Araştırma Makalesi
BibTex RIS Kaynak Göster

Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi

Yıl 2021, , 121 - 129, 01.03.2021
https://doi.org/10.2339/politeknik.686358

Öz

Bu çalışmada eğirme esnasında katkılanan TiO2 miktarına bağlı olarak, polietilen tereftalat liflerde (PET) kendi kendini temizleme özelliği incelenmektedir. Lifler eğirildikten sonra dokunarak siyah çay, kahve, vişne suyu ve ketçap ile lekelenmiştir. Ardından numune kumaşlar gün ışığı ve Xenon lamba gibi farklı ışık koşullarına maruz bırakılarak lekelerin zamanla giderimi incelenmiştir. Ayrıca, üretilen katkılı liflerin mekanik performansı katkısız lifler ile kıyaslanmış ve morfolojileri, optik ve taramalı elektron mikroskopları (SEM) ile analiz edilmiştir. Diferansiyel taramalı kalorimetre (DSC) kullanılarak liflerin kristallenme davranışlarında farklılık olup olmadığı analiz edilmiştir. Yapılan çalışma neticesinde; liflerin mekanik özelliklerinde ve kristallenme davranışlarında çalışılan katkılama oranı aralığına göre, büyük değişimler olmadan fotokatalitik etki sayesinde kumaşa kendi kendini temizleme özelliği kazandırılabileceği tespit edilmiştir.

Destekleyen Kurum

Korteks Mensucat Sanayi ve Ticaret A.Ş.

Teşekkür

Çalışma kapsamındaki hammadde temini, deneysel veri, iplikler ve kumaşların üretimini sağlayan Korteks Mensucat Sanayi ve Ticaret A.Ş.’ye teşekkürlerimizi sunarız.

