radial symmetry", Mechanics Based Design of Structures and Machines, 42(4): 518-538, (2014).
  • [15] Alghamdi A., Maconachie T., Downing D., Brandt M., Qian M., ve Leary M.,"Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry", The International Journal of Advanced Manufacturing Technology, 108: 957-971, (2020).
  • [16] Balderrama-Armendariz C. O., MacDonald E., Roberson D. A., Ruiz-Huerta L., Maldonado-Macias A., Valadez-Gutierrez E. ve Espalin D., "Folding behavior of thermoplastic hinges fabricated with polymer extrusion additive manufacturing", The International Journal of Advanced Manufacturing Technology, 105(1-4): 233-245, (2019).
  • [17] Wagner M. A., Huang J. L., Okle P., Paik J. ve Spolenak R., "Hinges for origami-inspired structures by multimaterial additive manufacturing", Materials and Design, 191: 108643, (2020).
  • [18] Data MMP. Covestro Desmopan® 2786A GMP TPU.
  • [19] QiH. J. ve Boyce M. C., "Stress–strain behavior of thermoplastic polyurethanes", Mechanics of materials, 37(8): 817-839,(2005).
  • [20] Kanbur Y. ve Tayfun U., "Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites", Journal of Thermoplastic Composite Materials, 31(12): 1661-1675, (2018).
  • [21] Hossieny N., Shaayegan V., Ameli A., Saniei M. ve Park C. B., "Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology", Polymer, 112: 208-218, (2017).
  • [22] Fang C., Yang R., Zhang Z.,Zhou X., Lei W., Cheng Y., Zhang W. ve Wang D.,"Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composite", RSC Adv., 8(16): 8920-8928, (2018).
  • [23] Fedorov D. S., Ivoilov A. Y., Zhmud V. A. ve Trubin V. G., "Using of measuring system MPU6050 for the determination of the angular velocities and linear accelerations", Automatics & Software Enginery, 11(1): 75-80, (2015).
  • [24] D’Ausilio A., "Arduino: A low-cost multipurpose lab equipment", Behavior research methods, 44(2), 305-313, (2012).
  • [25] Eaton J. W., Bateman D., Hauberg, S. ve Wehbring R.,"GNU Octave Version 5.1. 0 Manual: A High-Level Interactive Language for Numerical Computations", Free Software Foundation, (2019).
  • [26] Reas C. ve Fry B., "Processing: programming for the media arts", AI & SOCIETY, 20(4): 526-538, (2006).
  • [27] Cook R. D. ve Young C.D.,"Advanced Mechanics of Materials", 2ed., Prentice Hall, Upper Saddle River, NJ, (2003).

Stiffness Characterization of a 3D-Printed Thermoplastic Polyurethane Compliant Revolute Joint

Yıl 2022, , 291 - 298, 01.03.2022
https://doi.org/10.2339/politeknik.682638

Öz

The aim of this study is to determine and compare the torsional stiffnesses of the revolute compliant joints that are made of thermoplastic polyurethane (TPU) material. By setting up a sensitive measurement system, tilt angles were measured at different loading values for four samples and the reaction moments are determined to calculate experimental torsional stiffness. The results of the theoretical model based on a cantilever plate model is in general compatible with the experimental results. The effect of the compliant hinge geometric parameters on the results are discussed. It is concluded that the proposed experimental setup can be used effectively in the measurement of the torsional stiffness of revolute compliant joints.

