Maintenance Prioritization of the Natural Gas Combined Cycle Power Plants in Terms of Effective Portfolio Management
Yıl 2021,
, 821 - 831, 01.09.2021
İzzet Alagöz
,
Nermin Avşar Özcan
,
Umur Küçükyarar
Evrencan Özcan
Öz
Revision maintenance that should be carried out at certain time intervals in power plants is of great importance in terms of increasing the availability of power plants to the highest possible level. In this context, it is a necessity to plan the revision maintenance analytically for effective portfolio management. Within this scope, although the maintenance scheduling problem of more than one power plant or unit is frequently discussed in the literature, calendar with maintenance to be performed during certain periods of the year produced by these studies is not always applicable in terms of the system dynamics and constraints of Turkey's electricity generation system. The main need is to manage the portfolios by keeping the power plants available and knowing the revision maintenance priorities that require long-term stoppages in order to both increase portfolio profitability and contribute to energy supply security. In this context, in this study, revision maintenance prioritization problem of 12 units at 3 different power plants is discussed in one of the large-scale natural gas combined cycle power plant portfolio for the first time in the literature. This study, which seeks a solution to the problem with multi-criteria decision-making approaches, is the first study in the literature to realize revision maintenance planning with long-term stoppages that affect the energy supply security at the highest level, rather than planning narrow-scoped periodic maintenance.
Kaynakça
- [1] Özcan E.C., “Bakım Yönetim Sistemi: Kurulum ve İşletme Esasları”; Elektrik Üretim A.Ş. Yayınları, Ankara, Türkiye, (2016).
- [2] Márquez A.C., “The Maintenance Management Framework: Models and Methods for Complex Systems Maintenance”, Springer Science & Business Media, Berlin, Germany, (2007).
- [3] Özcan E.C., Ünlüsoy S., Eren T., “A combined goal programming—AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants”, Renewable and Sustainable Energy Reviews, 78: 1410–1423, (2017).
- [4] Velasquez M., Hester P.T., “An analysis of multi-criteria decision making methods”, International Journal of Operations Research, 10(2): 56–66, (2013).
- [5] Cheung K.Y., Hui C.W., Sakamoto H., Hirata K., O'Young L., “Short-term site-wide maintenance scheduling”, Computers and Chemical Engineering, 28(1-2): 91-102, (2004).
- [6] Fattahi M., Mahootchi M., Mosadegh H., Fallahi F., “A new approach for maintenance scheduling of generating units in electrical power systems based on their operational hours”, Computers and Operations Research, 50: 61-79, (2014).
- [7] Yssaad B., Abene A., “Rational reliability centered maintenance optimization for power distribution systems”, International Journal of Electrical Power & Energy Systems, 73: 350-360, (2015).
- [8] Piasson D., Bíscaro A.A., Leão F.B., Mantovani J.R.S., “A new approach for reliability-centered maintenance programs in electric power distribution systems based on a multiobjective genetic algorithm”, Electric Power Systems Research, 137: 41-50, (2016).
- [9] Sheikhalishahi M., Azadeh A., Pintelon L., “Dynamic maintenance planning approach by considering grouping strategy and human factors”, Process Safety and Environmental Protection, 107: 289-298, (2017).
- [10] Krishnasamy L., Khan F., Haddara M., “Development of a risk-based maintenance (RBM) strategy for a power-generating plant”, Journal of Loss Prevention in the Process Industries, 18(2): 69-81, (2005).
- [11] Ayoobia N., Mohsendokht M., “Multi-objective optimization of maintenance programs in nuclear power plants using genetic algorithm and sensitivity index decision making”, Annals of Nuclear Energy, 88: 95-99, (2016).
- [12] Wang K., Zhang B., Wu X., Zhai J., Shao W., Duan Y., “Multi-time scales coordination scheduling of wind power integrated system”, Innovative Smart Grid Technologies-Asia (ISGT Asia), Tianjin, Çin, 1-4, (2012).
- [13] Perez-Canto S., Rubio-Romero J.C., “A model for the preventive maintenance scheduling of power plants including wind farms”, Reliability Engineering and System Safety, 119: 67-75, (2013).
- [14] Dai L., Stålhane M., Utne I.B., “Routing and scheduling of maintenance fleet for offshore wind farms”, Wind Engineering, 39(1): 15-30, (2015).
- [15] Abdollahzadeh H., Atashgar K., Abbasi M., “Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups”, Renewable Energy, 88: 247-261, (2016).
- [16] Froger A., Gendreau M., Mendoza J.E., Pinson E., Rousseau L.M., “A branch-and-check approach for a wind turbine maintenance scheduling problem”, Computers and Operations Research, 88: 117-136, (2017).