Kaynakça

  • [1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
  • [2] J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis today, vol. 53, no. 1, pp. 115–129, 1999.
  • [3] A. L. Linsebigler, G. Lu, and J. T. Yates Jr, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995.
  • [4] N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,” Journal of photochemistry and photobiology A: chemistry, vol. 162, no. 2, pp. 317–322, 2004.
  • [5] J. Liqiang et al., “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity,” Solar energy materials and solar cells, vol. 90, no. 12, pp. 1773–1787, 2006.
  • [6] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: a historical overview and future prospects,” Japanese journal of applied physics, vol. 44, no. 12R, p. 8269, 2005.
  • [7] H. Kyung, J. Lee, and W. Choi, “Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination,” Environmental science & technology, vol. 39, no. 7, pp. 2376–2382, 2005.
  • [8] O. Akhavan, R. Azimirad, S. Safa, and M. M. Larijani, “Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents,” Journal of Materials Chemistry, vol. 20, no. 35, pp. 7386–7392, 2010.
  • [9] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001.
  • [10] K. Huang, L. Chen, J. Xiong, and M. Liao, “Preparation and characterization of visible-light-activated Fe-N Co-doped TiO2 and its photocatalytic inactivation effect on leukemia tumors,” International Journal of Photoenergy, vol. 2012, 2012.
  • [11] M. Yurddaşkal, U. Kartal, and E. C. Doluel, “Production of Titanium Dioxide/Reduced Graphene Oxide Composites and Investigation of Their Photocatalytic Properties,” Politeknik Dergisi, pp. 0–0, Dec. 2019, doi: 10.2339/politeknik.537900.
  • [12] J. Kim, C. W. Lee, and W. Choi, “Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light,” Environmental science & technology, vol. 44, no. 17, pp. 6849–6854, 2010.
  • [13] F. Wang, C. Di Valentin, and G. Pacchioni, “Rational band gap engineering of WO3 photocatalyst for visible light water splitting,” ChemCatChem, vol. 4, no. 4, pp. 476–478, 2012.
  • [14] M. Mishra and D.-M. Chun, “α-Fe2O3 as a photocatalytic material: A review,” Applied Catalysis A: General, vol. 498, pp. 126–141, 2015.
  • [15] A. Kleiman-Shwarsctein, Y.-S. Hu, A. J. Forman, G. D. Stucky, and E. W. McFarland, “Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting,” The Journal of Physical Chemistry C, vol. 112, no. 40, pp. 15900–15907, 2008.
  • [16] M. Alvarez et al., “2, 4-Dichlorophenoxyacetic acid (2, 4-D) photodegradation using an Mn+/ZrO2 photocatalyst: XPS, UV–vis, XRD characterization,” Applied Catalysis B: Environmental, vol. 73, no. 1–2, pp. 34–41, 2007.
  • [17] F. Sayılkan, M. Asiltürk, N. Kiraz, E. Burunkaya, E. Arpaç, and H. Sayılkan, “Photocatalytic antibacterial performance of Sn 4+-doped TiO2 thin films on glass substrate,” Journal of Hazardous Materials, vol. 162, no. 2, pp. 1309–1316, 2009.
  • [18] W. A. Daoud and J. H. Xin, “Low temperature sol-gel processed photocatalytic titania coating,” Journal of Sol-Gel Science and Technology, vol. 29, no. 1, pp. 25–29, 2004.
  • [19] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating,” Materials chemistry and physics, vol. 77, no. 3, pp. 744–750, 2003.
  • [20] C.-S. Lee, J. Kim, J. Y. Son, W. Choi, and H. Kim, “Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma enhanced atomic layer deposition,” Applied Catalysis B: Environmental, vol. 91, no. 3, pp. 628–633, 2009.
  • [21] K. Qi, J. H. Xin, W. A. Daoud, and C. L. Mak, “Functionalizing Polyester Fiber with a Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment,” International Journal of Applied Ceramic Technology, vol. 4, no. 6, pp. 554–563, 2007, doi: 10.1111/j.1744-7402.2007.02168.x.
  • [22] L. Karimi, M. Mirjalili, M. E. Yazdanshenas, and A. Nazari, “Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation,” Photochemistry and photobiology, vol. 86, no. 5, pp. 1030–1037, 2010.
  • [23] Y. Xu, W. Wen, and J.-M. Wu, “Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances,” Journal of hazardous materials, vol. 343, pp. 285–297, 2018.
  • [24] M. Radetić, “Functionalization of textile materials with TiO2 nanoparticles,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 16, pp. 62–76, 2013.
  • [25] N. A. Ibrahim, R. Refaie, and A. F. Ahmed, “Novel approach for attaining cotton fabric with multi-functional properties,” Journal of Industrial Textiles, vol. 40, no. 1, pp. 65–83, 2010.
  • [26] B. Xu, J. Ding, L. Feng, Y. Ding, F. Ge, and Z. Cai, “Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2,” Surface and Coatings Technology, vol. 262, pp. 70–76, 2015.
  • [27] R. Wang, X. Wang, and J. H. Xin, “Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts,” ACS Applied Materials & Interfaces, vol. 2, no. 1, pp. 82–85, 2009.
  • [28] S. Z. D. Cheng, R. Pan, and B. Wunderlich, “Thermal analysis of poly(butylene terephthalate) for heat capacity, rigid-amorphous content, and transition behavior,” Die Makromolekulare Chemie, vol. 189, no. 10, pp. 2443–2458, 1988, doi: 10.1002/macp.1988.021891022.
  • [29] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, no. 7, pp. 2313–2318, Apr. 1998, doi: 10.1016/S1359-6454(98)80012-8.
  • [30] M. K. Dufficy, M. T. Geiger, C. A. Bonino, and S. A. Khan, “Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting,” Langmuir, vol. 31, no. 45, pp. 12455–12463, Nov. 2015, doi: 10.1021/acs.langmuir.5b03545.
  • [31] N. A. Patankar, “Mimicking the Lotus Effect:  Influence of Double Roughness Structures and Slender Pillars,” Langmuir, vol. 20, no. 19, pp. 8209–8213, Sep. 2004, doi: 10.1021/la048629t.
  • [32] F. Emami, S. Shekarriz, Z. Shariatinia, and Z. Moridi Mahdieh, “Self-cleaning Properties of Nylon 6 Fabrics Treated with Corona and TiO2 Nanoparticles under Both Ultraviolet and Daylight Irradiations,” Fibers Polym, vol. 19, no. 5, pp. 1014–1023, May 2018, doi: 10.1007/s12221-018-1025-4.
  • [33] P. Pisitsak, A. Samootsoot, and N. Chokpanich, “Investigation of the self-cleaning properties of cotton fabrics finished with Nano-TiO2 and Nano-TiO2 mixed with fumed silica.,” Asia-Pacific Journal of Science and Technology, vol. 18, no. 2, pp. 200–211, 2013.

Effect of the TiO2 Concentration On the Photocatalytic Self-Cleaning Properties Of Polyethylene Teraphthalate Fibers

Yıl 2021, , 121 - 129, 01.03.2021
https://doi.org/10.2339/politeknik.686358

Öz

In this article self-cleaning properties of polyethyleneterephthalate (PET) fibers is investigated as a function of TiO2 particle content added during fiber spinning. After fibers were spun they were woven and stained with black tea, coffee, cherry juice, and ketchup. The sample fabrics were then exposed to different light sources such as daylight and solar simulator to monitor the stain removal over time. Furthermore the mechanical properties of the fibers with various amounts of TiO2 content were compared. Morphologies of the fibers were investigated with both optical and scanning electron microscopes (SEM). Using the differential scanning calorimeter (DSC) the crystallization behavior of the samples was compared. In the range of studied concentrations of TiO2 it is observed that self-cleaning properties can be achieved without significantly sacrificing from the mechanical properties of the fibers.

