Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi

Yıl 2021, , 1719 - 1727, 01.12.2021
https://doi.org/10.2339/politeknik.689424

Öz

Son yıllarda, grafen sahip olduğu üstün elektronik, termal ve mekanik özellikler nedeniyle bilim adamları ve sanayinin çok ilgisini çekmiş ve farklı alanlarda ve ileri uygulamalarda kullanılmaya başlanmıştır. Grafenin çok az miktarda katkı olarak kullanılması ile polimerlere ileri özellikler katması nedeniyle, grafen ve türevleri polimer kompozitler alanında da büyük ilgi uyandırmıştır. Bu nedenle, bu çalışmada, özellikle elektriksel iletkenlik ve mekanik özellikleri iyileştirilmiş epoksi kompozitler elde etmek için grafen belirli oranlarda (ağırlıkça %0,05, %0,1, %0,25, %0,5 ve %1) epoksi içerisine eklenmiş ve nanokompozit filmler üretilmiştir. Üretilen nanokompozitlerin özellikleri, fourier dönüşümlü kızılötesi spektroskopisi (FT-IR), termogravimetrik analiz (TGA), mekanik test, taramalı elektron mikroskobu (SEM), UV-Vis-NIR spektrofotometre ve elektriksel iletkenlik ölçümleri yapılarak incelenmiştir. Yapılan çalışma sonucunda, %1 oranında grafen katkısı, epoksi filmlerin hacimsel direnç değerinde %28,2 ve yüzeysel direncinde %9,7’lik bir azalmaya sebep olmuştur. Grafen/epoksi nanokompozitlerin maksimum gerilme değeri, %1’lik grafen katkısında, katkısız epoksiye göre %33,84 oranında artarak ~20 MPa olarak elde edilmiştir. Sonuç olarak, epoksiye ilave edilen grafen miktarı arttıkça, nanokompozit filmlerin elektriksel iletkenliğinin, gerilme değerlerinin ve ışık absorpsiyonunun arttığı gözlenmiştir. Elde edilen nanokompozit filmler, sağladığı iyileştirilmiş elektriksel iletkenlik ve mekanik özellikler sayesinde endüstriyel uygulamalarda kullanılabilir.

