Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Characterization of Clay/Organoclay-Chitosan and Clay/Organoclay-Triethyl Chitosan Nanocomposites

Yıl 2022, , 1083 - 1090, 01.10.2022
https://doi.org/10.2339/politeknik.818665

Öz

Synthesis and characterization of composites, namely clay-chitosan, organoclay-chitosan, clay-triethyl chitosan and organoclay-triethyl chitosan, were investigated by using montmorillonite (Mt) as clay mineral. Cetyltrimethylammonium bromide (CTAB, long-chained)), tetraethylammonium bromide (TEAB, short-chained)), and benzyltriethylammonium bromide (BTEAB, ringed)) surfactants were employed to modify the clay surfaces to obtain organoclay. Organoclays were labelled as CTAB-O (clay modified with cetyltrimethylammonium bromide), BTEAB-O (clay modified with benzyltriethylammonium bromide) and TEAB-O (clay modified with tetraethylammonium bromide). The structural and thermal properties were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). XRD and TEM results showed that exfoliated structure was formed for clay-chitosan composites and also organoclay-chitosan composites at lower CTAB-O, TEAB-O and BTEAB-O content. However, by increasing the organoclay content, tactoid morphology was obtained for organoclay-chitosan composites. Moreover, exfoliated structure was observed for clay-triethyl chitosan (TEC) and organoclay-triethyl chitosan (TEC) composites containing 2.5%, 5%, 10% clays and organoclays respectively. Thermal degradation temperature for 10% clay-chitosan and some organoclay-chitosan composites (5% and 10% TEAB-O-chitosan; 10% BTEAB-O-chitosan) increased (about 375 °C) with regard to neat chitosan (350 °C) at 50% weight loss. Furthermore, it was observed that thermal degradation temperature of TEC composites (clay-TEC, organoclay-TEC) increased significantly in reference to composites with chitosan (clay-chitosan, organoclay-chitosan). In particular, maximum degradation temperature (965-968 ˚C) was reached for clay-TEC (2.5% and 10%), CTAB-O-TEC (5%) and BTEAB-O-TEC (5% and 10%) at 50% weight loss.

