Borlama İşleminin T/M Tekniği ile Üretilmiş NiTi Alaşımının Mikroyapı Ve Mikrosertliğine Etkilerinin İncelenmesi
Yıl 2021,
, 539 - 544, 01.06.2021
Sinan Aksöz
,
Bülent Bostan
,
Yavuz Kaplan
Öz
Bu çalışmada, toz metalürjisi yöntemiyle önalaşımlı NiTi tozlarından numuneler üretilmiştir. Presleme işlemi yaklaşık 300ºC sıcaklığa sahip kalıpta 700MPa basınçta gerçekleştirilmiştir. Preslenen numunelere, yüksek saflıktaki Argon atmosferinde ve yüksek sıcaklığa dayanıklı Quartz cam tüp içerisinde, 1200ºC sıcaklıkta ve 120 dakika sürede sinterleme işlemi uygulanmıştır. Sinterlenen numunelere sırasıyla 900ºC ve 1000ºC’de 6 ve 12 saat borlama işlemlerine tabi tutulmuştur. Çalışmada mikroyapı incelemeleri için, FESEM, EDS, MAP, Optik Mikroskop analizleri yapılırken sertlik ölçümleri için mikrosertlik ölçümleri ve görüntüleri alınmıştır. Araştırmada uygulanan tüm borlama parametrelerinde numunelerin yüzey sertlikleri artmıştır. Ayrıca en büyük tabaka kalınlığı ve en yüksek sertlik değeri 1000°C’de 12 saat borlanan NiTi alaşımında sırasıyla yaklaşık 50 µm ve 2074,9 HV olarak ölçülmüştür.
Destekleyen Kurum
Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
2019HZDP019
Teşekkür
Bu çalışma, Pamukkale Üniversitesi BAP birimi tarafından “2019HZDP019” numaralı ve “Önalaşımlı NiTi Şekil Bellek Alaşım Tozları İle Üretilen Parçalara Uygulanan Borlama Isıl İşleminin Mekanik (Sertlik) ve Metalurjik Özelliklere Etkisinin İncelenmesi” isimli araştırma projesi ile desteklenmektedir. Yazarlar PAÜ BAP birimine teşekkürlerini sunar.
Kaynakça
- [1] Es-Souni M., Wassel E., Dietze M., Laghrissi A., Klöhna F., Weyrich T. and Es-Souni M., “Processing of nanotubes on NiTi-shape memory alloys and their modification with photografted anti-adhesive polymer brushes. Towards smart implant surfaces”, Materials and Design, 182: 1-11, (2019).
- [2] Es-Souni, M., Es-Souni, M. and Fischer B. H., “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications”, Analytical and bioanalytical chemistry, 381: 557-567, (2005).
- [3] Kapoor D., “Nitinol for medical applications: A brief introduction to the properties and processing of nickel titanium shape memory alloys and their use in stents”, Johnson Matthey Technology Review, 61: 66-76, (2017).
- [4] Bose A., Hartmann M., Henkes H., Liu H. M., Teng M. M., Szikora I. and Lui M., “A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study”, Stroke, 38: 1531-1537, (2007).
- [5] Ogawa T., Yokoyama K., Asaoka K., Sakai J., “Hydrogen embrittlement of Ni–Ti superelastic alloy in ethanolsolution containing hydrochloric acid”, Materials Science and Engineering A, 393: 239-246, (2005).
- [6] Aksöz S., Demir Ü., Bostan B., “NiTi SMA Parts Production with Different Porosity Ratios”, Acta Physica Polonica A, 135: 980-983, (2019).
- [7] Aksöz S., Bostan B., “Characteric properties of NiTi shape memory alloy powders with powder injection molding”, International Multidisciplinary Microscopy Congress, Springer International Publishing, Switzerland, (2014).
- [8] Aksöz S. and Bostan B., “Mekanik olarak sentezlenen NiTi + Zn tozlarının karakterizasyonu ve sinterlenelebilirliğinin araştırılması”, Politeknik Dergisi, 21: 437-443, (2018).
