Araştırma Makalesi
BibTex RIS Kaynak Göster

Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell

Yıl 2022, , 557 - 561, 01.06.2022
https://doi.org/10.2339/politeknik.774303

Öz

Perovskite solar cells (PSCs) have shown a significant increment in power conversion efficiency recently with advantages such as flexibility and low-cost roll-to-roll production. Prior to the commercialization of PSCs, it is significant to investigate its environmental performance with life cycle assessment method. In this work, cradle to gate LCA of solution-based organo-lead iodide perovskite solar cell performed according to the one reported literature method that comprises flexible Polyethylene terephthalate (PET) substrate and hole transport layer (HTL) elimination. Environmental impacts from the generation of 1 m2 of cell area production are determined in six International Reference Life Cycle Data System (ILCD) categories. It is found that the major impact comes from the fabrication of the aluminum metal electrode layer due to the high electrical energy required in the vacuum deposition process. The life cycle global warming potential (GWP) that the most widely used environmental indicator has been calculated for per kWh electricity production to make a comparison with commercial photovoltaic technologies. It is found that the HTL-free flexible (HFF) PSC needs 15-20 years of device lifetime to reach competitive GWP value with commercial PVs. 

Destekleyen Kurum

TUBITAK

Proje Numarası

TUBITAK BIDEB 2214/A

Kaynakça

  • [1] Celik I., Song Z., Cimaroli A.J., Yan Y., Heben MJ, Apul D., “Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab”, Solar Energy Materials and Solar Cells, 156:157-169, (2015).
  • [2] Sarialtin H., Geyer R., Zafer C., “Life cycle assessment of hole transport free planar-mesoscopic perovskite solar cells”, Journal of Renewable and Sustainable Energy, 12(2): 023502, (2020).
  • [3] Maniarasu S., Korukonda T.B., Manjunath V., Ramasamy E., Ramesh M., Veerappan G., “Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization”, Renewable and Sustainable Energy Reviews, 82, 845-857, (2018).
  • [4] Popoola I.K., Gondal MA, Qahtan TF., “Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability”, Renewable and Sustainable Energy Reviews, 82: 845–857, (2018).
  • [5] https://www.iso.org/standard/37456.html
  • [6] Zhang Y., Hu X., Chen L., Huang Z., Fu Q., Liu Y. “Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells”, Organic Electronics, 30: 281–288, (2016).
  • [7] Chilvery A., Das S., Guggilla P., Brantley C., Sunda-Meya A., “A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells”, Science and Technology of Advanced Materials, 17: 650–658, (2016).
  • [8] http://www.globalsolaratlas.info
  • [9] Espinosa N., Serrano-Luján L., Urbina A., Krebs F.C., “Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective.”, Solar Energy Materials and Solar Cells, 137: 303–310, (2015).
  • [10] Li Y., Meng L., Yang Y., Xu G., Hong Z., Chen Q., “High-efficiency robust perovskite solar cells on ultrathin flexible substrates.”, Nature Communications, 7: 10214, (2016).
  • [11] Thompson A.B., Woods D.W. “Density of amorphous polyethylene terephthalate”, Nature, 176: 78–79, (1955).
  • [12] https:www.sigmaaldrich.com/catalog/product/aldrich/ 793833?lang=en&region=US
  • [13] Sun Y., Han Y.C., Liu J.G., “Controlling PCBM aggregation in P3HT/PCBM film by a selective solvent vapor annealing.”Chinese Science Bulletin, 58:2767–74, (2013).
  • [14] Ueda M., Imai N., Yoshida S., Yasuda H., Fukuyama T, Ryu I., “Scalable Flow Synthesis of [6,6]-Phenyl-C 61 -butyric Acid Methyl Ester (PCBM) using a Flow Photoreactor with a Sodium Lamp”, European Journal of Organic Chemistry, 2017: 6483–6485, (2017).
  • [15]https://www.osha.gov/chemicaldata/chemResult.html?RecNo=481
  • [16] García-Valverde R., Cherni J.A., Urbina A., “Life cycle analysis of organic photovoltaic technologies”, Progress in Photovoltaics: Research and Applications, 18: 535–538, (2010).
  • [17] Peng J., Lu L., Yang H., “Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems”, Renewable and Sustainable Energy Reviews, 19: 255–274, (2013).

Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell

Yıl 2022, , 557 - 561, 01.06.2022
https://doi.org/10.2339/politeknik.774303

Öz

Perovskite solar cells (PSCs) have shown a significant increment in power conversion efficiency recently with advantages such as flexibility and low-cost roll-to-roll production. Prior to the commercialization of PSCs, it is significant to investigate its environmental performance with life cycle assessment method. In this work, cradle to gate LCA of solution-based organo-lead iodide perovskite solar cell performed according to the one reported literature method that comprises flexible Polyethylene terephthalate (PET) substrate and hole transport layer (HTL) elimination. Environmental impacts from the generation of 1 m2 of cell area production are determined in six International Reference Life Cycle Data System (ILCD) categories. It is found that the major impact comes from the fabrication of the aluminum metal electrode layer due to the high electrical energy required in the vacuum deposition process. The life cycle global warming potential (GWP) that the most widely used environmental indicator has been calculated for per kWh electricity production to make a comparison with commercial photovoltaic technologies. It is found that the HTL-free flexible (HFF) PSC needs 15-20 years of device lifetime to reach competitive GWP value with commercial PVs. 