Destekleyen Kurum

Ankara University Scientific Research Fund

Proje Numarası

11B4343002

Teşekkür

Ankara University Scientific Research Fund

Kaynakça

  • [1] Wang X., Du Y., Yang J., Wang X., Shi X., Hu Y., ‘’Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites’’, Polymer, 47: 6738-6744, (2006).
  • [2] Al-Sigeny S., Abou Taleb SMF., El-Kelesh NA., ‘’Hybrid nanocomposite prepared by graft copolymerization of 4-acryloyl morpholine onto chitosan in the presence of organophilic montmorillonite’’, Journal of Macromolecular Science Part A: Pure Applied Chemistry, 46: 74–82, (2009).
  • [3] Rzayev Z., M., Salimi K., Bunyatova U., Acar S., Salamov B., and Turk M., ‘’Fabrication and characterization of PVA/ODA-MMT-poly (MA-alt-1-octadecene)-g-graphene oxide e-spun nanofiber electrolytes and their response to bone cancer cells’’, Materials Science and Engineering: C, 61: 257-268, (2016).
  • [4] Salimi K., Rzayev Z. M., and Pişkin, E., ‘’Functional organo-Mt/copolymer nanoarchitectures. XXII. Interlamellar graft copolymerisation of l-lactic acid onto poly (maleic anhydride-alt-1-octadecene) in the presence of different clays as catalyst-nanofillers’’, Applied Clay Science, 101: 106-118, (2014).
  • [5] Rzayev Z., M., Salimi K., Eğri Ö., and Pişkin E., ‘’Functional copolymer/organo‐MMT nanoarchitectures. XIX. Nanofabrication and characterization of poly (MA‐alt‐1‐octadecene)‐g‐PLA layered silicate nanocomposites with nanoporous core–shell morphology’’, Polymers for Advanced Technologies, 25(3): 294-306, (2014).
  • [6] Çankaya N., Sökmen Ö., ‘’Biyopolimerler ve montmorillonit kil nanokompozitleri’’, Journal of Polytechnic., 20(3): 663-673, (2017).
  • [7] Cui Y., Kumar S., Kona B. R. and van Houcke, D., ‘’Gas barrier properties of polymer/clay nanocomposites’’, Rsc Advances, 5(78): 63669-63690, (2015).
  • [8] Çankaya N., Sökmen Ö., ‘’Chitosan-Clay Bionanocomposites’’, Journal of Polytechnic, 19(3): 283-295, (2016).
  • [9] Xu Y., Ren X., ‘’Chitosan/Clay Nanocomposite film preparation and characterization’’, Journal of Applied Polymer Science, 99: 1684-1691, (2006).
  • [10] Chiu F.C., Lai S. M., Hesieh I.C., Don T. M., Huang C.Y., ‘’Preparation and properties of chitosan/clay (nano) composites: a silanol quaternary ammonium intercalated clay’’, Journal of Polymer Research., 19:1-11, (2012).
  • [11] Yu L., Li L., Wei’an Z., Yue’e F., ‘’A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite’’, Radiation Physics and Chemistry, 69(9): 467-471, (2004).
  • [12] Arundhati B., Sovan L. B., Nilkamal P., Piyali J., Tapas M., Arumugam G., Manas D., Patit P. K., ‘’Organically modified clay supported chitosan/hydroxyapatite-zincoxide nanocomposites with enhanced mechanical and biologicalproperties for the application in bone tissue engineering’’, International Journal of Biological Macromolecules, 106: 11–19, (2018).
  • [13] Wang S., Chen L., Tong Y., ‘’Structure–property relationship in chitosan-based biopolymer/ montmorillonite nanocomposites’’, Journal of Polymer Science Part A: Polymer Chemistry, 44: 686–696, (2006).
  • [14] Özgüven A., Çandır İ. and Gündüz L., ‘’Tokat-Reşadiye Bentonitinin Genleşmiş Kil Agregası Olarak Değerlendirilmesi’’, 15. Ulusal Kil Sempozyumu Bildiriler Kitabı, Niğde Üniversitesi, Niğde, Türkiye, 110-120, (2012).
  • [15] Yalçınkaya S. E., Yıldız N., Saçak M., Çalımlı A., ‘’Preparation of polystyrene/montmorillonite nanocomposites: Optimization by response surface methodology’’, Turkish Journal of Chemistry, 34: 581-592, (2010).
  • [16] Avadi M. R., Zohuriaan-Mehr M. J., Younessi P., Amini M., Rafiee Tehrani M., Shafiee A., ‘’Optimized synthesis and characterization of N-triethyl chitosan’’, Journal of Bioactive and Compatible Polymers, 18: 469-479, (2003).
  • [17] Wang S. F., Shen L., Tong Y. J., Chen L., Phang I. Y., Lim P. Q., Liu T. X., ‘’Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization’’, Polymer Degradation and Stability, 90: 123-131, (2005).
  • [18] Zhang K., Xu J., Wang K.Y., Cheng L., Wang J., ‘’Preparation and characterization of chitosan nanocomposites with vermiculite of different modification’’, Polymer Degradation and Stability, 94: 2121–2127, (2009).
  • [19] Chen Q., Xu R., Yu D., ‘’Preparation of nanocomposites of thermosetting resin from benzoxazine and bisoxazoline with montmorillonite’’, Journal of Applied Polymer Science, 100: 4741–4747, (2006).
  • [20] Tang C., Chen N., Zhang Q., Wang K., Fu Q., Zhang X., ‘’Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions’’, Polymer Degradation and Stability, 94: 124-131, (2009).

Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu

Yıl 2022, , 1083 - 1090, 01.10.2022
https://doi.org/10.2339/politeknik.818665

Öz

Bu çalışmada montmorillonite (Mt) kili kullanılarak kil-kitosan, organokil-kitosan, kil-trietil kitosan ve organokil-trietil kitosan nanokompozitleri sentezlenmiş ve karakterizasyonları yapılmıştır. Organokil elde etmek için kil yüzeyi uzun zincirli (setil trimetil amonyum bromür (CTAB)), kısa zincirli (tetrametil amonyum bromür (TEAB)), ve halkalı (benzil trietil amonyum bromür (BTEAB)) yüzey aktif maddeleri ile modifiye edilmiştir. Organokiller CTAB-O (setil trimetil amonyum bromür ile modifiye edilmiş kil), BTEAB-O (benzil trietil amonyum bromür ile modifiye edilmiş kil) ve TEAB-O (tetrametil amonyum bromür ile modifiye edilmiş kil) olarak gösterilmiştir. Nanokompozitlerin yapısal ve termal özellikleri X ışını kırınım difraktometresi (XRD), transmisyon elektron mikroskobu (TEM) ve termogravimetrik analiz (TGA) ile incelenmiştir. XRD ve TEM sonuçları, kil-kitosan kompozitleri ve düşük miktarda CTAB-O, TEAB-O and BTEAB-O organokili içeren organokil-kitosan kompozitleri için dağılmış tabakalı (exfoliation) yapı elde edildiğini göstermiştir. Trietil kitosan kompozitlerinde (kil-TEC, organokil-TEC) ise bütün kil ve organo kil miktarları (%2.5, %5, %10) trietil kitosan içinde dağılarak, dağılmış tabakalı (exfoliated) kompozit yapı oluşturmuştur. %50 kütle kaybındaki termal bozunma sıcaklığı tek başına kitosan için 350 °C civarında iken, 10% kil-kitosan and bazı organokil-kitosan kompozitleri (5% and 10% TEAB-O-kitosan; 10% BTEAB-O-kitosan) için 375 °C civarına kadar artmıştır. Ayrıca, trietil kitosan kompozitlerinde (kil-TEC, organokil-TEC) termal bozunma sıcaklığı, kitosan kompozitlerine (kil-kitosan, organokil-kitosan) göre önemli ölçüde artmıştır. En yüksek termal bozunma sıcaklığına (965-968 ˚C), %50 kütle kaybında kil-TEC (%2.5 ve %10), CTAB-O-TEC (%5) ve BTEAB-O-TEC (5% ve %10) kompozitleri için ulaşılmıştır. 

Proje Numarası

11B4343002

Kaynakça

  • [1] Wang X., Du Y., Yang J., Wang X., Shi X., Hu Y., ‘’Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites’’, Polymer, 47: 6738-6744, (2006).
  • [2] Al-Sigeny S., Abou Taleb SMF., El-Kelesh NA., ‘’Hybrid nanocomposite prepared by graft copolymerization of 4-acryloyl morpholine onto chitosan in the presence of organophilic montmorillonite’’, Journal of Macromolecular Science Part A: Pure Applied Chemistry, 46: 74–82, (2009).
  • [3] Rzayev Z., M., Salimi K., Bunyatova U., Acar S., Salamov B., and Turk M., ‘’Fabrication and characterization of PVA/ODA-MMT-poly (MA-alt-1-octadecene)-g-graphene oxide e-spun nanofiber electrolytes and their response to bone cancer cells’’, Materials Science and Engineering: C, 61: 257-268, (2016).
  • [4] Salimi K., Rzayev Z. M., and Pişkin, E., ‘’Functional organo-Mt/copolymer nanoarchitectures. XXII. Interlamellar graft copolymerisation of l-lactic acid onto poly (maleic anhydride-alt-1-octadecene) in the presence of different clays as catalyst-nanofillers’’, Applied Clay Science, 101: 106-118, (2014).
  • [5] Rzayev Z., M., Salimi K., Eğri Ö., and Pişkin E., ‘’Functional copolymer/organo‐MMT nanoarchitectures. XIX. Nanofabrication and characterization of poly (MA‐alt‐1‐octadecene)‐g‐PLA layered silicate nanocomposites with nanoporous core–shell morphology’’, Polymers for Advanced Technologies, 25(3): 294-306, (2014).
  • [6] Çankaya N., Sökmen Ö., ‘’Biyopolimerler ve montmorillonit kil nanokompozitleri’’, Journal of Polytechnic., 20(3): 663-673, (2017).
  • [7] Cui Y., Kumar S., Kona B. R. and van Houcke, D., ‘’Gas barrier properties of polymer/clay nanocomposites’’, Rsc Advances, 5(78): 63669-63690, (2015).
  • [8] Çankaya N., Sökmen Ö., ‘’Chitosan-Clay Bionanocomposites’’, Journal of Polytechnic, 19(3): 283-295, (2016).
  • [9] Xu Y., Ren X., ‘’Chitosan/Clay Nanocomposite film preparation and characterization’’, Journal of Applied Polymer Science, 99: 1684-1691, (2006).
  • [10] Chiu F.C., Lai S. M., Hesieh I.C., Don T. M., Huang C.Y., ‘’Preparation and properties of chitosan/clay (nano) composites: a silanol quaternary ammonium intercalated clay’’, Journal of Polymer Research., 19:1-11, (2012).
  • [11] Yu L., Li L., Wei’an Z., Yue’e F., ‘’A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite’’, Radiation Physics and Chemistry, 69(9): 467-471, (2004).
  • [12] Arundhati B., Sovan L. B., Nilkamal P., Piyali J., Tapas M., Arumugam G., Manas D., Patit P. K., ‘’Organically modified clay supported chitosan/hydroxyapatite-zincoxide nanocomposites with enhanced mechanical and biologicalproperties for the application in bone tissue engineering’’, International Journal of Biological Macromolecules, 106: 11–19, (2018).
  • [13] Wang S., Chen L., Tong Y., ‘’Structure–property relationship in chitosan-based biopolymer/ montmorillonite nanocomposites’’, Journal of Polymer Science Part A: Polymer Chemistry, 44: 686–696, (2006).
  • [14] Özgüven A., Çandır İ. and Gündüz L., ‘’Tokat-Reşadiye Bentonitinin Genleşmiş Kil Agregası Olarak Değerlendirilmesi’’, 15. Ulusal Kil Sempozyumu Bildiriler Kitabı, Niğde Üniversitesi, Niğde, Türkiye, 110-120, (2012).
  • [15] Yalçınkaya S. E., Yıldız N., Saçak M., Çalımlı A., ‘’Preparation of polystyrene/montmorillonite nanocomposites: Optimization by response surface methodology’’, Turkish Journal of Chemistry, 34: 581-592, (2010).
  • [16] Avadi M. R., Zohuriaan-Mehr M. J., Younessi P., Amini M., Rafiee Tehrani M., Shafiee A., ‘’Optimized synthesis and characterization of N-triethyl chitosan’’, Journal of Bioactive and Compatible Polymers, 18: 469-479, (2003).
  • [17] Wang S. F., Shen L., Tong Y. J., Chen L., Phang I. Y., Lim P. Q., Liu T. X., ‘’Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization’’, Polymer Degradation and Stability, 90: 123-131, (2005).
  • [18] Zhang K., Xu J., Wang K.Y., Cheng L., Wang J., ‘’Preparation and characterization of chitosan nanocomposites with vermiculite of different modification’’, Polymer Degradation and Stability, 94: 2121–2127, (2009).
  • [19] Chen Q., Xu R., Yu D., ‘’Preparation of nanocomposites of thermosetting resin from benzoxazine and bisoxazoline with montmorillonite’’, Journal of Applied Polymer Science, 100: 4741–4747, (2006).
  • [20] Tang C., Chen N., Zhang Q., Wang K., Fu Q., Zhang X., ‘’Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions’’, Polymer Degradation and Stability, 94: 124-131, (2009).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nuray Çelebi 0000-0002-6458-6720