- [17] Zhong S., Pantelous A.A., Beer M., Zhou J., “Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms”, Mechanical Systems and Signal Processing, 104: 347-369, (2018).
- [18] Backlund F., Hannu J., “Can we make maintenance decisions on risk analysis results?”, Journal of Quality in Maintenance Engineering, 8(1): 77-91, (2002).
- [19] Özcan E.C., Eren T., “Bakım planlamasında TOPSIS yöntemi uygulaması: doğalgaz kombine çevrim santralı örneği”, Uluslararası Mühendislik Araştırma Geliştirme Dergisi, 6(2): 26-38, (2014).
- [20] Özcan E.C., Yumuşak R., Eren T., “Risk based maintenance in the hydroelectric power plants”, Energies, 12: 1502, (2019).
- [21] Özcan E.C., Danışan T., Eren T., “Hidroelektrik santrallarda bakım çizelgeleme için hibrid bir model önerisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Basımda, (2020).
- [22] Baskar S., Subbaraj P., Rao M.V.C., Tamilselvi S., “Genetic algorithms solution to generator maintenance scheduling with modified genetic operators”, IEE Proceedings-Generation, Transmission and Distribution, 150(1): 56-60, (2003).
- [23] Bisanovic S., Hajro M., Dlakic M., “A profit-based maintenance scheduling of thermal power units in electricity market”, International Journal of Electrical and Electronics Engineering, 5(3): 156-164, (2011).
- [24] Canto S.P., “Application of Benders’ decomposition to power plant preventive maintenance scheduling”, European Journal of Operational Research, 184(2): 759-777, (2008).
- [25] Perez-Canto S., Rubio-Romero J.C., “A model for the preventive maintenance scheduling of power plants including wind farms”, Reliability Engineering & System Safety, 119: 67-75, (2013).
- [26] Dahal K.P., Aldridge C.J., McDonald J.R., “Generator maintenance scheduling using a genetic algorithm with a fuzzy evaluation function”, Fuzzy Sets and Systems, 102(1): 21-29, (1999).
- [27] Dahal K.P., Chakpitak N., “Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches”, Electric Power Systems Research, 77(7): 771-779, (2007).
- [28] Mazidi P., Tohidi Y., Ramos A., Sanz-Bobi M.A., “Profit-maximization generation maintenance scheduling through bi-level programming”, European Journal of Operational Research, 264(3): 1045-1057, (2018).
- [29] Naebi Toutounchi A., Seyed Shenava S.J., Taheri S.S., Shayeghi H., “MPEC approach for solving preventive maintenance scheduling of power units in a market environment”, Transactions of the Institute of Measurement and Control, 40(2): 436-445, (2018).
- [30] Lei X., Sandborn P.A., “Maintenance scheduling based on remaining useful life predictions for wind farms managed using power purchase agreements”, Renewable Energy, 116: 188-198, (2018).
- [31] Lindner B.G., Brits R., Van Vuuren J. H., Bekker J., “Tradeoffs between levelling the reserve margin and minimising production cost in generator maintenance scheduling for regulated power systems”, International Journal of Electrical Power & Energy Systems, 101: 458-471, (2018).
- [32] Behnia H., Akhbari M., “Generation and transmission equipment maintenance scheduling by transmission switching and phase shifting transformer”, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(1): 2483, (2019).
- [33] Barot H., Bhattacharya K., “Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy”, IEEE Transactions on Power Systems, 23(4): 1871-1882, (2008).
- [34] Saaty T., “Decision making with the analytic hierarchy process”, International Journal of Services Sciences, 1(1):83–98, (2008).
- [35] Hwang C.L., Yoon K., “Multiple Attribute Decision Making: Methods and Applications”, Springer-Verlag, New York, ABD, (1981).
- [36] Özcan E.C., Gür Ş., Eren T., “A hybrid model to optimize the maintenance policies in the hydroelectric power plants”, Journal of Polytechnic, In Press, (2020).
- [37] Özcan E.C., Danışan T., Eren T., “Hidroelektrik santralların en kritik elektriksel ekipman gruplarının bakım stratejilerin optimizasyonu için bir matematiksel model önerisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4): 498-506, (2019).