- [9] Aksöz S., Altınışık G., Elverişli E. E., Bostan B., “Investigation of the Synthesizing Effects of Prealloyed NiTi + Pure Al (2, 4, 6, 8 wt. %) Powders by MA and Sintering”, Biological and Chemical Research, Science Signpost Publishing, USA, (2019).
- [10] Kaplan Y., Can C. A., and Ulukoy A., “A new medium for boriding of Ti6Al4V alloy for biomedical applications”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233:109-119 (2019).
- [11] Mathuschka A. G., “Boronizing”, Carl Hanser Verlag, Munchen, (1980).
- [12] Sinha A. K., “Heat Treating: Boriding (Boronizing)”, ASM Metal Handbook, ASM International, USA, (1991).
- [13] Litoria A. K., Figueroa C. A., Bim L. T., Pruncu C. I., Joshi A. A. and Hosmani S. S., “Pack-boriding of low alloy steel: microstructure evolution and migration behaviour of alloying elements”, Philosophical Magazine, 100: 353-378, (2020).
- [14] Azakli Y., Cengiz S., Tarakci M. and Gencer, Y., “Characterisation of boride layer formed on Fe–Mo binary alloys”, Surface Engineering, 32: 589-595, (2016).
- [15] Muhammad Y. K., Abdullah B., Idham M. F. and Saad N. H., “The effects on microstructure and hardness of 0.28% vanadium and 0.87% nickel alloyed ductile iron after boronizing process”, Key Engineering Materials, Trans Tech Publications Ltd, Switzerland, (2017).
- [16] Aksöz S., Kaplan Y., Tan E., “Boro-sinterleme işleminin ham T/M parçaların mikroyapı ve sertlik özelliklerine etkilerinin incelenmesi”, BORON 4: 77 - 84, (2019).
- [17] Aksöz S., Bostan B., Kaplan Y., “Boriding of Prealloyed NiTi Alloy Produced By P/M Method”, IMSTEC’19, 871-873, (2019).
- [18] Yıldız İ. and Güneş İ., “Borlanmış % 5 Mg katkılı Ni-Mg alaşımının yüzey özelliklerinin incelenmesi”, Politeknik Dergisi, 23: 97-104, (2020).
- [19] Gökçe A., Fındık F. and Kurt A. O., “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri”, Mühendis ve Makina, 58: 21-47, (2017).
- [20] Sharma N., Raj T. and Kumar K., “Physical and tribological characteristics of porous NiTi SMA fabricated by powder metallurgy”, Particulate Science and Technology, 35: 541-546, (2017).
- [21] Dawood N. M., Ali A. R. K. A. and Atiyah, A. A., “Fabrication of porous NiTi shape memory alloy objects by powder metallurgy for biomedical applications”, Materials Science and Engineering, IOP Publishing, UK, (2019).
- [22] Palonbarini G., Carbucicchio M., “On the morphology of thermochemically produced FeB/Fe interfaces”, Journal of Materials Science Letters, 3: 791-794, (1984).
- [23] Fichtl W., “Boronizing and its practical applications”, Ma¬terials in Engineering, 2, 276-286, (1981).
- [24] Dearnley P. and Bell T., “Engineering the surface with boron based materials”, Surface Engineering, 1:203-217, (1985).
- [25] Fichtl W. J. G., “Saving Energy and money by Boronizing”, In meeting of the Japan Heat Treating Association, Tokyo, 25, (1988).
- [26] Galibois A., Boutenko O., Voyzelle B., “Mécanisme de formation des couches borurees sur les acıers a haut carbone technique des pates”, Acta Metallurgica, 28:1753, (1980).
- [27] He J. L., Miyake S., Setsuhara Y., Shimizu I., Suzuki M., Numata K., Saito H., “Improved anti-wear performance of nanostructured titanium boron nitride coatings”, Wear, 249:498-502, (2001).