Kaynakça

  • [1] Pissis, P., ''Thermoset nanocomposites for engineering applications'', Smithers Rapra Publishing, Shawbury, UK., (2007).
  • [2] Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada, ''A review on the tensile properties of natural fiber reinforced polymer composites'', Composites Part B-Engineering, 42 (4): 856-873, (2011).
  • [3] Garg, P., B.P. Singh, G. Kumar, T. Gupta, I. Pandey, R. Seth, R. Tandon, and R.B. Mathur, ''Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites'', Journal of Polymer Research, 18 (6): 1397-1407, (2011).
  • [4] Yang, C.C., F.C. Chang, Y.Z. Wang, C.M. Chan, C.L. Lin, and W.Y. Chen, ''Novel nanocomposite of epoxy resin by introduced reactive and nanoporous material'', Journal of Polymer Research, 14 (6): 431-439, (2007).
  • [5] Chozhan, C.K., M. Alagar, R.J. Sharmila, and P. Gnanasundaram, ''Thermo mechanical behaviour of unsaturated polyester toughened epoxy–clay hybrid nanocomposites'', Journal of Polymer Research, 14 (4): 319-328, (2007).
  • [6] Wang, X., Y. Hu, L. Song, W.Y. Xing, H.D.A. Lu, P. Lv, and G.X. Jie, ''Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer'', Polymer, 51 (11): 2435-2445, (2010).
  • [7] Karayannidou, E.G., D.S. Achilias, and I.D. Sideridou, ''Cure kinetics of epoxy–amine resins used in the restoration of works of art from glass or ceramic'', European Polymer Journal, 42 (12): 3311-3323, (2006).
  • [8] Rokicki, G. and C. Wojciechowski, ''Epoxy-Resin Modified by Aliphatic Cyclic Carbonates'', Journal of Applied Polymer Science, 41 (3-4): 647-659, (1990).
  • [9] Chandrasekaran, S., N. Sato, F. Tolle, R. Mulhaupt, B. Fiedler, and K. Schulte, ''Fracture toughness and failure mechanism of graphene based epoxy composites'', Composites Science and Technology, 97: 90-99, (2014).
  • [10] Kasar, A., G.P. Xiong, and P.L. Menezes, ''Graphene-Reinforced Metal and Polymer Matrix Composites'', Jom, 70 (6): 829-836, (2018).
  • [11] Sengupta, R., M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick, ''A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites'', Progress in Polymer Science, 36 (5): 638-670, (2011).
  • [12] Sadasivuni, K.K., D. Ponnamma, J. Kim, and S. Thomas, ''Graphene-based polymer nanocomposites in electronics'', Springer, (2015).
  • [13] Zhao, X., Q. Zhang, D. Chen, and P. Lu, ''Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites'', Macromolecules, 43 (5): 2357-2363, (2010).
  • [14] Altin, Y., M. Tas, İ. Borazan, A. Demir, and A. Bedeloglu, ''Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT: PSS as alternative to ITO'', Surface and Coatings Technology, 302: 75-81, (2016).
  • [15] Tas, M., Y. Altin, and A.C. Bedeloglu, ''Reduction of graphene oxide thin films using a stepwise thermal annealing assisted by l-ascorbic acid'', Diamond and Related Materials, 92: 242-247, (2019).
  • [16] Guo, Z., L. Song, C.G. Boay, Z. Li, Y. Li, and Z. Wang, ''A new multiscale numerical characterization of mechanical properties of graphene-reinforced polymer-matrix composites'', Composite Structures, 199: 1-9, (2018).
  • [17] An, J.E. and Y.G. Jeong, ''Structure and electric heating performance of graphene/epoxy composite films'', European Polymer Journal, 49 (6): 1322-1330, (2013).
  • [18] Tang, L.C., Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, and G.Q. Lai, ''The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites'', Carbon, 60: 16-27, (2013).
  • [19] Wajid, A.S., H.S.T. Ahmed, S. Das, F. Irin, A.F. Jankowski, and M.J. Green, ''High-Performance Pristine Graphene/Epoxy Composites With Enhanced Mechanical and Electrical Properties'', Macromolecular Materials and Engineering, 298 (3): 339-347, (2013).
  • [20] Naebe, M., J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, and B. Fox, ''Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites'', Scientific Reports, 4: 4375-4381, (2014).
  • [21] Wan, Y.J., L.C. Tang, D. Yan, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, and G.Q. Lai, ''Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process'', Composites Science and Technology, 82: 60-68, (2013).
  • [22] Chatterjee, S., J.W. Wang, W.S. Kuo, N.H. Tai, C. Salzmann, W.L. Li, R. Hollertz, F.A. Nuesch, and B.T.T. Chu, ''Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites'', Chemical Physics Letters, 531: 6-10, (2012).
  • [23] Pokharel, P. and Q.-T. Truong, ''Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites'', Composites Part B: Engineering, 64: 187-193, (2014).
  • [24] King, J.A., D.R. Klimek, I. Miskioglu, and G.M. Odegard, ''Mechanical properties of graphene nanoplatelet/epoxy composites'', Journal of Composite Materials, 49 (6): 659-668, (2015).
  • [25] Prolongo, S.G., R. Moriche, A. Jimenez-Suarez, M. Sanchez, and A. Urena, ''Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins'', European Polymer Journal, 61: 206-214, (2014).
  • [26] Shiu, S.C. and J.L. Tsai, ''Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites'', Composites Part B-Engineering, 56: 691-697, (2014).
  • [27] Yu, H., Z. Tong, P. Chen, A. Cai, and F. Qin, ''Effects of different parameters on thermal and mechanical properties of aminated graphene/epoxy nanocomposites connected by covalent: A molecular dynamics study'', Current Applied Physics, 20 (4): 510-518, (2020).
  • [28] Yu, W., L. Sisi, Y. Haiyan, and L. Jie, ''Progress in the functional modification of graphene/graphene oxide: a review'', RSC Advances, 10 (26): 15328-15345, (2020).
