Derleme
BibTex RIS Kaynak Göster

Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme

Yıl 2021, , 1151 - 1170, 01.09.2021
https://doi.org/10.2339/politeknik.825365

Öz

Günümüzde mobil cihazlar ve elektirikli araçların gitgide yaygınlaşması ile birlikte tekrar şarj edilebilen ikincil pillerin kullanımı artmaktadır. İkincil pillerden en yoğun olarak kullanılan lityum-iyon (Li-yon) pillerin sürdürülebilirliği hakkındaki endişeler ve dünyadaki sınırlı lityum rezervleri, yeni-nesil enerji depolama sistemleri hakkında yapılan bilimsel çalışmaları hızlandırmıştır. Bu noktada Li-iyon pillere alternatif olarak kullanılabilecek sodyum-iyon (Na-iyon) piller son derece umut verici elektrokimyasal enerji depolama cihazları olarak göze çarpmaktadır. Fakat bu pillerin ticarileşebilmesi için enerji ve güç yoğunluğu ile döngüsel kararlık gibi pek çok özelliklerinin iyileştirilmesi gerekmektedir. Na-iyon pilleri oluşturan her bileşenin üretim süreci ve elektrokimyasal performansı, bu malzemelerin yapı-özellik ilişkisi ve üretim koşullarına yüksek oranda bağlıdır. Bu nedenle, anot gibi her bir bileşenin yapısal özellikleri ile elektrokimyasal performansları arasındaki ilişkinin belirlenmesi ve en iyi performansı gösteren yapıların tasarlanması Na-iyon pillerin geliştirilmesi için kritik bir öneme sahiptir. Günümüzde Na-iyon pillerin anotlarında ucuz ve sürdürülebilir malzemelerin kullanımı hakkında yoğun ve umut verici çalışmalar yapılmasına rağmen, farklı malzeme grupları arasında, değişik grafitizasyon derecesi ve morfolojik özelliklere olabilen karbon esaslı malzemeler ve bunlardan üretilen kompozit malzemeler sıklıkla öne çıkmaktadır. Bu çalışmanın amacı, güncel literatür bulgularından yararlanılarak farklı karbonlu malzemelerin

Kaynakça

  • [1] Zhao, Y., Wang, L. P., Sougrati, M. T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M., and Xu, Z., “A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes”, Advanced Energy Materials, 7(9):1601424 (2017).
  • [2] Ibrahim, H., Ilinca, A., and Perron, J., “Energy storage systems—Characteristics and comparisons”, Renewable and Sustainable Energy Reviews, 12(5): 1221-1250, (2008).
  • [3] Bagotsky, V.S., “Fundamentals of Electrochemistry” Vol. 44. John Wiley & Sons, (2005).
  • [4] Üçtepe, A., “Lityum iyon bataryalarda silisyum/karbon kompozitlerinin anot malzemesi olarak kullanılması ve optimizasyonu” Gebze Teknik Üniversitesi (2019).
  • [5] Sundén, B., “Hydrogen, Batteries and Fuel Cells” Academic Press (2019).
  • [6] Budde-Meiwes, H., Drillkens, J., Lunz, B., Muennix, J., Rothgang, S., Kowal, J., and Sauer, D. U., “A review of current automotive battery technology and future prospects”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(5):761-776, (2013).
  • [7] Doğan M. “Katı Hal Enerji Depolama Cihazlarında Fosfat Esaslı Ucuz Çözüm Yaklaşımları” Sakarya Üniversitesi (2019).
  • [8] Xie, F., Xu, Z., Guo, Z., and Titirici, M. M. “Hard carbons for sodium-ion batteries and beyond”, Progress in Energy, 2(4), 042002 (2020).
  • [9] Berg, H., “Batteries for electric vehicles: materials and electrochemistry” Cambridge University Press (2015).
  • [10] Goodenough, J. B., and Kim, Y. “Challenges for rechargeable Li batteries”, Chemistry of Materials, 22(3):587-603, (2010).
  • [11] Yang, X., and Rogach, A. L. “Electrochemical techniques in battery research: a tutorial for nonelectrochemists”, Advanced Energy Materials, 9(25):1900747 (2019).
  • [12] Huang, Y., Zhao, L., Li, L., Xie, M., Wu, F., and Chen, R. “Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application”, Advanced Materials, 31(21): 1808393, (2019).
  • [13] Hwang, J. Y., Myung, S. T., and Sun, Y. K. ,“Sodium-ion batteries: present and future”, Chemical Society Reviews, 46(12): 3529-3614, (2017).
  • [14] Vaalma, C., Buchholz, D., and Passerini, S. “Non-aqueous potassium-ion batteries: a review” Current Opinion in Electrochemistry, 9:41-48, (2018).
  • [15] Kamat, P. V., “Lithium-Ion Batteries and Beyond: Celebrating the 2019 Nobel Prize in Chemistry–A Virtual Issue”, ACS Energy Letters, 4(11): 2757-2759, (2019).
