Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrolik Çap Kullanarak Dairesel Kanal ve Gerçek Altıgen Kanal Sonuçlarının Karşılaştırılması

Yıl 2021, , 1593 - 1604, 01.12.2021
https://doi.org/10.2339/politeknik.768211

Öz

Dairesel kanallar için türetilmiş türbülanslı akış korelasyonlarının hidrolik çap kullanılarak altıgen kesitli kanallar için kullanılıp kullanılamayacağını görmek için ANSYS Fluent 17.0 yazılımı kullanılarak altıgen kanallardaki türbülanslı akış sayısal olarak incelenmiştir. 30o ile 90o arasında kanal yanal açıları ve 10×103Re50×103 arasındaki Reynolds sayısı parametreleri incelenmiştir. Türbülans modeli olarak standart k-ε modeli kullanılmıştır. Altıgen kesitli kanallar için Reynolds sayısına ve yanal açıya bağlı tam gelişmiş boyutsuz ısı transfer katsayısı olan Nusselt sayısı ve tam gelişmiş Darcy sürtünme faktörü için genel ifadeler önerilmiştir. Sonuçlar, altıgen kanal yanal açısının kanal boyunca basınç düşümünü ve kanaldaki ısı transfer katsayısını etkilediğini göstermiştir. Ayrıca sonuçlar =60o olan eşkenar altıgen kanalın minimum basınç düşüşü ve maksimum Nusselt sayısı verdiğini göstermiştir. Literatürde türbülanslı akış koşullarında dairesel kanallar için verilen korelasyonların gerçek altıgen kanal akışına göre %14 daha yüksek boyutsuz ısı transfer katsayısı olan Nusselt sayısı sağlayabileceği sonucuna varılmıştır.