  • [29] Duan, W., Y. Chen, J. Ma, W. Wang, J. Cheng, and J. Zhang, ''High-performance graphene reinforced epoxy nanocomposites using benzyl glycidyl ether as a dispersant and surface modifier'', Composites Part B: Engineering, 189: 107878, (2020).
  • [30] Wang, F., L.T. Drzal, Y. Qin, and Z. Huang, ''Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets'', Composites Part A: Applied Science and Manufacturing, 87: 10-22, (2016).
  • [31] Sreeprasad, T. and V. Berry, ''How do the electrical properties of graphene change with its functionalization?'', Small, 9 (3): 341-350, (2013).
  • [32] Chun, W.W., T.P. Leng, A.F. Osman, and Y.C. Keat, ''Mechanical Properties and Morphology of Epoxy/Graphene Nanocomposite Using Bath Sonication and Tip Sonication'', Solid State Phenomena, 280: 258-263, (2018).
  • [33] Imran, K.A. and K.N. Shivakumar, ''Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties'', Journal of Reinforced Plastics and Composites, 37 (2): 118-133, (2018).
  • [34] Noroozi, M., A. Zakaria, S. Radiman, and Z.A. Wahab, ''Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties'', PloS one, 11 (4): e0152699, (2016).
  • [35] Cheng, K., T. Cheng, K. Lee, T. Ueng, and W. Hsing, ''Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics'', Composites Part A: Applied Science and Manufacturing, 34 (10): 971-978, (2003).
  • [36] Cakić, S.M., I.S. Ristić, V.M. Jašo, R.Ž. Radičević, O.Z. Ilić, and J.K. Simendić, ''Investigation of the curing kinetics of alkyd–melamine–epoxy resin system'', Progress in Organic Coatings, 73 (4): 415-424, (2012).
  • [37] Thema, F., M. Moloto, E. Dikio, N. Nyangiwe, L. Kotsedi, M. Maaza, and M. Khenfouch, ''Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide'', Journal of chemistry, 2013: 1-7, (2013).
  • [38] Tas, M., Y. Altin, and A. Bedeloglu, ''Graphene and graphene oxide-coated polyamide monofilament yarns for fiber-shaped flexible electrodes'', The journal of the Textile Institute, 110 (1): 67-73, (2019).
  • [39] Bourgeat-Lami, E., J. Faucheu, and A. Noel, ''Latex routes to graphene-based nanocomposites'', Polymer Chemistry, 6 (30): 5323-5357, (2015).
  • [40] Wang, Z., G. Wei, and G.L. Zhao, ''Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites'', Applied Physics Letters, 103 (18): 183109-183114, (2013).
  • [41] Marra, F., A.G. D’Aloia, A. Tamburrano, I.M. Ochando, G. De Bellis, G. Ellis, and M.S. Sarto, ''Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets'', Polymers, 8 (8): 272-289, (2016).
  • [42] Moosa, A.A., A.R. SA, and M.N. Ibrahim, ''Mechanical and electrical properties of graphene nanoplates and carbon-nanotubes hybrid epoxy nanocomposites'', American Journal of Materials Science, 6 (6): 157-165, (2016).
  • [43] Hao, Y., M. Tian, H. Zhao, L. Qu, S. Zhu, X. Zhang, S. Chen, K. Wang, and J. Ran, ''High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route'', Industrial & Engineering Chemistry Research, 57 (40): 13437-13448, (2018).
  • [44] Moghimian, N., S. Saeidlou, H. Lentzakis, G.F. Rosi, N. Song, and É. David, ''Electrical conductivity of commercial graphene polyethylene nanocomposites'', 17th International Conference on Nanotechnology, USA, 757-761, (2017).
  • [45] Galpaya, D., M. Wang, M. Liu, N. Motta, E.R. Waclawik, and C. Yan, ''Recent advances in fabrication and characterization of graphene-polymer nanocomposites'', Graphene, 1 (2): 30-49, (2012).
  • [46] UYSAL, A. and E. ALTAN, ''Karbon Siyahı Takviyeli Elektriği İleten Polipropilen Kompozite Delik Delinmesinde İşlem Parametrelerinin İncelenmesi'', Politeknik Dergisi, 18 (4): 241-249, (2015).
  • [47] Kim, H., A.A. Abdala, and C.W. Macosko, ''Graphene/polymer nanocomposites'', Macromolecules, 43 (16): 6515-6530, (2010).
  • [48] Potts, J.R., D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, ''Graphene-based polymer nanocomposites'', Polymer, 52 (1): 5-25, (2011).
  • [49] Wei, J., T. Vo, and F. Inam, ''Epoxy/graphene nanocomposites–processing and properties: a review'', RSC Advances, 5 (90): 73510-73524, (2015).
  • [50] Alhumade, H., A. Yu, A. Elkamel, L. Simon, and A. Abdala, ''Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel'', Express Polymer Letters, 10 (12): 1034-1046, (2016).
  • [51] Teng, C.-C., C.-C.M. Ma, C.-H. Lu, S.-Y. Yang, S.-H. Lee, M.-C. Hsiao, M.-Y. Yen, K.-C. Chiou, and T.-M. Lee, ''Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites'', Carbon, 49 (15): 5107-5116, (2011).
  • [52] Malik, P., Bhasha, and P. Jain, ''Influence of Surface modified Graphene Oxide on Mechanical and Thermal Properties of Epoxy Resin'', Oriental Journal of Chemistry, 34 (3): 1597-1603, (2018).
  • [53] Manta, A., M. Gresil, and C. Soutis, ''Tensile and flexural behaviour of a graphene/epoxy composite: experiments and simulation'', Journal of Physics: Materials, 3 (1): 014006, (2019).
  • [54] Saw, W.S. and M. Mariatti, ''Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications'', Journal of Materials Science: Materials in Electronics, 23 (4): 817-824, (2012).
  • [55] Devangamath, S.S. and B. Lobo, ''Optical parameters of epoxy-CoSO4. 7H2O polymer hybrid material'', Materials Research Innovations, 24 (3): 152-160, (2020).
  • [56] Kasim, F., M. Mahdi, J. Hassan, S. Al-Ani, and S. Kasim, ''Preparation and optical properties of CdS/Epoxy nanocomposites'', International Journal of Nanoelectronics and Materials, 5: 57-66, (2012).
  • [57] Zakaria, M.R., M.H.A. Kudus, H.M. Akil, and M.Z.M. Thirmizir, ''Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties'', Composites Part B: Engineering, 119: 57-66, (2017).