  • [16] Shanmugam, R., “Synthesis and characterization of inorganic materials for sodium-ion batteries” Michigan State University (2015).
  • [17] Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., and Komaba, S. “Negative electrodes for Na-ion batteries”, Physical Chemistry Chemical Physics, 16(29):15007-15028 (2014).
  • [18] Nayak, P. K., Yang, L., Brehm, W., and Adelhelm, P., “From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises”, Angewandte Chemie International Edition, 57(1): 102-120, (2018).
  • [19] Okoshi, M., Yamada, Y., Yamada, A., and Nakai, H. “Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents”, Journal of the Electrochemical Society, 160(11): A2160 (2013).
  • [20] Hu, Y. S., and Lu, Y. “2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries” ACS Publications (2019).
  • [21] Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., and Komaba, S. “Towards K‐ion and Na‐ion batteries as “Beyond Li‐Ion”, The Chemical Record 18(4): 459-479 (2018).
  • [22] Bakalcı, H. “Investigation of anode properties and battery performances of metal mixed graphites for lithium ion batteries”, İstanbul Teknik Üniversitesi (2015).
  • [23] Liang, Y., Lai, W. H., Miao, Z., and Chou, S. L. “Nanocomposite materials for the sodium–ion battery: a review” Small 14(5): 1702514. (2018).
  • [24] Bommier, C., and Ji, X. “Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium‐Ion Battery Anodes” Small 14(16):1703576 (2018).
  • [25] Fukunaga, A., Nohira, T., Kozawa, Y., Hagiwara, R., Sakai, S., Nitta, K. and Inazawa, S. “Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries” Journal of Power Sources 209:52-56 (2012).
  • [26] Ding, C., Nohira, T., Kuroda, K., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K. and Inazawa, S. “NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range” Journal of Power Sources, 238: 296-300.(2013).
  • [27] Usui, H., Domi, Y., Fujiwara, K., Shimizu, M., Yamamoto, T., Nohira, T., Hagiwara, R., and Sakaguchi, H. “Charge–discharge properties of a Sn4P3 negative electrode in ionic liquid electrolyte for Na-ion batteries” ACS Energy Letters 2(5): 1139-1143 (2017).
  • [28] Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., and Lu, L. “Development of solid-state electrolytes for sodium-ion battery–A short review” Nano Materials Science 1(2): 91- 100. (2019).
  • [29] Heo, J. W., Banerjee, A., Park, K. H., Jung, Y. S., and Hong, S. T. “New Na‐Ion Solid Electrolytes Na4− xSn1− xSbxS4 (0.02≤ x≤ 0.33) for All‐Solid‐State Na‐Ion Batteries” Advanced Energy Materials 8(11): 1702716 (2018).
  • [30] Kim, T. W., Park, K. H., Choi, Y. E., Lee, J. Y., and Jung, Y. S. “Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries” Journal of Materials Chemistry A 6(3): 840-844 (2018).
  • [31] Ni'mah, Y. L., Cheng, M. Y., Cheng, J. H., Rick, J., and Hwang, B. J. “Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries” Journal of Power Sources 278:375-381 (2015).
  • [32] Chevrier, V. L., and Ceder, G. “Challenges for Na-ion negative electrodes” Journal of The Electrochemical Society 158(9): A1011 (2011).
  • [33] Peters, J., Buchholz, D., Passerini, S., and Weil, M. “Life cycle assessment of sodium-ion batteries” Energy & Environmental Science 9(5):1744-1751 (2016).
  • [34] Rajagopalan, R. and L. Zhang, “Advanced Materials for Sodium Ion Storage” CRC Press. (2019).
  • [35] Lee, B., Paek, E., Mitlin, D., and Lee, S. W. “Sodium metal anodes: Emerging solutions to dendrite growth” Chemical Reviews 119(8): 5416-5460 (2019).
  • [36] Iermakova, D. I., Dugas, R., Palacín, M. R., and Ponrouch, A. “On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes” Journal of The Electrochemical Society 162(13): A7060 (2015).
  • [37] Perveen, T., Siddiq, M., Shahzad, N., Ihsan, R., Ahmad, A., and Shahzad, M. I. “Prospects in anode materials for sodium ion batteries-A review” Renewable and Sustainable Energy Reviews 119: 109549 (2020).
  • [38] Cui, J., Yao, S., and Kim, J. K. “Recent progress in rational design of anode materials for high-performance Na-ion batteries” Energy Storage Materials 7:64-114. (2017).
  • [39] Zhang, Z., Zhao, X., and Li, J. “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries” Electrochimica Acta 176:1296-1301 (2015).
  • [40] Nzabahimana, J., Liu, Z., Guo, S., Wang, L., and Hu, X. “Top‐Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium‐Ion Batteries: Mechanical Milling and Etching” ChemSusChem 13:1923-1946 (2020).