Kaynakça

  • [1] Kakac S, Shah R. K. and Aung W., Handbook of single-phase convective heat transfer. Wiley, USA, (1987).
  • [2] He S. and Gotts J. A., “Calculation of friction coefficients for noncircular channels”, Journal of Fluids Engineering - Transactions of the ASME, 126: 1033-1038, (2004).
  • [3] Sadasivam R., Manglik R. J. and Jog M. A., “Fully developed forced convection through trapezoidal and hexagonal ducts”, International Journal of Heat and Mass Transfer , 42: 4321-4331, (1999).
  • [4] Shah R. K. and London A. L., “Laminar flow forced convection in ducts”, in: Irvine T. F. and Harnett J. P., Academic Press, New York, (1978).
  • [5] Shah R. K. and Bhatti M. S., “Laminar convective heat transfer in ducts”, in: Kakaç S., Shah R. K. and Aung W., Wiley, New York, (1978).
  • [6] Asako Y., Nakamura H. and Faghri M., “Developing laminar flow and heat transfer in the entrance region of regular polygonal ducts”, International Journal of Heat and Mass Transfer, 31: 2590-2593, (1988).
  • [7] Damean N. and Regtien P. P. L., “Velocity field of the fully developed laminar flow in a hexagonal duct”, Sensors and Actuators A: Physical, 92: 144-151, (2001).
  • [8] Oztop H. P., Sahin A. Z. and Dagtekin I., “Entropy generation through hexagonal cross-sectional duct for constant wall temperature in laminar flow”, International Journal of Energy Research, 28: 725-737, (2004).
  • [9] Nonino C., Del Giudice S. and Savino S., “Temperature dependent viscosity effects on laminar forced convection in the entrance region of straight ducts”, International Journal of Heat and Mass Transfer, 49: 4469-4481, (2006).
  • [10] Jarungthammachote S., “Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux”, Energy, 35: 5374-5379, (2010).
  • [11] Saksena D.P., “Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux and minimization of entropy generation by adjusting the shape of the cross section”, International Journal of Engineering Science Invention (IJESI), 2: 17-29, (2013).
  • [12] Haghgooyan M. S. and Aghanajafi C., “Entropy generation analysis for various cross-sectional ducts in fully developed laminar convection with constant wall heat flux”, Korean Chemical Engineering Research, 52: 294-301, (2014).
  • [13] Turgut O., “Numerical investigation of laminar flow and heat transfer in hexagonal ducts under isothermal and constant heat flux boundary conditions”, Iranian Journal of Science and Technology: Transactions of Mechanical Engineering, 38: (M1), 45-56, (2014).
  • [14] Yadav R. J., Kore S., Raibhole V. N. and Joshi P.S., “Development of correlations for friction factor and heat transfer coefficient for square and hex duct with twisted tape insert in laminar flow”, Precedia Engineering, 127: 250-257, (2015).
  • [15] Arani A. A. A., Arefmanesh A. and Niroumand A., “Investigation of fully developed flow and heat transfer through n-sided polygonal ducts with round corners using the Galerkin weighted residual method”, Internationa Journal of Nonlinear Analysis And Applications, 9: 175-193, (2018).
  • [16] Sajjad E. and Mohammad H. D. B., Mohammad M., Hamid M. and Maisam S., “Comparison of heat transfer and fluid flow in the micro-channel with rectangular and hexagonal cross section”, Archives for Technical Sciences, 21: 1-10, (2019).
  • [17] Emami S., Bonab M. H. D., Mohammadiun M., Mohammadiun H. and Sadi M., “Evaluation of Nusselt number and pressure drop in hexagonal and rectangular micro-channels in the presence of nano-fluids”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, doi: doi.org/10.1177/0954408920935725
  • [18] Iwaniszyn M., Jodłowski P. J., Sindera K., Gancarczyk A., Korpyś M., Jędrzejczyk R. J. and Kołodziej A., “Entrance effects on forced convective heat transfer in laminar flow through short hexagonal channels: experimental and CFD study”, 405: doi: doi.org/10.1016/j.cej.2020.126635
  • [19] Rokni M. and Gatski T. B., “Predicting turbulent flow and heat transfer”, In Proceedings of the 3rd International Symposium on Turbulence, Heat and Mass Transfer, Nagoya, Japan, 357-364, (2000).
  • [20] Sari M., “Experimental investigation of forced convection heat transfer in hexagonal duct with turbulent flow conditions”, MSc. Thesis, Gazi University, Graduate School of Natural and Applied Sciences, (2010).
  • [21] Can O.F., Celik N. and Dagtekin I., “Investigation of flow and heat transfer in hexagonal channels with different geometries”, Conference paper: 2nd Anatolian Energy Symposium, (8 pages), Turkey, (2013).
  • [22] Turgut O., Sari M., “Experimental and numerical study of turbulent flow and heat transfer inside hexagonal duct”, Heat Mass Transfer, 49: 543-554, (2013).
  • [23] Wang P., Yang M., Wang Z. and Zhang Y., “A new heat transfer correlation for turbulent flow of air with variable properties in noncircular ducts”, Journal of Heat Transfer - Transactions of the ASME, 136: 101701 (8 pages), (2014).
  • [24] Opute E. K., “Empirical investigation of the laminar thermal entrance region and turbulent flow heat transfer for non-Newtonian silica nanofluid in hexagonal tubes”, MSc. Thesis, University of North Dakota, Graduate Faculty, (2015).
  • [25] Falih A. H., “Thermal and hydraulic response of turbulent flow inside hexagonal duct fitted with various inserts”, Wasit Journal of Engineering Science, 4: 147-162, (2016).
  • [26] Marin O., Vinuesa R., Obabko A. V. and Schlatter A., “Characterization of the secondary flow in hexagonal ducts”, Physics of Fluids, 28: 125101 (28 pages), (2016).
  • [27] Gunes S., Ozceyhan V., Dagdevir T. and Keklikcioglu O., “Numerical investigation of heat transfer enhancement in a tube with hexagonal cross sectioned coiled wire”, International Journal of Mechanical And Production Engineering (IJMPE), 5: 96-100, (2017).
  • [28] Mahato S. K., Rana S. C., Barman R. N. and Goswami S., “Numerical analysis of heat transfer and fluid flow through twisted hexagonal and square duct and their comparisons”, Chemical Engineering Transactions, 71: 1351-1356, (2018).
  • [29] Yadav R. J., Kore S. S. and Joshi P. S., “Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert”, Heat and Mass Transfer, 54: 1467-1475, (2018).
  • [30] Aolin G. J. X. and Cai Z. H., “An investigation of developing flow and heat transfer in a triangular duct” Journal of Shanghai Institute of Mechanical Engineering, 11(4): 1-12, (1989).
  • [31] Rokni M., Sunden B., “Numerical investigation of turbulent forced convection in duts with rectangular and trapezoidal cross-section area by using different turbulence models”, Numerical Heat Transfer - Part A, 30: 321-346, (1996).
  • [32] Bardina, J.E., Huang, P.G., Coakley, T.J., "Turbulence modeling validation, testing, and development", NASA Technical Memorandum, 110446, (1997).
  • [33] Wang L. B., Wang Q. W., He Y. L. and Tao W. Q., “Experimental and numerical study of developing turbulent row and heat transfer in convergent/divergent square ducts”, Heat and Mass Transfer, 38: 399-408, (2002).
  • [34] Albets-Chico X., Perez-Segarra C. D., Oliva A. and Bredberg J., “Analysis of wall-function approaches using two-equation turbulence models”, International Journal of Heat and Mass Transfer, 51: 4940-4957, (2008).
  • [35] Yilmaz U. B., “Numerical investigation of hydrodynamically fully developed, thermally developing flow in hexagonal duct”, MSc. Thesis, Gazi University, Graduate School of Natural and Applied Sciences, (2012).
  • [36] ANSYS Fluent 17.0, Theory Guide, ANSYS Inc., (2016).
  • [37] Incropera F. P., DeWitt D. P., Theodore L. B. and Adrienne S. L., “Principles of heat and mass transfer”, John Wiley and Sons Inc., Singapore, (2013).
  • [38] Ward-Smith A. J., “Internal Fluid Flow: The Fluid Dynamics of Flow in Pipes and Ducts”, Clarendon Press, Oxford, (1980).
  • [39] Harnett J. P. and Kostic M., “Heat transfer to newtonian and non-newtonian fluids in rectangular ducts”, Advances in Heat Transfer, 19: 247-356, (1989).