Investigation of Properties of Graphene Reinforced Epoxy Nanocomposites

Yıl 2021, , 1719 - 1727, 01.12.2021
https://doi.org/10.2339/politeknik.689424

Öz

In recent years, graphene has attracted the attention of scientists and industry due to its superior electronic, thermal and mechanical properties and has been used in different fields and advanced applications. Graphene and its derivatives have also attracted great interest in the field of polymer composites, since the use of graphene as a small amount of additive brings about advanced properties to the polymers. Therefore, in this study, graphene was added to the epoxy at certain rates (0.05%, 0.1%, 0.25%, 0.5% and 1%) to obtain nanocomposites with improved electrical conductivity and mechanical properties. The properties of obtained nanocomposite films were examined by fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mechanical test, scanning electron microscope (SEM), UV-Vis-NIR spectrophotometer and electrical conductivity measurements. 1% graphene additive caused a 28.2% decrease in the volumetric resistance and 9.7% in the surface resistance of the nanocomposite films. The maximum tensile value of graphene/epoxy nanocomposites was obtained as ~ 20 MPa by increasing 33.84% in 1% graphene additive compared to neat epoxy-based nanocomposites. As a result, it has been observed that as the amount of graphene added to the epoxy increases, the electrical conductivity, tensile values and light absorption of nanocomposite films increase. The nanocomposite films obtained can be used in industrial applications thanks to the improved electrical conductivity and mechanical properties.