  • [41] Rane, A. V., Kanny, K., Abitha, V. K., and Thomas, S. “Methods for synthesis of nanoparticles and fabrication of nanocomposites”. In Synthesis of inorganic nanomaterials (pp. 121-139). Woodhead Publishing (2018).
  • [42] Cevher, Ö., “Lityum iyon piller için fiziksel buhar biriktirme yöntemi ile metaloksit-karbon kompozit anotların geliştirilmesi” Sakarya Üniversitesi (2018).
  • [43] Carlsson, J. O., and Martin, P. M., “Chemical vapor deposition-in Handbook of Deposition Technologies for films and coatings” William Andrew Publishing (2010).
  • [44] Toygun, Ş., Köneçoğlu, G., and Kalpaklı, Y. “General principles of sol-gel” Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi 31(4) (2013).
  • [45] Ovenstone, J., and Yanagisawa, K. “Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination” Chemistry of Materials, 11(10):2770-2774 (1999).
  • [46] Guo, M., Diao, P., Wang, X., and Cai, S. “The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films” Journal of Solid State Chemistry 178(10): 3210-3215 (2005).
  • [47] Cengiz, E. C., and Demir-Cakan, R. “TiO2 embedded hydrothermally synthesized carbon composite as interlayer for lithium-sulfur batteries” Journal of Solid State Electrochemistry 24(10):2469-2478 (2020).
  • [48] Vengatesan, M. R., Edathil, A. A., Kadirvelayutham, P., and Banat, F. “Chicken feathers as an intrinsic source to develop ZnS/carbon composite for Li-ion battery anode material” Materials Chemistry and Physics, 122953 (2020).
  • [49] Marsh, H. and F.R. Reinoso “Sciences of carbon materials” Universidad de Alicante (2000).
  • [50] Özsin, G., “Farklı organik atıklardan zift esaslı karbon fiber üretimi ve karakterizasyonu” Anadolu Üniversitesi (2017).
  • [51] Burchell, T.D., “Carbon materials for advanced Technologies”. Elsevier (1999).
  • [52] Inagaki, M., Kang, F., Toyoda, M., and Konno, H. “Advanced materials science and engineering of carbon” . Butterworth-Heinemann (2013).
  • [53] Franklin, R. E. “Crystallite growth in graphitizing and non-graphitizing carbons” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 209(1097):196-218 (1951).
  • [54] Besenhard, J.O., “Handbook of battery materials” John Wiley & Sons (2008).
  • [55] Kılıç , M. “Biyokütle esaslı karbon köpük üretimi ve karakterizasyonu” (2015).
  • [56] Özsin, G., “Production and characterization of activated carbon from pistachio-nut shell” Middle East Technical University (2011).
  • [57] Muñoz‐Márquez, M. Á., Saurel, D., Gómez‐Cámer, J. L., Casas‐Cabanas, M., Castillo‐Martínez, E., and Rojo, T. “Na‐ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation” Advanced Energy Materials 7(20): 1700463 (2017).
  • [58] Bommier, C., and Ji, X. “Recent Development on Anodes for Na‐Ion Batteries” Israel Journal of Chemistry 55(5):486-507 (2015).
  • [59] Stevens, D. A., and Dahn, J. R. “The mechanisms of lithium and sodium insertion in carbon materials” Journal of The Electrochemical Society, 148(8): A803 (2001).
  • [60] Bommier, C., Surta, T. W., Dolgos, M., and Ji, X. “New mechanistic insights on Na-ion storage in nongraphitizable carbon” Nano Letters, 15(9): 5888-5892 (2015).
  • [61] Alptekin, H., Au, H., Jensen, A. C., Olsson, E., Goktas, M., Headen, T. F., Adelhelm, P., Cai, Q., Drew A. J., and Titirici, M. M. “Sodium Storage Mechanism Investigations Through Structural Changes in Hard Carbons” ACS Applied Energy Materials, 3(10): 9918-9927 (2020).
  • [62] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S. “Graphene and graphene oxide: synthesis, properties, and applications” Advanced Materials 22(35):3906-3924 (2010).
  • [63] Luo, W., Shen, F., Bommier, C., Zhu, H., Ji, X., and Hu, L. “Na-ion battery anodes: materials and electrochemistry” Accounts of Chemical Research, 49(2): 231-240 (2016).
  • [64] Wang, Z., Selbach, S. M., and Grande, T. “Van der Waals density functional study of the energetics of alkali metal intercalation in graphite” RSC Advances, 4(8):4069-4079 (2014).
  • [65] Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., Wang, C. “Expanded graphite as superior anode for sodium-ion batteries” Nature Communications, 5(1), 1-10. (2014).
  • [66] Ling, C., and Mizuno, F. “Boron-doped graphene as a promising anode for Na-ion batteries” Physical Chemistry Chemical Physics, 16(22): 10419-10424. (2014).
  • [67] Zhang, Y., Xie, J., Zhang, S., Zhu, P., Cao, G., and Zhao, X. “Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries” Electrochimica Acta, 151: 8-15 (2015).