Nuray Yıldız 0000-0003-2428-3474

Proje Numarası 11B4343002
Yayımlanma Tarihi 1 Ekim 2022
Gönderilme Tarihi 30 Ekim 2020
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çelebi, N., & Yıldız, N. (2022). Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu. Politeknik Dergisi, 25(3), 1083-1090. https://doi.org/10.2339/politeknik.818665
AMA Çelebi N, Yıldız N. Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu. Politeknik Dergisi. Ekim 2022;25(3):1083-1090. doi:10.2339/politeknik.818665
Chicago Çelebi, Nuray, ve Nuray Yıldız. “Kil/Organokil-Kitosan Ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi Ve Karakterizasyonu”. Politeknik Dergisi 25, sy. 3 (Ekim 2022): 1083-90. https://doi.org/10.2339/politeknik.818665.
EndNote Çelebi N, Yıldız N (01 Ekim 2022) Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu. Politeknik Dergisi 25 3 1083–1090.
IEEE N. Çelebi ve N. Yıldız, “Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu”, Politeknik Dergisi, c. 25, sy. 3, ss. 1083–1090, 2022, doi: 10.2339/politeknik.818665.
ISNAD Çelebi, Nuray - Yıldız, Nuray. “Kil/Organokil-Kitosan Ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi Ve Karakterizasyonu”. Politeknik Dergisi 25/3 (Ekim 2022), 1083-1090. https://doi.org/10.2339/politeknik.818665.
JAMA Çelebi N, Yıldız N. Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu. Politeknik Dergisi. 2022;25:1083–1090.
MLA Çelebi, Nuray ve Nuray Yıldız. “Kil/Organokil-Kitosan Ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi Ve Karakterizasyonu”. Politeknik Dergisi, c. 25, sy. 3, 2022, ss. 1083-90, doi:10.2339/politeknik.818665.
Vancouver Çelebi N, Yıldız N. Kil/Organokil-Kitosan ve Kil/Organokil-Trietil Kitosan Nanokompozit Sentezi ve Karakterizasyonu. Politeknik Dergisi. 2022;25(3):1083-90.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.