A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter

Yıl 2021, , 1593 - 1604, 01.12.2021
https://doi.org/10.2339/politeknik.768211

Öz

To see whether the turbulent flow correlations derived for circular ducts can be used for hexagonal cross-sectional ducts using hydraulic diameter, turbulent flow in hexagonal ducts is numerically investigated under constant wall temperature boundary condition using ANSYS Fluent 17.0 software. Investigated parameters are the Reynolds number between 10×103Re50×103 and side angle of the duct varying between 30o and 90o. Standard k-ε model is used as turbulence model. General expressions are proposed for fully developed dimensionless heat transfer coefficient Nusselt number and fully developed Darcy friction factor in terms of Reynolds number and side angle for hexagonal-shaped cross-sectional duct. Results show that side angle of hexagonal duct affects the pressure drop along duct and heat transfer coefficient in duct. Results point out that regular hexagonal duct, =60o, gives minimum pressure drop and maximum Nusselt number. It is concluded that correlations given in the literature for circular ducts in turbulent flow can give 14% higher dimensionless heat transfer coefficient, Nusselt number, than that of actual hexagonal duct flow.

Kaynakça

  • [1] Kakac S, Shah R. K. and Aung W., Handbook of single-phase convective heat transfer. Wiley, USA, (1987).
  • [2] He S. and Gotts J. A., “Calculation of friction coefficients for noncircular channels”, Journal of Fluids Engineering - Transactions of the ASME, 126: 1033-1038, (2004).
  • [3] Sadasivam R., Manglik R. J. and Jog M. A., “Fully developed forced convection through trapezoidal and hexagonal ducts”, International Journal of Heat and Mass Transfer , 42: 4321-4331, (1999).
  • [4] Shah R. K. and London A. L., “Laminar flow forced convection in ducts”, in: Irvine T. F. and Harnett J. P., Academic Press, New York, (1978).
  • [5] Shah R. K. and Bhatti M. S., “Laminar convective heat transfer in ducts”, in: Kakaç S., Shah R. K. and Aung W., Wiley, New York, (1978).
  • [6] Asako Y., Nakamura H. and Faghri M., “Developing laminar flow and heat transfer in the entrance region of regular polygonal ducts”, International Journal of Heat and Mass Transfer, 31: 2590-2593, (1988).
  • [7] Damean N. and Regtien P. P. L., “Velocity field of the fully developed laminar flow in a hexagonal duct”, Sensors and Actuators A: Physical, 92: 144-151, (2001).
  • [8] Oztop H. P., Sahin A. Z. and Dagtekin I., “Entropy generation through hexagonal cross-sectional duct for constant wall temperature in laminar flow”, International Journal of Energy Research, 28: 725-737, (2004).
  • [9] Nonino C., Del Giudice S. and Savino S., “Temperature dependent viscosity effects on laminar forced convection in the entrance region of straight ducts”, International Journal of Heat and Mass Transfer, 49: 4469-4481, (2006).
  • [10] Jarungthammachote S., “Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux”, Energy, 35: 5374-5379, (2010).
  • [11] Saksena D.P., “Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux and minimization of entropy generation by adjusting the shape of the cross section”, International Journal of Engineering Science Invention (IJESI), 2: 17-29, (2013).
  • [12] Haghgooyan M. S. and Aghanajafi C., “Entropy generation analysis for various cross-sectional ducts in fully developed laminar convection with constant wall heat flux”, Korean Chemical Engineering Research, 52: 294-301, (2014).
  • [13] Turgut O., “Numerical investigation of laminar flow and heat transfer in hexagonal ducts under isothermal and constant heat flux boundary conditions”, Iranian Journal of Science and Technology: Transactions of Mechanical Engineering, 38: (M1), 45-56, (2014).
  • [14] Yadav R. J., Kore S., Raibhole V. N. and Joshi P.S., “Development of correlations for friction factor and heat transfer coefficient for square and hex duct with twisted tape insert in laminar flow”, Precedia Engineering, 127: 250-257, (2015).
  • [15] Arani A. A. A., Arefmanesh A. and Niroumand A., “Investigation of fully developed flow and heat transfer through n-sided polygonal ducts with round corners using the Galerkin weighted residual method”, Internationa Journal of Nonlinear Analysis And Applications, 9: 175-193, (2018).
  • [16] Sajjad E. and Mohammad H. D. B., Mohammad M., Hamid M. and Maisam S., “Comparison of heat transfer and fluid flow in the micro-channel with rectangular and hexagonal cross section”, Archives for Technical Sciences, 21: 1-10, (2019).