  • [68] Liu, X., Chao, D., Su, D., Liu, S., Chen, L., Chi, C., Lin, J., Shen, Z.X., Zhao, J., Mai, L., and Li, Y. “Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage” Nano Energy, 37: 108-117 (2017).
  • [69] Datta, M. K., Epur, R., Saha, P., Kadakia, K., Park, S. K., and Kumta, P. N. “Tin and graphite based nanocomposites: Potential anode for sodium ion batteries” Journal of Power Sources, 225: 316-322 (2013).
  • [70] Su, D., Ahn, H. J., and Wang, G. “SnO2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance” Chemical Communications, 49(30):3131-3133 (2013).
  • [71] Luo, B., Qiu, T., Ye, D., Wang, L., and Zhi, L. “Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage” Nano Energy, 22:232-240 (2016).
  • [72] Song, J., Yu, Z., Gordin, M. L., Hu, S., Yi, R., Tang, D., Walter, T., Regula, M., Choi, D., Li, X., Manivannan, A., and Manivannan, A. “Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries” Nano Letters 14(11):6329-6335 (2014).
  • [73] Huang, J., Liu, Y., and You, T. “Carbon nanofiber based electrochemical biosensors: A review”. Analytical Methods, 2(3):202-211. (2010).
  • [74] Zhang, E., Tang, Y., Zhang, Y., Guo, C., and Yang, L. “Hydrothermal synthesis of β-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers” Materials Research Bulletin, 44(8), 1765-1770. (2009).
  • [75] Chen, C. S., Lin, J. H., You, J. H., and Yang, K. H. “Effects of Potassium on Ni− K/Al2O3 Catalysts in the Synthesis of Carbon Nanofibers by Catalytic Hydrogenation of CO2” The Journal of Physical Chemistry A, 114(11): 3773-3781 (2010).
  • [76] Gupta, V. K., Agarwal, S., Tyagi, I., Sohrabi, M., Fakhri, A., Rashidi, S., and Sadeghi, N. “Microwave-assisted hydrothermal synthesis and adsorption properties of carbon nanofibers for methamphetamine removal from aqueous solution using a response surface methodology” Journal of Industrial and Engineering Chemistry, 41: 158-164 (2016).
  • [77] Xing, Y., Wang, Y., Zhou, C., Zhang, S., and Fang, B. “Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage” ACS Applied Materials & Interfaces, 6(4):2561-2567 (2014).
  • [78] Peng, S., Li, L., Lee, J. K. Y., Tian, L., Srinivasan, M., Adams, S., and Ramakrishna, S. “Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage”, Nano Energy, 22:361-395. (2016).
  • [79] Dirican, M., Lu, Y., Ge, Y., Yildiz, O., and Zhang, X. “Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material” ACS Applied Materials & Interfaces, 7(33): 18387-18396 (2015).
  • [80] Wang, Y., Su, D., Wang, C., and Wang, G. “SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries” Electrochemistry Communications, 29: 8-11. (2013).
  • [81] Zhu, Y., Wen, Y., Fan, X., Gao, T., Han, F., Luo, C., Liou, S.C. and Wang, C. “Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries” ACS Nano 9(3): 3254-3264 (2015).
  • [82] Li, W. J., Chou, S. L., Wang, J. Z., Liu, H. K., and Dou, S. X. “Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage” Nano Letters, 13(11):5480-5484 (2013).
  • [83] Ran, L., Gentle, I., Lin, T., Luo, B., Mo, N., Rana, M., Li, M., Wang, L., and Knibbe, R. “Sn4P3@ Porous carbon nanofiber as a self-supported anode for sodium-ion batteries” Journal of Power Sources, 461, 228116 (2020).
  • [84] Chuenchom, L., Kraehnert, R., and Smarsly, B. M. “Recent progress in soft-templating of porous carbon materials” Soft Matter, 8(42) 10801-10812 (2012).
  • [85] Lee, J., Kim, J., and Hyeon, T. “Recent progress in the synthesis of porous carbon materials”. Advanced Materials, 18(16):2073-2094. (2006).
  • [86] Roberts, A. D., Li, X., and Zhang, H. “Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials” Chemical Society Reviews, 43(13):4341-4356 (2014).
  • [87] Guo, H., Ding, B., Wang, J., Zhang, Y., Hao, X., Wu, L., An, Y., Dou, H. and Zhang, X. “Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors” Carbon, 136, 204-210 (2018).
  • [88] Liu, S., Zhao, Y., Zhang, B., Xia, H., Zhou, J., Xie, W., and Li, H. “Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes”. Journal of Power Sources, 381, 116-126 (2018).
  • [89] Jahel, A., Ghimbeu, C. M., Darwiche, A., Vidal, L., Hajjar-Garreau, S., Vix-Guterl, C., and Monconduit, L. “Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon”. Journal of Materials Chemistry A, 3(22):11960-11969 (2015).