Kaynakça

  • [1] Mutlu R., Tawk C., Alici G. ve Sariyildiz E. "A 3D printed monolithic soft gripper with adjustable stiffness", IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, China Beijing, 6235-6240, (2017).
  • [2] Rodríguez-Panes A., Claver J. ve Camacho, A. M., "The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis", Materials, 11(8): 1333, (2018).
  • [3] Günay M., Gündüz S., Yılmaz H., Yaşar N. ve Kaçar R., "PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu", Politeknik Dergisi, 23(1): 73-79, (2019).
  • [4] Wei H., Wang L., Niu X., Deng Y., Zhang Y. ve Cheng J., "Stiffness characteristics of a laser beam melted (LBM) additive-manufactured flexure mechanism", Procedia CIRP, 78: 144-148, (2018).
  • [5] Lobontiu N.,"Compliant Mechanisms: Design of Flexure Hinges", CRC Press, ABD, (2003).
  • [6] Kaplan G., "Esnek Mekanizmaların Sonlu Elemanlar Yöntemi ile İncelenmesi", yüksek lisans tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • [7] Hu Y., Zhang L., Li W. ve Yang G. Z., "Design and fabrication of a 3-D printed metallic flexible joint for snake-like surgical robot", IEEE Robotics and Automation Letters, 4(2): 1557-1563, (2019).
  • [8] Mutlu R., Alici G., in het Panhuis M. ve Spinks G., "Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger", 2015 IEEE International Conference on Advanced Intelligent Mechatronics, Korea Busan, 790-795, (2015).
  • [9] Tawk C., Gillett A., in het Panhuis M., Spinks G. M. ve Alici G., "A 3D-printed omni-purpose soft gripper", IEEE Transactions on Robotics, 35(5): 1268-1275, (2019).
  • [10] Pham M. T., Teo T. J., Yeo S. H., Wang P. ve Nai M. L. S., "A 3-D printed Ti-6Al-4V 3-DOF compliant parallel mechanism for high precision manipulation", IEEE/ASME Transactions on Mechatronics, 22(5): 2359-2368, (2017).
  • [11] Sharkey J. P., Foo D. C., Kabla A., Baumberg J. J. ve Bowman R. W. "A one-piece 3D printed flexure translation stage for open-source microscopy", Review of Scientific Instruments, 87(2): 025104, (2016).
  • [12] Lee C. ve Tarbutton J. A.,"Compliance and control characteristics of an additive manufactured-flexure stage", Review of Scientific Instruments, 86(4): 045107, (2015).
  • [13] Bates S. R., Farrow I. R. ve Trask R. S., "3D printed polyurethane honeycombs for repeated tailored energy absorption", Materials and Design, 112: 172-183, (2016).
  • [14] Lobontiu N.,"Out-of-plane (diaphragm) compliances of circular-axis notch flexible hinges with midpoint radial symmetry", Mechanics Based Design of Structures and Machines, 42(4): 518-538, (2014).
  • [15] Alghamdi A., Maconachie T., Downing D., Brandt M., Qian M., ve Leary M.,"Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry", The International Journal of Advanced Manufacturing Technology, 108: 957-971, (2020).
  • [16] Balderrama-Armendariz C. O., MacDonald E., Roberson D. A., Ruiz-Huerta L., Maldonado-Macias A., Valadez-Gutierrez E. ve Espalin D., "Folding behavior of thermoplastic hinges fabricated with polymer extrusion additive manufacturing", The International Journal of Advanced Manufacturing Technology, 105(1-4): 233-245, (2019).
  • [17] Wagner M. A., Huang J. L., Okle P., Paik J. ve Spolenak R., "Hinges for origami-inspired structures by multimaterial additive manufacturing", Materials and Design, 191: 108643, (2020).
  • [18] Data MMP. Covestro Desmopan® 2786A GMP TPU.
  • [19] QiH. J. ve Boyce M. C., "Stress–strain behavior of thermoplastic polyurethanes", Mechanics of materials, 37(8): 817-839,(2005).
  • [20] Kanbur Y. ve Tayfun U., "Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites", Journal of Thermoplastic Composite Materials, 31(12): 1661-1675, (2018).
  • [21] Hossieny N., Shaayegan V., Ameli A., Saniei M. ve Park C. B., "Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology", Polymer, 112: 208-218, (2017).
  • [22] Fang C., Yang R., Zhang Z.,Zhou X., Lei W., Cheng Y., Zhang W. ve Wang D.,"Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composite", RSC Adv., 8(16): 8920-8928, (2018).
  • [23] Fedorov D. S., Ivoilov A. Y., Zhmud V. A. ve Trubin V. G., "Using of measuring system MPU6050 for the determination of the angular velocities and linear accelerations", Automatics & Software Enginery, 11(1): 75-80, (2015).
  • [24] D’Ausilio A., "Arduino: A low-cost multipurpose lab equipment", Behavior research methods, 44(2), 305-313, (2012).
  • [25] Eaton J. W., Bateman D., Hauberg, S. ve Wehbring R.,"GNU Octave Version 5.1. 0 Manual: A High-Level Interactive Language for Numerical Computations", Free Software Foundation, (2019).
  • [26] Reas C. ve Fry B., "Processing: programming for the media arts", AI & SOCIETY, 20(4): 526-538, (2006).
  • [27] Cook R. D. ve Young C.D.,"Advanced Mechanics of Materials", 2ed., Prentice Hall, Upper Saddle River, NJ, (2003).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ufuk Tan Baler Bu kişi benim 0000-0001-8598-056X

Enis Aykın Bu kişi benim 0000-0003-2100-6869

Ali Fethi Okyar 0000-0002-2561-7547

Nezih Topaloğlu 0000-0003-0525-8900

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Baler, U. T., Aykın, E., Okyar, A. F., Topaloğlu, N. (2022). 3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu. Politeknik Dergisi, 25(1), 291-298. https://doi.org/10.2339/politeknik.682638
AMA Baler UT, Aykın E, Okyar AF, Topaloğlu N. 3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu. Politeknik Dergisi. Mart 2022;25(1):291-298. doi:10.2339/politeknik.682638
Chicago Baler, Ufuk Tan, Enis Aykın, Ali Fethi Okyar, ve Nezih Topaloğlu. “3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu”. Politeknik Dergisi 25, sy. 1 (Mart 2022): 291-98. https://doi.org/10.2339/politeknik.682638.
EndNote Baler UT, Aykın E, Okyar AF, Topaloğlu N (01 Mart 2022) 3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu. Politeknik Dergisi 25 1 291–298.
IEEE U. T. Baler, E. Aykın, A. F. Okyar, ve N. Topaloğlu, “3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu”, Politeknik Dergisi, c. 25, sy. 1, ss. 291–298, 2022, doi: 10.2339/politeknik.682638.
ISNAD Baler, Ufuk Tan vd. “3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu”. Politeknik Dergisi 25/1 (Mart 2022), 291-298. https://doi.org/10.2339/politeknik.682638.
JAMA Baler UT, Aykın E, Okyar AF, Topaloğlu N. 3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu. Politeknik Dergisi. 2022;25:291–298.
MLA Baler, Ufuk Tan vd. “3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu”. Politeknik Dergisi, c. 25, sy. 1, 2022, ss. 291-8, doi:10.2339/politeknik.682638.
Vancouver Baler UT, Aykın E, Okyar AF, Topaloğlu N. 3D Baskılı Termoplastik Poliüretan Esnek Dönme Mafsalının Direngenlik Karakterizasyonu. Politeknik Dergisi. 2022;25(1):291-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.