Etkin Portföy Yönetimi Açısından Doğalgaz Kombine Çevrim Santrallarının Bakım Önceliklendirmesi
Yıl 2021,
, 821 - 831, 01.09.2021
İzzet Alagöz
,
Nermin Avşar Özcan
,
Umur Küçükyarar
Evrencan Özcan
Öz
Elektrik üretim santrallarında belirli zaman aralıkları ile yürütülmesi gereken revizyon bakımlar, santralların emre amadelik oranlarının mümkün olan en üst noktaya çıkarılması açısından büyük öneme sahiptir. Bu bağlamda, revizyon bakımların analitik olarak planlanması etkin portföy yönetimi açısından bir gerekliliktir. Buradan hareketle, literatürde birden fazla sayıda santral ya da ünitenin bakım çizelgeleme problemi sıklıkla ele alınmış olmakla birlikte, bu çalışmaların ürettiği yılın belirli bir döneminde gerçekleştirilecek bakımları içeren takvimler Türkiye elektrik üretim sisteminin dinamikleri ve sistem kısıtları açısından her zaman uygulanamamaktadır. Asıl ihtiyaç, santralların emre amade tutularak hem portföy kârlılıklarının artırılması hem de enerji arz güvenliğine katkıda bulunmak için uzun süreli duruş gerektiren revizyon bakım önceliklerinin bilinerek portföylerin yönetilmesidir. Bu kapsamda bu çalışmada, literatürde ilk kez büyük ölçekli doğalgaz kombine çevrim santralı portföylerinden bir tanesinde 3 farklı santrala ait 12 ünitenin revizyon bakım önceliklendirme problemi ele alınmıştır. Çok kriterli karar verme yaklaşımları ile probleme çözüm arayan bu çalışma, dar kapsamlı periyodik bakımların planlamasından ziyade, enerji arz güvenliğine üst düzeyde etki eden uzun süreli duruşlara sahip revizyon bakım planlamasını gerçekleştirmesi açısından da literatürdeki ilk çalışmadır.
Kaynakça
- [1] Özcan E.C., “Bakım Yönetim Sistemi: Kurulum ve İşletme Esasları”; Elektrik Üretim A.Ş. Yayınları, Ankara, Türkiye, (2016).
- [2] Márquez A.C., “The Maintenance Management Framework: Models and Methods for Complex Systems Maintenance”, Springer Science & Business Media, Berlin, Germany, (2007).
- [3] Özcan E.C., Ünlüsoy S., Eren T., “A combined goal programming—AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants”, Renewable and Sustainable Energy Reviews, 78: 1410–1423, (2017).
- [4] Velasquez M., Hester P.T., “An analysis of multi-criteria decision making methods”, International Journal of Operations Research, 10(2): 56–66, (2013).
- [5] Cheung K.Y., Hui C.W., Sakamoto H., Hirata K., O'Young L., “Short-term site-wide maintenance scheduling”, Computers and Chemical Engineering, 28(1-2): 91-102, (2004).
- [6] Fattahi M., Mahootchi M., Mosadegh H., Fallahi F., “A new approach for maintenance scheduling of generating units in electrical power systems based on their operational hours”, Computers and Operations Research, 50: 61-79, (2014).
- [7] Yssaad B., Abene A., “Rational reliability centered maintenance optimization for power distribution systems”, International Journal of Electrical Power & Energy Systems, 73: 350-360, (2015).
- [8] Piasson D., Bíscaro A.A., Leão F.B., Mantovani J.R.S., “A new approach for reliability-centered maintenance programs in electric power distribution systems based on a multiobjective genetic algorithm”, Electric Power Systems Research, 137: 41-50, (2016).
- [9] Sheikhalishahi M., Azadeh A., Pintelon L., “Dynamic maintenance planning approach by considering grouping strategy and human factors”, Process Safety and Environmental Protection, 107: 289-298, (2017).
- [10] Krishnasamy L., Khan F., Haddara M., “Development of a risk-based maintenance (RBM) strategy for a power-generating plant”, Journal of Loss Prevention in the Process Industries, 18(2): 69-81, (2005).
- [11] Ayoobia N., Mohsendokht M., “Multi-objective optimization of maintenance programs in nuclear power plants using genetic algorithm and sensitivity index decision making”, Annals of Nuclear Energy, 88: 95-99, (2016).
- [12] Wang K., Zhang B., Wu X., Zhai J., Shao W., Duan Y., “Multi-time scales coordination scheduling of wind power integrated system”, Innovative Smart Grid Technologies-Asia (ISGT Asia), Tianjin, Çin, 1-4, (2012).
- [13] Perez-Canto S., Rubio-Romero J.C., “A model for the preventive maintenance scheduling of power plants including wind farms”, Reliability Engineering and System Safety, 119: 67-75, (2013).
- [14] Dai L., Stålhane M., Utne I.B., “Routing and scheduling of maintenance fleet for offshore wind farms”, Wind Engineering, 39(1): 15-30, (2015).