  • [90] Liang, X., Chang, C., Guo, W., Jiang, X., Xiong, C., and Pu, X. “Red phosphorus/onion‐like mesoporous carbon composite as high‐performance anode for sodium‐ion battery” ChemElectroChem, 6(22):5721-5727 (2019).
  • [91] Liu, J., Kopold, P., Wu, C., van Aken, P. A., Maier, J., and Yu, Y. “Uniform yolk–shell Sn4P3@ C nanospheres as high-capacity and cycle-stable anode materials for sodium- ion batteries”. Energy & Environmental Science, 8(12):3531-3538 (2015).
  • [92] Xu, J., Wang, M., Wickramaratne, N. P., Jaroniec, M., Dou, S., and Dai, L. “High‐performance sodium ion batteries based on a 3D anode from nitrogen‐doped graphene foams” Advanced Materials, 27(12): 2042-2048 (2015).
  • [93] Elizabeth, I., Singh, B. P., Trikha, S., and Gopukumar, S. “Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries” Journal of Power Sources, 329: 412-421. (2016).
  • [94] Li, Z., Chen, Y., Jian, Z., Jiang, H., Razink, J. J., Stickle, W. F., Joerk, C. N., and Ji, X. “Defective hard carbon anode for Na-ion batteries” Chemistry of Materials, 30(14):4536-4542 (2018).
  • [95] Li, Q., Zhu, Y., Zhao, P., Yuan, C., Chen, M., and Wang, C. “Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode”. Carbon, 129: 85-94 (2018). [96] Yang, L., Hu, M., Lv, Q., Zhang, H., Yang, W., and Lv, R. “Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity”. Carbon, 163: 288-296 (2020).
  • [97] Lu, Y., Zhang, N., Zhao, Q., Liang, J., and Chen, J. “Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries”. Nanoscale, 7(6):2770-2776 (2015).
  • [98] Yang, Y., Fu, W., Lee, D. C., Bell, C., Drexler, M., Ma, Z. F., Magasinski, A., Yush N, G., and Alamgir, F. M. “Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries” Materials Today Energy, 16: 100410 (2020).

A review on the Use of Carbon Nanostructures as Anodes of Na-ion batteries

Yıl 2021, , 1151 - 1170, 01.09.2021
https://doi.org/10.2339/politeknik.825365

Öz

Nowadays, the use of rechargeable secondary batteries is increasing with the increasing widespread use of mobile devices and electric vehicles. Concerns about the sustainability of lithium-ion (Li-ion) batteries, which are the most widely used of secondary batteries, and the limited lithium reserves around the world have accelerated scientific studies on next-generation energy storage systems. At this point, sodium-ion (Na-ion) batteries, which can be used as an alternative to Li-ion batteries, stand out as highly promising electrochemical energy storage devices. However, many characteristics such as energy density, power density and cyclic stability have to be improved for commercialization of such batteries. The production process and electrochemical performance of each Na-ion battery component are highly dependent on the structure-property relationship and production conditions of these materials. Therefore, determining the relationship between the structural properties of each component such as the anode and their electrochemical performance together with designing the best performing structures are critical for the development of Na-ion batteries. Although intensive and promising studies have been conducted on the use of low-cost and sustainable materials in the anodes of Na-ion batteries, carbon-based materials, which can have different graphitization degree and morphological charecteristics, and their composites often stand out among different material groups. The aim of this study is to create a theoretical basis for the usability of different carbon materials in the anodes of Na-ion batteries with the current literature findings.

Kaynakça

  • [1] Zhao, Y., Wang, L. P., Sougrati, M. T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M., and Xu, Z., “A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes”, Advanced Energy Materials, 7(9):1601424 (2017).
  • [2] Ibrahim, H., Ilinca, A., and Perron, J., “Energy storage systems—Characteristics and comparisons”, Renewable and Sustainable Energy Reviews, 12(5): 1221-1250, (2008).
  • [3] Bagotsky, V.S., “Fundamentals of Electrochemistry” Vol. 44. John Wiley & Sons, (2005).
  • [4] Üçtepe, A., “Lityum iyon bataryalarda silisyum/karbon kompozitlerinin anot malzemesi olarak kullanılması ve optimizasyonu” Gebze Teknik Üniversitesi (2019).
  • [5] Sundén, B., “Hydrogen, Batteries and Fuel Cells” Academic Press (2019).
  • [6] Budde-Meiwes, H., Drillkens, J., Lunz, B., Muennix, J., Rothgang, S., Kowal, J., and Sauer, D. U., “A review of current automotive battery technology and future prospects”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(5):761-776, (2013).
  • [7] Doğan M. “Katı Hal Enerji Depolama Cihazlarında Fosfat Esaslı Ucuz Çözüm Yaklaşımları” Sakarya Üniversitesi (2019).
  • [8] Xie, F., Xu, Z., Guo, Z., and Titirici, M. M. “Hard carbons for sodium-ion batteries and beyond”, Progress in Energy, 2(4), 042002 (2020).