- [28] La P., Xue Q. and Liu, W. “Effects of boron doping on tribological properties of Ni3Al–Cr7C3 coatings under dry sliding”, Wear, 249: 93-99. (2001).
- [29] Yi M., Shen Z., Zhao X., Liang S. and Liu L., “Boron nitride nanosheets as oxygen-atom corrosion protective coatings”, Applied Physics Letters, 104: 143101 (2014).
- [30] Vogli E., Tillmannb W., Selvadurai-Lassl U. Fischer G. and Herper J., “Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties”, Applied Surface Science, 257: 8550-8557, (2011).
An Investigation on the Effects of Boronizing Process on Microstructure and Microhardness of NiTi Alloy Produced by P/M Technique
Yıl 2021,
, 539 - 544, 01.06.2021
Sinan Aksöz
,
Bülent Bostan
,
Yavuz Kaplan
Öz
In this study, samples were produced by the powder metallurgy method from pre-alloyed NiTi powders. The pressing process was carried out at 300ºC temperature under 700MPa pressure. The pressed samples were sintered at 1200ºC for 120 minutes in high temperature resistant Quartz glass tube under a high purity Argon atmosphere. Sintered samples were boronized at 900ºC and 1000ºC for 6 and 12 hours. FESEM, EDS, MAP and Optical Microscope analyzes were carried out for the microstructure analysis. In addition, microhardness measurements and microhardness images were taken for hardness measurements. The surface hardness of the samples increased in all applied boronizing parameters. The largest layer thickness and highest hardness value were obtained at 1000°C for 12 hours as 50 µm and 2074.9 HV respectively.
Proje Numarası
2019HZDP019
Kaynakça
- [1] Es-Souni M., Wassel E., Dietze M., Laghrissi A., Klöhna F., Weyrich T. and Es-Souni M., “Processing of nanotubes on NiTi-shape memory alloys and their modification with photografted anti-adhesive polymer brushes. Towards smart implant surfaces”, Materials and Design, 182: 1-11, (2019).
- [2] Es-Souni, M., Es-Souni, M. and Fischer B. H., “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications”, Analytical and bioanalytical chemistry, 381: 557-567, (2005).
- [3] Kapoor D., “Nitinol for medical applications: A brief introduction to the properties and processing of nickel titanium shape memory alloys and their use in stents”, Johnson Matthey Technology Review, 61: 66-76, (2017).
- [4] Bose A., Hartmann M., Henkes H., Liu H. M., Teng M. M., Szikora I. and Lui M., “A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study”, Stroke, 38: 1531-1537, (2007).
- [5] Ogawa T., Yokoyama K., Asaoka K., Sakai J., “Hydrogen embrittlement of Ni–Ti superelastic alloy in ethanolsolution containing hydrochloric acid”, Materials Science and Engineering A, 393: 239-246, (2005).
- [6] Aksöz S., Demir Ü., Bostan B., “NiTi SMA Parts Production with Different Porosity Ratios”, Acta Physica Polonica A, 135: 980-983, (2019).
- [7] Aksöz S., Bostan B., “Characteric properties of NiTi shape memory alloy powders with powder injection molding”, International Multidisciplinary Microscopy Congress, Springer International Publishing, Switzerland, (2014).
- [8] Aksöz S. and Bostan B., “Mekanik olarak sentezlenen NiTi + Zn tozlarının karakterizasyonu ve sinterlenelebilirliğinin araştırılması”, Politeknik Dergisi, 21: 437-443, (2018).
- [9] Aksöz S., Altınışık G., Elverişli E. E., Bostan B., “Investigation of the Synthesizing Effects of Prealloyed NiTi + Pure Al (2, 4, 6, 8 wt. %) Powders by MA and Sintering”, Biological and Chemical Research, Science Signpost Publishing, USA, (2019).
- [10] Kaplan Y., Can C. A., and Ulukoy A., “A new medium for boriding of Ti6Al4V alloy for biomedical applications”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233:109-119 (2019).