Kaynakça

  • [1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
  • [2] J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis today, vol. 53, no. 1, pp. 115–129, 1999.
  • [3] A. L. Linsebigler, G. Lu, and J. T. Yates Jr, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995.
  • [4] N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,” Journal of photochemistry and photobiology A: chemistry, vol. 162, no. 2, pp. 317–322, 2004.
  • [5] J. Liqiang et al., “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity,” Solar energy materials and solar cells, vol. 90, no. 12, pp. 1773–1787, 2006.
  • [6] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: a historical overview and future prospects,” Japanese journal of applied physics, vol. 44, no. 12R, p. 8269, 2005.
  • [7] H. Kyung, J. Lee, and W. Choi, “Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination,” Environmental science & technology, vol. 39, no. 7, pp. 2376–2382, 2005.
  • [8] O. Akhavan, R. Azimirad, S. Safa, and M. M. Larijani, “Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents,” Journal of Materials Chemistry, vol. 20, no. 35, pp. 7386–7392, 2010.
  • [9] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001.
  • [10] K. Huang, L. Chen, J. Xiong, and M. Liao, “Preparation and characterization of visible-light-activated Fe-N Co-doped TiO2 and its photocatalytic inactivation effect on leukemia tumors,” International Journal of Photoenergy, vol. 2012, 2012.
  • [11] M. Yurddaşkal, U. Kartal, and E. C. Doluel, “Production of Titanium Dioxide/Reduced Graphene Oxide Composites and Investigation of Their Photocatalytic Properties,” Politeknik Dergisi, pp. 0–0, Dec. 2019, doi: 10.2339/politeknik.537900.
  • [12] J. Kim, C. W. Lee, and W. Choi, “Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light,” Environmental science & technology, vol. 44, no. 17, pp. 6849–6854, 2010.
  • [13] F. Wang, C. Di Valentin, and G. Pacchioni, “Rational band gap engineering of WO3 photocatalyst for visible light water splitting,” ChemCatChem, vol. 4, no. 4, pp. 476–478, 2012.
  • [14] M. Mishra and D.-M. Chun, “α-Fe2O3 as a photocatalytic material: A review,” Applied Catalysis A: General, vol. 498, pp. 126–141, 2015.
  • [15] A. Kleiman-Shwarsctein, Y.-S. Hu, A. J. Forman, G. D. Stucky, and E. W. McFarland, “Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting,” The Journal of Physical Chemistry C, vol. 112, no. 40, pp. 15900–15907, 2008.
  • [16] M. Alvarez et al., “2, 4-Dichlorophenoxyacetic acid (2, 4-D) photodegradation using an Mn+/ZrO2 photocatalyst: XPS, UV–vis, XRD characterization,” Applied Catalysis B: Environmental, vol. 73, no. 1–2, pp. 34–41, 2007.
  • [17] F. Sayılkan, M. Asiltürk, N. Kiraz, E. Burunkaya, E. Arpaç, and H. Sayılkan, “Photocatalytic antibacterial performance of Sn 4+-doped TiO2 thin films on glass substrate,” Journal of Hazardous Materials, vol. 162, no. 2, pp. 1309–1316, 2009.
  • [18] W. A. Daoud and J. H. Xin, “Low temperature sol-gel processed photocatalytic titania coating,” Journal of Sol-Gel Science and Technology, vol. 29, no. 1, pp. 25–29, 2004.
  • [19] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating,” Materials chemistry and physics, vol. 77, no. 3, pp. 744–750, 2003.
  • [20] C.-S. Lee, J. Kim, J. Y. Son, W. Choi, and H. Kim, “Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma enhanced atomic layer deposition,” Applied Catalysis B: Environmental, vol. 91, no. 3, pp. 628–633, 2009.
  • [21] K. Qi, J. H. Xin, W. A. Daoud, and C. L. Mak, “Functionalizing Polyester Fiber with a Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment,” International Journal of Applied Ceramic Technology, vol. 4, no. 6, pp. 554–563, 2007, doi: 10.1111/j.1744-7402.2007.02168.x.
  • [22] L. Karimi, M. Mirjalili, M. E. Yazdanshenas, and A. Nazari, “Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation,” Photochemistry and photobiology, vol. 86, no. 5, pp. 1030–1037, 2010.
  • [23] Y. Xu, W. Wen, and J.-M. Wu, “Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances,” Journal of hazardous materials, vol. 343, pp. 285–297, 2018.
  • [24] M. Radetić, “Functionalization of textile materials with TiO2 nanoparticles,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 16, pp. 62–76, 2013.
  • [25] N. A. Ibrahim, R. Refaie, and A. F. Ahmed, “Novel approach for attaining cotton fabric with multi-functional properties,” Journal of Industrial Textiles, vol. 40, no. 1, pp. 65–83, 2010.
  • [26] B. Xu, J. Ding, L. Feng, Y. Ding, F. Ge, and Z. Cai, “Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2,” Surface and Coatings Technology, vol. 262, pp. 70–76, 2015.
  • [27] R. Wang, X. Wang, and J. H. Xin, “Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts,” ACS Applied Materials & Interfaces, vol. 2, no. 1, pp. 82–85, 2009.
  • [28] S. Z. D. Cheng, R. Pan, and B. Wunderlich, “Thermal analysis of poly(butylene terephthalate) for heat capacity, rigid-amorphous content, and transition behavior,” Die Makromolekulare Chemie, vol. 189, no. 10, pp. 2443–2458, 1988, doi: 10.1002/macp.1988.021891022.
  • [29] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, no. 7, pp. 2313–2318, Apr. 1998, doi: 10.1016/S1359-6454(98)80012-8.
  • [30] M. K. Dufficy, M. T. Geiger, C. A. Bonino, and S. A. Khan, “Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting,” Langmuir, vol. 31, no. 45, pp. 12455–12463, Nov. 2015, doi: 10.1021/acs.langmuir.5b03545.
  • [31] N. A. Patankar, “Mimicking the Lotus Effect:  Influence of Double Roughness Structures and Slender Pillars,” Langmuir, vol. 20, no. 19, pp. 8209–8213, Sep. 2004, doi: 10.1021/la048629t.
  • [32] F. Emami, S. Shekarriz, Z. Shariatinia, and Z. Moridi Mahdieh, “Self-cleaning Properties of Nylon 6 Fabrics Treated with Corona and TiO2 Nanoparticles under Both Ultraviolet and Daylight Irradiations,” Fibers Polym, vol. 19, no. 5, pp. 1014–1023, May 2018, doi: 10.1007/s12221-018-1025-4.
  • [33] P. Pisitsak, A. Samootsoot, and N. Chokpanich, “Investigation of the self-cleaning properties of cotton fabrics finished with Nano-TiO2 and Nano-TiO2 mixed with fumed silica.,” Asia-Pacific Journal of Science and Technology, vol. 18, no. 2, pp. 200–211, 2013.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Zeynep Batur 0000-0003-3363-5291