  • [17] Emami S., Bonab M. H. D., Mohammadiun M., Mohammadiun H. and Sadi M., “Evaluation of Nusselt number and pressure drop in hexagonal and rectangular micro-channels in the presence of nano-fluids”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, doi: doi.org/10.1177/0954408920935725
  • [18] Iwaniszyn M., Jodłowski P. J., Sindera K., Gancarczyk A., Korpyś M., Jędrzejczyk R. J. and Kołodziej A., “Entrance effects on forced convective heat transfer in laminar flow through short hexagonal channels: experimental and CFD study”, 405: doi: doi.org/10.1016/j.cej.2020.126635
  • [19] Rokni M. and Gatski T. B., “Predicting turbulent flow and heat transfer”, In Proceedings of the 3rd International Symposium on Turbulence, Heat and Mass Transfer, Nagoya, Japan, 357-364, (2000).
  • [20] Sari M., “Experimental investigation of forced convection heat transfer in hexagonal duct with turbulent flow conditions”, MSc. Thesis, Gazi University, Graduate School of Natural and Applied Sciences, (2010).
  • [21] Can O.F., Celik N. and Dagtekin I., “Investigation of flow and heat transfer in hexagonal channels with different geometries”, Conference paper: 2nd Anatolian Energy Symposium, (8 pages), Turkey, (2013).
  • [22] Turgut O., Sari M., “Experimental and numerical study of turbulent flow and heat transfer inside hexagonal duct”, Heat Mass Transfer, 49: 543-554, (2013).
  • [23] Wang P., Yang M., Wang Z. and Zhang Y., “A new heat transfer correlation for turbulent flow of air with variable properties in noncircular ducts”, Journal of Heat Transfer - Transactions of the ASME, 136: 101701 (8 pages), (2014).
  • [24] Opute E. K., “Empirical investigation of the laminar thermal entrance region and turbulent flow heat transfer for non-Newtonian silica nanofluid in hexagonal tubes”, MSc. Thesis, University of North Dakota, Graduate Faculty, (2015).
  • [25] Falih A. H., “Thermal and hydraulic response of turbulent flow inside hexagonal duct fitted with various inserts”, Wasit Journal of Engineering Science, 4: 147-162, (2016).
  • [26] Marin O., Vinuesa R., Obabko A. V. and Schlatter A., “Characterization of the secondary flow in hexagonal ducts”, Physics of Fluids, 28: 125101 (28 pages), (2016).
  • [27] Gunes S., Ozceyhan V., Dagdevir T. and Keklikcioglu O., “Numerical investigation of heat transfer enhancement in a tube with hexagonal cross sectioned coiled wire”, International Journal of Mechanical And Production Engineering (IJMPE), 5: 96-100, (2017).
  • [28] Mahato S. K., Rana S. C., Barman R. N. and Goswami S., “Numerical analysis of heat transfer and fluid flow through twisted hexagonal and square duct and their comparisons”, Chemical Engineering Transactions, 71: 1351-1356, (2018).
  • [29] Yadav R. J., Kore S. S. and Joshi P. S., “Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert”, Heat and Mass Transfer, 54: 1467-1475, (2018).
  • [30] Aolin G. J. X. and Cai Z. H., “An investigation of developing flow and heat transfer in a triangular duct” Journal of Shanghai Institute of Mechanical Engineering, 11(4): 1-12, (1989).
  • [31] Rokni M., Sunden B., “Numerical investigation of turbulent forced convection in duts with rectangular and trapezoidal cross-section area by using different turbulence models”, Numerical Heat Transfer - Part A, 30: 321-346, (1996).
  • [32] Bardina, J.E., Huang, P.G., Coakley, T.J., "Turbulence modeling validation, testing, and development", NASA Technical Memorandum, 110446, (1997).
  • [33] Wang L. B., Wang Q. W., He Y. L. and Tao W. Q., “Experimental and numerical study of developing turbulent row and heat transfer in convergent/divergent square ducts”, Heat and Mass Transfer, 38: 399-408, (2002).
  • [34] Albets-Chico X., Perez-Segarra C. D., Oliva A. and Bredberg J., “Analysis of wall-function approaches using two-equation turbulence models”, International Journal of Heat and Mass Transfer, 51: 4940-4957, (2008).
  • [35] Yilmaz U. B., “Numerical investigation of hydrodynamically fully developed, thermally developing flow in hexagonal duct”, MSc. Thesis, Gazi University, Graduate School of Natural and Applied Sciences, (2012).
  • [36] ANSYS Fluent 17.0, Theory Guide, ANSYS Inc., (2016).
  • [37] Incropera F. P., DeWitt D. P., Theodore L. B. and Adrienne S. L., “Principles of heat and mass transfer”, John Wiley and Sons Inc., Singapore, (2013).
  • [38] Ward-Smith A. J., “Internal Fluid Flow: The Fluid Dynamics of Flow in Pipes and Ducts”, Clarendon Press, Oxford, (1980).
  • [39] Harnett J. P. and Kostic M., “Heat transfer to newtonian and non-newtonian fluids in rectangular ducts”, Advances in Heat Transfer, 19: 247-356, (1989).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Umut Barış Yılmaz Bu kişi benim 0000-0002-6103-7670