  • [9] Berg, H., “Batteries for electric vehicles: materials and electrochemistry” Cambridge University Press (2015).
  • [10] Goodenough, J. B., and Kim, Y. “Challenges for rechargeable Li batteries”, Chemistry of Materials, 22(3):587-603, (2010).
  • [11] Yang, X., and Rogach, A. L. “Electrochemical techniques in battery research: a tutorial for nonelectrochemists”, Advanced Energy Materials, 9(25):1900747 (2019).
  • [12] Huang, Y., Zhao, L., Li, L., Xie, M., Wu, F., and Chen, R. “Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application”, Advanced Materials, 31(21): 1808393, (2019).
  • [13] Hwang, J. Y., Myung, S. T., and Sun, Y. K. ,“Sodium-ion batteries: present and future”, Chemical Society Reviews, 46(12): 3529-3614, (2017).
  • [14] Vaalma, C., Buchholz, D., and Passerini, S. “Non-aqueous potassium-ion batteries: a review” Current Opinion in Electrochemistry, 9:41-48, (2018).
  • [15] Kamat, P. V., “Lithium-Ion Batteries and Beyond: Celebrating the 2019 Nobel Prize in Chemistry–A Virtual Issue”, ACS Energy Letters, 4(11): 2757-2759, (2019).
  • [16] Shanmugam, R., “Synthesis and characterization of inorganic materials for sodium-ion batteries” Michigan State University (2015).
  • [17] Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., and Komaba, S. “Negative electrodes for Na-ion batteries”, Physical Chemistry Chemical Physics, 16(29):15007-15028 (2014).
  • [18] Nayak, P. K., Yang, L., Brehm, W., and Adelhelm, P., “From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises”, Angewandte Chemie International Edition, 57(1): 102-120, (2018).
  • [19] Okoshi, M., Yamada, Y., Yamada, A., and Nakai, H. “Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents”, Journal of the Electrochemical Society, 160(11): A2160 (2013).
  • [20] Hu, Y. S., and Lu, Y. “2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries” ACS Publications (2019).
  • [21] Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., and Komaba, S. “Towards K‐ion and Na‐ion batteries as “Beyond Li‐Ion”, The Chemical Record 18(4): 459-479 (2018).
  • [22] Bakalcı, H. “Investigation of anode properties and battery performances of metal mixed graphites for lithium ion batteries”, İstanbul Teknik Üniversitesi (2015).
  • [23] Liang, Y., Lai, W. H., Miao, Z., and Chou, S. L. “Nanocomposite materials for the sodium–ion battery: a review” Small 14(5): 1702514. (2018).
  • [24] Bommier, C., and Ji, X. “Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium‐Ion Battery Anodes” Small 14(16):1703576 (2018).
  • [25] Fukunaga, A., Nohira, T., Kozawa, Y., Hagiwara, R., Sakai, S., Nitta, K. and Inazawa, S. “Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries” Journal of Power Sources 209:52-56 (2012).
  • [26] Ding, C., Nohira, T., Kuroda, K., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K. and Inazawa, S. “NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range” Journal of Power Sources, 238: 296-300.(2013).
  • [27] Usui, H., Domi, Y., Fujiwara, K., Shimizu, M., Yamamoto, T., Nohira, T., Hagiwara, R., and Sakaguchi, H. “Charge–discharge properties of a Sn4P3 negative electrode in ionic liquid electrolyte for Na-ion batteries” ACS Energy Letters 2(5): 1139-1143 (2017).
  • [28] Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., and Lu, L. “Development of solid-state electrolytes for sodium-ion battery–A short review” Nano Materials Science 1(2): 91- 100. (2019).
  • [29] Heo, J. W., Banerjee, A., Park, K. H., Jung, Y. S., and Hong, S. T. “New Na‐Ion Solid Electrolytes Na4− xSn1− xSbxS4 (0.02≤ x≤ 0.33) for All‐Solid‐State Na‐Ion Batteries” Advanced Energy Materials 8(11): 1702716 (2018).
  • [30] Kim, T. W., Park, K. H., Choi, Y. E., Lee, J. Y., and Jung, Y. S. “Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries” Journal of Materials Chemistry A 6(3): 840-844 (2018).
  • [31] Ni'mah, Y. L., Cheng, M. Y., Cheng, J. H., Rick, J., and Hwang, B. J. “Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries” Journal of Power Sources 278:375-381 (2015).
  • [32] Chevrier, V. L., and Ceder, G. “Challenges for Na-ion negative electrodes” Journal of The Electrochemical Society 158(9): A1011 (2011).
  • [33] Peters, J., Buchholz, D., Passerini, S., and Weil, M. “Life cycle assessment of sodium-ion batteries” Energy & Environmental Science 9(5):1744-1751 (2016).
  • [34] Rajagopalan, R. and L. Zhang, “Advanced Materials for Sodium Ion Storage” CRC Press. (2019).