Halil İbrahim Akyıldız 0000-0002-8727-5829

Yayımlanma Tarihi 1 Mart 2021
Gönderilme Tarihi 7 Şubat 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Batur, Z., & Akyıldız, H. İ. (2021). Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi. Politeknik Dergisi, 24(1), 121-129. https://doi.org/10.2339/politeknik.686358
AMA Batur Z, Akyıldız Hİ. Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi. Politeknik Dergisi. Mart 2021;24(1):121-129. doi:10.2339/politeknik.686358
Chicago Batur, Zeynep, ve Halil İbrahim Akyıldız. “Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi”. Politeknik Dergisi 24, sy. 1 (Mart 2021): 121-29. https://doi.org/10.2339/politeknik.686358.
EndNote Batur Z, Akyıldız Hİ (01 Mart 2021) Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi. Politeknik Dergisi 24 1 121–129.
IEEE Z. Batur ve H. İ. Akyıldız, “Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi”, Politeknik Dergisi, c. 24, sy. 1, ss. 121–129, 2021, doi: 10.2339/politeknik.686358.
ISNAD Batur, Zeynep - Akyıldız, Halil İbrahim. “Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi”. Politeknik Dergisi 24/1 (Mart 2021), 121-129. https://doi.org/10.2339/politeknik.686358.
JAMA Batur Z, Akyıldız Hİ. Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi. Politeknik Dergisi. 2021;24:121–129.
MLA Batur, Zeynep ve Halil İbrahim Akyıldız. “Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi”. Politeknik Dergisi, c. 24, sy. 1, 2021, ss. 121-9, doi:10.2339/politeknik.686358.
Vancouver Batur Z, Akyıldız Hİ. Polietilen Teraftalat (PET) Liflerde Katkılanan TiO2 Konsantrasyonunun Fotokatalitik Kendini Temizleme Özelliklerine Etkisi. Politeknik Dergisi. 2021;24(1):121-9.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.