Proje Numarası

TUBITAK BIDEB 2214/A

Kaynakça

  • [1] Celik I., Song Z., Cimaroli A.J., Yan Y., Heben MJ, Apul D., “Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab”, Solar Energy Materials and Solar Cells, 156:157-169, (2015).
  • [2] Sarialtin H., Geyer R., Zafer C., “Life cycle assessment of hole transport free planar-mesoscopic perovskite solar cells”, Journal of Renewable and Sustainable Energy, 12(2): 023502, (2020).
  • [3] Maniarasu S., Korukonda T.B., Manjunath V., Ramasamy E., Ramesh M., Veerappan G., “Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization”, Renewable and Sustainable Energy Reviews, 82, 845-857, (2018).
  • [4] Popoola I.K., Gondal MA, Qahtan TF., “Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability”, Renewable and Sustainable Energy Reviews, 82: 845–857, (2018).
  • [5] https://www.iso.org/standard/37456.html
  • [6] Zhang Y., Hu X., Chen L., Huang Z., Fu Q., Liu Y. “Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells”, Organic Electronics, 30: 281–288, (2016).
  • [7] Chilvery A., Das S., Guggilla P., Brantley C., Sunda-Meya A., “A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells”, Science and Technology of Advanced Materials, 17: 650–658, (2016).
  • [8] http://www.globalsolaratlas.info
  • [9] Espinosa N., Serrano-Luján L., Urbina A., Krebs F.C., “Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective.”, Solar Energy Materials and Solar Cells, 137: 303–310, (2015).
  • [10] Li Y., Meng L., Yang Y., Xu G., Hong Z., Chen Q., “High-efficiency robust perovskite solar cells on ultrathin flexible substrates.”, Nature Communications, 7: 10214, (2016).
  • [11] Thompson A.B., Woods D.W. “Density of amorphous polyethylene terephthalate”, Nature, 176: 78–79, (1955).
  • [12] https:www.sigmaaldrich.com/catalog/product/aldrich/ 793833?lang=en&region=US
  • [13] Sun Y., Han Y.C., Liu J.G., “Controlling PCBM aggregation in P3HT/PCBM film by a selective solvent vapor annealing.”Chinese Science Bulletin, 58:2767–74, (2013).
  • [14] Ueda M., Imai N., Yoshida S., Yasuda H., Fukuyama T, Ryu I., “Scalable Flow Synthesis of [6,6]-Phenyl-C 61 -butyric Acid Methyl Ester (PCBM) using a Flow Photoreactor with a Sodium Lamp”, European Journal of Organic Chemistry, 2017: 6483–6485, (2017).
  • [15]https://www.osha.gov/chemicaldata/chemResult.html?RecNo=481
  • [16] García-Valverde R., Cherni J.A., Urbina A., “Life cycle analysis of organic photovoltaic technologies”, Progress in Photovoltaics: Research and Applications, 18: 535–538, (2010).
  • [17] Peng J., Lu L., Yang H., “Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems”, Renewable and Sustainable Energy Reviews, 19: 255–274, (2013).
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Sarıaltın 0000-0002-4939-3410

Proje Numarası TUBITAK BIDEB 2214/A
Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 27 Temmuz 2020
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Sarıaltın, H. (2022). Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell. Politeknik Dergisi, 25(2), 557-561. https://doi.org/10.2339/politeknik.774303
AMA Sarıaltın H. Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell. Politeknik Dergisi. Haziran 2022;25(2):557-561. doi:10.2339/politeknik.774303
Chicago Sarıaltın, Hüseyin. “Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell”. Politeknik Dergisi 25, sy. 2 (Haziran 2022): 557-61. https://doi.org/10.2339/politeknik.774303.
EndNote Sarıaltın H (01 Haziran 2022) Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell. Politeknik Dergisi 25 2 557–561.
IEEE H. Sarıaltın, “Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell”, Politeknik Dergisi, c. 25, sy. 2, ss. 557–561, 2022, doi: 10.2339/politeknik.774303.
ISNAD Sarıaltın, Hüseyin. “Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell”. Politeknik Dergisi 25/2 (Haziran 2022), 557-561. https://doi.org/10.2339/politeknik.774303.
JAMA Sarıaltın H. Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell. Politeknik Dergisi. 2022;25:557–561.
MLA Sarıaltın, Hüseyin. “Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell”. Politeknik Dergisi, c. 25, sy. 2, 2022, ss. 557-61, doi:10.2339/politeknik.774303.
Vancouver Sarıaltın H. Environmental Impact Assessment of Hole Conductor Layer Free and Flexible Organo Lead Iodide Perovskite Solar Cell. Politeknik Dergisi. 2022;25(2):557-61.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.