- [15] Abdollahzadeh H., Atashgar K., Abbasi M., “Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups”, Renewable Energy, 88: 247-261, (2016).
- [16] Froger A., Gendreau M., Mendoza J.E., Pinson E., Rousseau L.M., “A branch-and-check approach for a wind turbine maintenance scheduling problem”, Computers and Operations Research, 88: 117-136, (2017).
- [17] Zhong S., Pantelous A.A., Beer M., Zhou J., “Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms”, Mechanical Systems and Signal Processing, 104: 347-369, (2018).
- [18] Backlund F., Hannu J., “Can we make maintenance decisions on risk analysis results?”, Journal of Quality in Maintenance Engineering, 8(1): 77-91, (2002).
- [19] Özcan E.C., Eren T., “Bakım planlamasında TOPSIS yöntemi uygulaması: doğalgaz kombine çevrim santralı örneği”, Uluslararası Mühendislik Araştırma Geliştirme Dergisi, 6(2): 26-38, (2014).
- [20] Özcan E.C., Yumuşak R., Eren T., “Risk based maintenance in the hydroelectric power plants”, Energies, 12: 1502, (2019).
- [21] Özcan E.C., Danışan T., Eren T., “Hidroelektrik santrallarda bakım çizelgeleme için hibrid bir model önerisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Basımda, (2020).
- [22] Baskar S., Subbaraj P., Rao M.V.C., Tamilselvi S., “Genetic algorithms solution to generator maintenance scheduling with modified genetic operators”, IEE Proceedings-Generation, Transmission and Distribution, 150(1): 56-60, (2003).
- [23] Bisanovic S., Hajro M., Dlakic M., “A profit-based maintenance scheduling of thermal power units in electricity market”, International Journal of Electrical and Electronics Engineering, 5(3): 156-164, (2011).
- [24] Canto S.P., “Application of Benders’ decomposition to power plant preventive maintenance scheduling”, European Journal of Operational Research, 184(2): 759-777, (2008).
- [25] Perez-Canto S., Rubio-Romero J.C., “A model for the preventive maintenance scheduling of power plants including wind farms”, Reliability Engineering & System Safety, 119: 67-75, (2013).
- [26] Dahal K.P., Aldridge C.J., McDonald J.R., “Generator maintenance scheduling using a genetic algorithm with a fuzzy evaluation function”, Fuzzy Sets and Systems, 102(1): 21-29, (1999).
- [27] Dahal K.P., Chakpitak N., “Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches”, Electric Power Systems Research, 77(7): 771-779, (2007).
- [28] Mazidi P., Tohidi Y., Ramos A., Sanz-Bobi M.A., “Profit-maximization generation maintenance scheduling through bi-level programming”, European Journal of Operational Research, 264(3): 1045-1057, (2018).
- [29] Naebi Toutounchi A., Seyed Shenava S.J., Taheri S.S., Shayeghi H., “MPEC approach for solving preventive maintenance scheduling of power units in a market environment”, Transactions of the Institute of Measurement and Control, 40(2): 436-445, (2018).
- [30] Lei X., Sandborn P.A., “Maintenance scheduling based on remaining useful life predictions for wind farms managed using power purchase agreements”, Renewable Energy, 116: 188-198, (2018).
- [31] Lindner B.G., Brits R., Van Vuuren J. H., Bekker J., “Tradeoffs between levelling the reserve margin and minimising production cost in generator maintenance scheduling for regulated power systems”, International Journal of Electrical Power & Energy Systems, 101: 458-471, (2018).
- [32] Behnia H., Akhbari M., “Generation and transmission equipment maintenance scheduling by transmission switching and phase shifting transformer”, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(1): 2483, (2019).
- [33] Barot H., Bhattacharya K., “Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy”, IEEE Transactions on Power Systems, 23(4): 1871-1882, (2008).
- [34] Saaty T., “Decision making with the analytic hierarchy process”, International Journal of Services Sciences, 1(1):83–98, (2008).
- [35] Hwang C.L., Yoon K., “Multiple Attribute Decision Making: Methods and Applications”, Springer-Verlag, New York, ABD, (1981).
- [36] Özcan E.C., Gür Ş., Eren T., “A hybrid model to optimize the maintenance policies in the hydroelectric power plants”, Journal of Polytechnic, In Press, (2020).
- [37] Özcan E.C., Danışan T., Eren T., “Hidroelektrik santralların en kritik elektriksel ekipman gruplarının bakım stratejilerin optimizasyonu için bir matematiksel model önerisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4): 498-506, (2019).