- [11] Mathuschka A. G., “Boronizing”, Carl Hanser Verlag, Munchen, (1980).
- [12] Sinha A. K., “Heat Treating: Boriding (Boronizing)”, ASM Metal Handbook, ASM International, USA, (1991).
- [13] Litoria A. K., Figueroa C. A., Bim L. T., Pruncu C. I., Joshi A. A. and Hosmani S. S., “Pack-boriding of low alloy steel: microstructure evolution and migration behaviour of alloying elements”, Philosophical Magazine, 100: 353-378, (2020).
- [14] Azakli Y., Cengiz S., Tarakci M. and Gencer, Y., “Characterisation of boride layer formed on Fe–Mo binary alloys”, Surface Engineering, 32: 589-595, (2016).
- [15] Muhammad Y. K., Abdullah B., Idham M. F. and Saad N. H., “The effects on microstructure and hardness of 0.28% vanadium and 0.87% nickel alloyed ductile iron after boronizing process”, Key Engineering Materials, Trans Tech Publications Ltd, Switzerland, (2017).
- [16] Aksöz S., Kaplan Y., Tan E., “Boro-sinterleme işleminin ham T/M parçaların mikroyapı ve sertlik özelliklerine etkilerinin incelenmesi”, BORON 4: 77 - 84, (2019).
- [17] Aksöz S., Bostan B., Kaplan Y., “Boriding of Prealloyed NiTi Alloy Produced By P/M Method”, IMSTEC’19, 871-873, (2019).
- [18] Yıldız İ. and Güneş İ., “Borlanmış % 5 Mg katkılı Ni-Mg alaşımının yüzey özelliklerinin incelenmesi”, Politeknik Dergisi, 23: 97-104, (2020).
- [19] Gökçe A., Fındık F. and Kurt A. O., “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri”, Mühendis ve Makina, 58: 21-47, (2017).
- [20] Sharma N., Raj T. and Kumar K., “Physical and tribological characteristics of porous NiTi SMA fabricated by powder metallurgy”, Particulate Science and Technology, 35: 541-546, (2017).
- [21] Dawood N. M., Ali A. R. K. A. and Atiyah, A. A., “Fabrication of porous NiTi shape memory alloy objects by powder metallurgy for biomedical applications”, Materials Science and Engineering, IOP Publishing, UK, (2019).
- [22] Palonbarini G., Carbucicchio M., “On the morphology of thermochemically produced FeB/Fe interfaces”, Journal of Materials Science Letters, 3: 791-794, (1984).
- [23] Fichtl W., “Boronizing and its practical applications”, Ma¬terials in Engineering, 2, 276-286, (1981).
- [24] Dearnley P. and Bell T., “Engineering the surface with boron based materials”, Surface Engineering, 1:203-217, (1985).
- [25] Fichtl W. J. G., “Saving Energy and money by Boronizing”, In meeting of the Japan Heat Treating Association, Tokyo, 25, (1988).
- [26] Galibois A., Boutenko O., Voyzelle B., “Mécanisme de formation des couches borurees sur les acıers a haut carbone technique des pates”, Acta Metallurgica, 28:1753, (1980).
- [27] He J. L., Miyake S., Setsuhara Y., Shimizu I., Suzuki M., Numata K., Saito H., “Improved anti-wear performance of nanostructured titanium boron nitride coatings”, Wear, 249:498-502, (2001).
- [28] La P., Xue Q. and Liu, W. “Effects of boron doping on tribological properties of Ni3Al–Cr7C3 coatings under dry sliding”, Wear, 249: 93-99. (2001).
- [29] Yi M., Shen Z., Zhao X., Liang S. and Liu L., “Boron nitride nanosheets as oxygen-atom corrosion protective coatings”, Applied Physics Letters, 104: 143101 (2014).
- [30] Vogli E., Tillmannb W., Selvadurai-Lassl U. Fischer G. and Herper J., “Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties”, Applied Surface Science, 257: 8550-8557, (2011).