  • [35] Lee, B., Paek, E., Mitlin, D., and Lee, S. W. “Sodium metal anodes: Emerging solutions to dendrite growth” Chemical Reviews 119(8): 5416-5460 (2019).
  • [36] Iermakova, D. I., Dugas, R., Palacín, M. R., and Ponrouch, A. “On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes” Journal of The Electrochemical Society 162(13): A7060 (2015).
  • [37] Perveen, T., Siddiq, M., Shahzad, N., Ihsan, R., Ahmad, A., and Shahzad, M. I. “Prospects in anode materials for sodium ion batteries-A review” Renewable and Sustainable Energy Reviews 119: 109549 (2020).
  • [38] Cui, J., Yao, S., and Kim, J. K. “Recent progress in rational design of anode materials for high-performance Na-ion batteries” Energy Storage Materials 7:64-114. (2017).
  • [39] Zhang, Z., Zhao, X., and Li, J. “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries” Electrochimica Acta 176:1296-1301 (2015).
  • [40] Nzabahimana, J., Liu, Z., Guo, S., Wang, L., and Hu, X. “Top‐Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium‐Ion Batteries: Mechanical Milling and Etching” ChemSusChem 13:1923-1946 (2020).
  • [41] Rane, A. V., Kanny, K., Abitha, V. K., and Thomas, S. “Methods for synthesis of nanoparticles and fabrication of nanocomposites”. In Synthesis of inorganic nanomaterials (pp. 121-139). Woodhead Publishing (2018).
  • [42] Cevher, Ö., “Lityum iyon piller için fiziksel buhar biriktirme yöntemi ile metaloksit-karbon kompozit anotların geliştirilmesi” Sakarya Üniversitesi (2018).
  • [43] Carlsson, J. O., and Martin, P. M., “Chemical vapor deposition-in Handbook of Deposition Technologies for films and coatings” William Andrew Publishing (2010).
  • [44] Toygun, Ş., Köneçoğlu, G., and Kalpaklı, Y. “General principles of sol-gel” Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi 31(4) (2013).
  • [45] Ovenstone, J., and Yanagisawa, K. “Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination” Chemistry of Materials, 11(10):2770-2774 (1999).
  • [46] Guo, M., Diao, P., Wang, X., and Cai, S. “The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films” Journal of Solid State Chemistry 178(10): 3210-3215 (2005).
  • [47] Cengiz, E. C., and Demir-Cakan, R. “TiO2 embedded hydrothermally synthesized carbon composite as interlayer for lithium-sulfur batteries” Journal of Solid State Electrochemistry 24(10):2469-2478 (2020).
  • [48] Vengatesan, M. R., Edathil, A. A., Kadirvelayutham, P., and Banat, F. “Chicken feathers as an intrinsic source to develop ZnS/carbon composite for Li-ion battery anode material” Materials Chemistry and Physics, 122953 (2020).
  • [49] Marsh, H. and F.R. Reinoso “Sciences of carbon materials” Universidad de Alicante (2000).
  • [50] Özsin, G., “Farklı organik atıklardan zift esaslı karbon fiber üretimi ve karakterizasyonu” Anadolu Üniversitesi (2017).
  • [51] Burchell, T.D., “Carbon materials for advanced Technologies”. Elsevier (1999).
  • [52] Inagaki, M., Kang, F., Toyoda, M., and Konno, H. “Advanced materials science and engineering of carbon” . Butterworth-Heinemann (2013).
  • [53] Franklin, R. E. “Crystallite growth in graphitizing and non-graphitizing carbons” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 209(1097):196-218 (1951).
  • [54] Besenhard, J.O., “Handbook of battery materials” John Wiley & Sons (2008).
  • [55] Kılıç , M. “Biyokütle esaslı karbon köpük üretimi ve karakterizasyonu” (2015).
  • [56] Özsin, G., “Production and characterization of activated carbon from pistachio-nut shell” Middle East Technical University (2011).
  • [57] Muñoz‐Márquez, M. Á., Saurel, D., Gómez‐Cámer, J. L., Casas‐Cabanas, M., Castillo‐Martínez, E., and Rojo, T. “Na‐ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation” Advanced Energy Materials 7(20): 1700463 (2017).
  • [58] Bommier, C., and Ji, X. “Recent Development on Anodes for Na‐Ion Batteries” Israel Journal of Chemistry 55(5):486-507 (2015).
  • [59] Stevens, D. A., and Dahn, J. R. “The mechanisms of lithium and sodium insertion in carbon materials” Journal of The Electrochemical Society, 148(8): A803 (2001).
  • [60] Bommier, C., Surta, T. W., Dolgos, M., and Ji, X. “New mechanistic insights on Na-ion storage in nongraphitizable carbon” Nano Letters, 15(9): 5888-5892 (2015).