Oğuz Turgut 0000-0001-5480-1039

Yayımlanma Tarihi 1 Aralık 2021
Gönderilme Tarihi 11 Temmuz 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yılmaz, U. B., & Turgut, O. (2021). A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter. Politeknik Dergisi, 24(4), 1593-1604. https://doi.org/10.2339/politeknik.768211
AMA Yılmaz UB, Turgut O. A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter. Politeknik Dergisi. Aralık 2021;24(4):1593-1604. doi:10.2339/politeknik.768211
Chicago Yılmaz, Umut Barış, ve Oğuz Turgut. “A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter”. Politeknik Dergisi 24, sy. 4 (Aralık 2021): 1593-1604. https://doi.org/10.2339/politeknik.768211.
EndNote Yılmaz UB, Turgut O (01 Aralık 2021) A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter. Politeknik Dergisi 24 4 1593–1604.
IEEE U. B. Yılmaz ve O. Turgut, “A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter”, Politeknik Dergisi, c. 24, sy. 4, ss. 1593–1604, 2021, doi: 10.2339/politeknik.768211.
ISNAD Yılmaz, Umut Barış - Turgut, Oğuz. “A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter”. Politeknik Dergisi 24/4 (Aralık 2021), 1593-1604. https://doi.org/10.2339/politeknik.768211.
JAMA Yılmaz UB, Turgut O. A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter. Politeknik Dergisi. 2021;24:1593–1604.
MLA Yılmaz, Umut Barış ve Oğuz Turgut. “A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter”. Politeknik Dergisi, c. 24, sy. 4, 2021, ss. 1593-04, doi:10.2339/politeknik.768211.
Vancouver Yılmaz UB, Turgut O. A Comparison of Circular Duct and Real Hexagonal Duct Results Using Hydraulic Diameter. Politeknik Dergisi. 2021;24(4):1593-604.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.