Kaynakça

  • [1] Pissis, P., ''Thermoset nanocomposites for engineering applications'', Smithers Rapra Publishing, Shawbury, UK., (2007).
  • [2] Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada, ''A review on the tensile properties of natural fiber reinforced polymer composites'', Composites Part B-Engineering, 42 (4): 856-873, (2011).
  • [3] Garg, P., B.P. Singh, G. Kumar, T. Gupta, I. Pandey, R. Seth, R. Tandon, and R.B. Mathur, ''Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites'', Journal of Polymer Research, 18 (6): 1397-1407, (2011).
  • [4] Yang, C.C., F.C. Chang, Y.Z. Wang, C.M. Chan, C.L. Lin, and W.Y. Chen, ''Novel nanocomposite of epoxy resin by introduced reactive and nanoporous material'', Journal of Polymer Research, 14 (6): 431-439, (2007).
  • [5] Chozhan, C.K., M. Alagar, R.J. Sharmila, and P. Gnanasundaram, ''Thermo mechanical behaviour of unsaturated polyester toughened epoxy–clay hybrid nanocomposites'', Journal of Polymer Research, 14 (4): 319-328, (2007).
  • [6] Wang, X., Y. Hu, L. Song, W.Y. Xing, H.D.A. Lu, P. Lv, and G.X. Jie, ''Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer'', Polymer, 51 (11): 2435-2445, (2010).
  • [7] Karayannidou, E.G., D.S. Achilias, and I.D. Sideridou, ''Cure kinetics of epoxy–amine resins used in the restoration of works of art from glass or ceramic'', European Polymer Journal, 42 (12): 3311-3323, (2006).
  • [8] Rokicki, G. and C. Wojciechowski, ''Epoxy-Resin Modified by Aliphatic Cyclic Carbonates'', Journal of Applied Polymer Science, 41 (3-4): 647-659, (1990).
  • [9] Chandrasekaran, S., N. Sato, F. Tolle, R. Mulhaupt, B. Fiedler, and K. Schulte, ''Fracture toughness and failure mechanism of graphene based epoxy composites'', Composites Science and Technology, 97: 90-99, (2014).
  • [10] Kasar, A., G.P. Xiong, and P.L. Menezes, ''Graphene-Reinforced Metal and Polymer Matrix Composites'', Jom, 70 (6): 829-836, (2018).
  • [11] Sengupta, R., M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick, ''A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites'', Progress in Polymer Science, 36 (5): 638-670, (2011).
  • [12] Sadasivuni, K.K., D. Ponnamma, J. Kim, and S. Thomas, ''Graphene-based polymer nanocomposites in electronics'', Springer, (2015).
  • [13] Zhao, X., Q. Zhang, D. Chen, and P. Lu, ''Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites'', Macromolecules, 43 (5): 2357-2363, (2010).
  • [14] Altin, Y., M. Tas, İ. Borazan, A. Demir, and A. Bedeloglu, ''Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT: PSS as alternative to ITO'', Surface and Coatings Technology, 302: 75-81, (2016).
  • [15] Tas, M., Y. Altin, and A.C. Bedeloglu, ''Reduction of graphene oxide thin films using a stepwise thermal annealing assisted by l-ascorbic acid'', Diamond and Related Materials, 92: 242-247, (2019).
  • [16] Guo, Z., L. Song, C.G. Boay, Z. Li, Y. Li, and Z. Wang, ''A new multiscale numerical characterization of mechanical properties of graphene-reinforced polymer-matrix composites'', Composite Structures, 199: 1-9, (2018).
  • [17] An, J.E. and Y.G. Jeong, ''Structure and electric heating performance of graphene/epoxy composite films'', European Polymer Journal, 49 (6): 1322-1330, (2013).
  • [18] Tang, L.C., Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, and G.Q. Lai, ''The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites'', Carbon, 60: 16-27, (2013).
  • [19] Wajid, A.S., H.S.T. Ahmed, S. Das, F. Irin, A.F. Jankowski, and M.J. Green, ''High-Performance Pristine Graphene/Epoxy Composites With Enhanced Mechanical and Electrical Properties'', Macromolecular Materials and Engineering, 298 (3): 339-347, (2013).
  • [20] Naebe, M., J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, and B. Fox, ''Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites'', Scientific Reports, 4: 4375-4381, (2014).
  • [21] Wan, Y.J., L.C. Tang, D. Yan, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, and G.Q. Lai, ''Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process'', Composites Science and Technology, 82: 60-68, (2013).
  • [22] Chatterjee, S., J.W. Wang, W.S. Kuo, N.H. Tai, C. Salzmann, W.L. Li, R. Hollertz, F.A. Nuesch, and B.T.T. Chu, ''Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites'', Chemical Physics Letters, 531: 6-10, (2012).
  • [23] Pokharel, P. and Q.-T. Truong, ''Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites'', Composites Part B: Engineering, 64: 187-193, (2014).
  • [24] King, J.A., D.R. Klimek, I. Miskioglu, and G.M. Odegard, ''Mechanical properties of graphene nanoplatelet/epoxy composites'', Journal of Composite Materials, 49 (6): 659-668, (2015).
  • [25] Prolongo, S.G., R. Moriche, A. Jimenez-Suarez, M. Sanchez, and A. Urena, ''Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins'', European Polymer Journal, 61: 206-214, (2014).
  • [26] Shiu, S.C. and J.L. Tsai, ''Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites'', Composites Part B-Engineering, 56: 691-697, (2014).
  • [27] Yu, H., Z. Tong, P. Chen, A. Cai, and F. Qin, ''Effects of different parameters on thermal and mechanical properties of aminated graphene/epoxy nanocomposites connected by covalent: A molecular dynamics study'', Current Applied Physics, 20 (4): 510-518, (2020).
  • [28] Yu, W., L. Sisi, Y. Haiyan, and L. Jie, ''Progress in the functional modification of graphene/graphene oxide: a review'', RSC Advances, 10 (26): 15328-15345, (2020).
  • [29] Duan, W., Y. Chen, J. Ma, W. Wang, J. Cheng, and J. Zhang, ''High-performance graphene reinforced epoxy nanocomposites using benzyl glycidyl ether as a dispersant and surface modifier'', Composites Part B: Engineering, 189: 107878, (2020).
  • [30] Wang, F., L.T. Drzal, Y. Qin, and Z. Huang, ''Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets'', Composites Part A: Applied Science and Manufacturing, 87: 10-22, (2016).
  • [31] Sreeprasad, T. and V. Berry, ''How do the electrical properties of graphene change with its functionalization?'', Small, 9 (3): 341-350, (2013).
  • [32] Chun, W.W., T.P. Leng, A.F. Osman, and Y.C. Keat, ''Mechanical Properties and Morphology of Epoxy/Graphene Nanocomposite Using Bath Sonication and Tip Sonication'', Solid State Phenomena, 280: 258-263, (2018).
  • [33] Imran, K.A. and K.N. Shivakumar, ''Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties'', Journal of Reinforced Plastics and Composites, 37 (2): 118-133, (2018).
  • [34] Noroozi, M., A. Zakaria, S. Radiman, and Z.A. Wahab, ''Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties'', PloS one, 11 (4): e0152699, (2016).
  • [35] Cheng, K., T. Cheng, K. Lee, T. Ueng, and W. Hsing, ''Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics'', Composites Part A: Applied Science and Manufacturing, 34 (10): 971-978, (2003).
  • [36] Cakić, S.M., I.S. Ristić, V.M. Jašo, R.Ž. Radičević, O.Z. Ilić, and J.K. Simendić, ''Investigation of the curing kinetics of alkyd–melamine–epoxy resin system'', Progress in Organic Coatings, 73 (4): 415-424, (2012).
  • [37] Thema, F., M. Moloto, E. Dikio, N. Nyangiwe, L. Kotsedi, M. Maaza, and M. Khenfouch, ''Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide'', Journal of chemistry, 2013: 1-7, (2013).
  • [38] Tas, M., Y. Altin, and A. Bedeloglu, ''Graphene and graphene oxide-coated polyamide monofilament yarns for fiber-shaped flexible electrodes'', The journal of the Textile Institute, 110 (1): 67-73, (2019).
  • [39] Bourgeat-Lami, E., J. Faucheu, and A. Noel, ''Latex routes to graphene-based nanocomposites'', Polymer Chemistry, 6 (30): 5323-5357, (2015).
  • [40] Wang, Z., G. Wei, and G.L. Zhao, ''Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites'', Applied Physics Letters, 103 (18): 183109-183114, (2013).
  • [41] Marra, F., A.G. D’Aloia, A. Tamburrano, I.M. Ochando, G. De Bellis, G. Ellis, and M.S. Sarto, ''Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets'', Polymers, 8 (8): 272-289, (2016).
  • [42] Moosa, A.A., A.R. SA, and M.N. Ibrahim, ''Mechanical and electrical properties of graphene nanoplates and carbon-nanotubes hybrid epoxy nanocomposites'', American Journal of Materials Science, 6 (6): 157-165, (2016).
  • [43] Hao, Y., M. Tian, H. Zhao, L. Qu, S. Zhu, X. Zhang, S. Chen, K. Wang, and J. Ran, ''High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route'', Industrial & Engineering Chemistry Research, 57 (40): 13437-13448, (2018).
  • [44] Moghimian, N., S. Saeidlou, H. Lentzakis, G.F. Rosi, N. Song, and É. David, ''Electrical conductivity of commercial graphene polyethylene nanocomposites'', 17th International Conference on Nanotechnology, USA, 757-761, (2017).
  • [45] Galpaya, D., M. Wang, M. Liu, N. Motta, E.R. Waclawik, and C. Yan, ''Recent advances in fabrication and characterization of graphene-polymer nanocomposites'', Graphene, 1 (2): 30-49, (2012).
  • [46] UYSAL, A. and E. ALTAN, ''Karbon Siyahı Takviyeli Elektriği İleten Polipropilen Kompozite Delik Delinmesinde İşlem Parametrelerinin İncelenmesi'', Politeknik Dergisi, 18 (4): 241-249, (2015).
  • [47] Kim, H., A.A. Abdala, and C.W. Macosko, ''Graphene/polymer nanocomposites'', Macromolecules, 43 (16): 6515-6530, (2010).
  • [48] Potts, J.R., D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, ''Graphene-based polymer nanocomposites'', Polymer, 52 (1): 5-25, (2011).
  • [49] Wei, J., T. Vo, and F. Inam, ''Epoxy/graphene nanocomposites–processing and properties: a review'', RSC Advances, 5 (90): 73510-73524, (2015).
  • [50] Alhumade, H., A. Yu, A. Elkamel, L. Simon, and A. Abdala, ''Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel'', Express Polymer Letters, 10 (12): 1034-1046, (2016).
  • [51] Teng, C.-C., C.-C.M. Ma, C.-H. Lu, S.-Y. Yang, S.-H. Lee, M.-C. Hsiao, M.-Y. Yen, K.-C. Chiou, and T.-M. Lee, ''Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites'', Carbon, 49 (15): 5107-5116, (2011).
  • [52] Malik, P., Bhasha, and P. Jain, ''Influence of Surface modified Graphene Oxide on Mechanical and Thermal Properties of Epoxy Resin'', Oriental Journal of Chemistry, 34 (3): 1597-1603, (2018).
  • [53] Manta, A., M. Gresil, and C. Soutis, ''Tensile and flexural behaviour of a graphene/epoxy composite: experiments and simulation'', Journal of Physics: Materials, 3 (1): 014006, (2019).
  • [54] Saw, W.S. and M. Mariatti, ''Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications'', Journal of Materials Science: Materials in Electronics, 23 (4): 817-824, (2012).
  • [55] Devangamath, S.S. and B. Lobo, ''Optical parameters of epoxy-CoSO4. 7H2O polymer hybrid material'', Materials Research Innovations, 24 (3): 152-160, (2020).
  • [56] Kasim, F., M. Mahdi, J. Hassan, S. Al-Ani, and S. Kasim, ''Preparation and optical properties of CdS/Epoxy nanocomposites'', International Journal of Nanoelectronics and Materials, 5: 57-66, (2012).
  • [57] Zakaria, M.R., M.H.A. Kudus, H.M. Akil, and M.Z.M. Thirmizir, ''Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties'', Composites Part B: Engineering, 119: 57-66, (2017).
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hazal Yılmaz 0000-0002-4101-6960

Yasin Altın 0000-0002-8554-3025

Ayşe Bedeloğlu 0000-0003-2960-5188

Yayımlanma Tarihi 1 Aralık 2021
Gönderilme Tarihi 14 Şubat 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yılmaz, H., Altın, Y., & Bedeloğlu, A. (2021). Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi. Politeknik Dergisi, 24(4), 1719-1727. https://doi.org/10.2339/politeknik.689424
AMA Yılmaz H, Altın Y, Bedeloğlu A. Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi. Politeknik Dergisi. Aralık 2021;24(4):1719-1727. doi:10.2339/politeknik.689424
Chicago Yılmaz, Hazal, Yasin Altın, ve Ayşe Bedeloğlu. “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”. Politeknik Dergisi 24, sy. 4 (Aralık 2021): 1719-27. https://doi.org/10.2339/politeknik.689424.
EndNote Yılmaz H, Altın Y, Bedeloğlu A (01 Aralık 2021) Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi. Politeknik Dergisi 24 4 1719–1727.
IEEE H. Yılmaz, Y. Altın, ve A. Bedeloğlu, “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politeknik Dergisi, c. 24, sy. 4, ss. 1719–1727, 2021, doi: 10.2339/politeknik.689424.
ISNAD Yılmaz, Hazal vd. “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”. Politeknik Dergisi 24/4 (Aralık 2021), 1719-1727. https://doi.org/10.2339/politeknik.689424.
JAMA Yılmaz H, Altın Y, Bedeloğlu A. Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi. Politeknik Dergisi. 2021;24:1719–1727.
MLA Yılmaz, Hazal vd. “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”. Politeknik Dergisi, c. 24, sy. 4, 2021, ss. 1719-27, doi:10.2339/politeknik.689424.
Vancouver Yılmaz H, Altın Y, Bedeloğlu A. Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi. Politeknik Dergisi. 2021;24(4):1719-27.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.