  • [61] Alptekin, H., Au, H., Jensen, A. C., Olsson, E., Goktas, M., Headen, T. F., Adelhelm, P., Cai, Q., Drew A. J., and Titirici, M. M. “Sodium Storage Mechanism Investigations Through Structural Changes in Hard Carbons” ACS Applied Energy Materials, 3(10): 9918-9927 (2020).
  • [62] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S. “Graphene and graphene oxide: synthesis, properties, and applications” Advanced Materials 22(35):3906-3924 (2010).
  • [63] Luo, W., Shen, F., Bommier, C., Zhu, H., Ji, X., and Hu, L. “Na-ion battery anodes: materials and electrochemistry” Accounts of Chemical Research, 49(2): 231-240 (2016).
  • [64] Wang, Z., Selbach, S. M., and Grande, T. “Van der Waals density functional study of the energetics of alkali metal intercalation in graphite” RSC Advances, 4(8):4069-4079 (2014).
  • [65] Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., Wang, C. “Expanded graphite as superior anode for sodium-ion batteries” Nature Communications, 5(1), 1-10. (2014).
  • [66] Ling, C., and Mizuno, F. “Boron-doped graphene as a promising anode for Na-ion batteries” Physical Chemistry Chemical Physics, 16(22): 10419-10424. (2014).
  • [67] Zhang, Y., Xie, J., Zhang, S., Zhu, P., Cao, G., and Zhao, X. “Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries” Electrochimica Acta, 151: 8-15 (2015).
  • [68] Liu, X., Chao, D., Su, D., Liu, S., Chen, L., Chi, C., Lin, J., Shen, Z.X., Zhao, J., Mai, L., and Li, Y. “Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage” Nano Energy, 37: 108-117 (2017).
  • [69] Datta, M. K., Epur, R., Saha, P., Kadakia, K., Park, S. K., and Kumta, P. N. “Tin and graphite based nanocomposites: Potential anode for sodium ion batteries” Journal of Power Sources, 225: 316-322 (2013).
  • [70] Su, D., Ahn, H. J., and Wang, G. “SnO2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance” Chemical Communications, 49(30):3131-3133 (2013).
  • [71] Luo, B., Qiu, T., Ye, D., Wang, L., and Zhi, L. “Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage” Nano Energy, 22:232-240 (2016).
  • [72] Song, J., Yu, Z., Gordin, M. L., Hu, S., Yi, R., Tang, D., Walter, T., Regula, M., Choi, D., Li, X., Manivannan, A., and Manivannan, A. “Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries” Nano Letters 14(11):6329-6335 (2014).
  • [73] Huang, J., Liu, Y., and You, T. “Carbon nanofiber based electrochemical biosensors: A review”. Analytical Methods, 2(3):202-211. (2010).
  • [74] Zhang, E., Tang, Y., Zhang, Y., Guo, C., and Yang, L. “Hydrothermal synthesis of β-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers” Materials Research Bulletin, 44(8), 1765-1770. (2009).
  • [75] Chen, C. S., Lin, J. H., You, J. H., and Yang, K. H. “Effects of Potassium on Ni− K/Al2O3 Catalysts in the Synthesis of Carbon Nanofibers by Catalytic Hydrogenation of CO2” The Journal of Physical Chemistry A, 114(11): 3773-3781 (2010).
  • [76] Gupta, V. K., Agarwal, S., Tyagi, I., Sohrabi, M., Fakhri, A., Rashidi, S., and Sadeghi, N. “Microwave-assisted hydrothermal synthesis and adsorption properties of carbon nanofibers for methamphetamine removal from aqueous solution using a response surface methodology” Journal of Industrial and Engineering Chemistry, 41: 158-164 (2016).
  • [77] Xing, Y., Wang, Y., Zhou, C., Zhang, S., and Fang, B. “Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage” ACS Applied Materials & Interfaces, 6(4):2561-2567 (2014).
  • [78] Peng, S., Li, L., Lee, J. K. Y., Tian, L., Srinivasan, M., Adams, S., and Ramakrishna, S. “Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage”, Nano Energy, 22:361-395. (2016).
  • [79] Dirican, M., Lu, Y., Ge, Y., Yildiz, O., and Zhang, X. “Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material” ACS Applied Materials & Interfaces, 7(33): 18387-18396 (2015).
  • [80] Wang, Y., Su, D., Wang, C., and Wang, G. “SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries” Electrochemistry Communications, 29: 8-11. (2013).
  • [81] Zhu, Y., Wen, Y., Fan, X., Gao, T., Han, F., Luo, C., Liou, S.C. and Wang, C. “Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries” ACS Nano 9(3): 3254-3264 (2015).
  • [82] Li, W. J., Chou, S. L., Wang, J. Z., Liu, H. K., and Dou, S. X. “Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage” Nano Letters, 13(11):5480-5484 (2013).
  • [83] Ran, L., Gentle, I., Lin, T., Luo, B., Mo, N., Rana, M., Li, M., Wang, L., and Knibbe, R. “Sn4P3@ Porous carbon nanofiber as a self-supported anode for sodium-ion batteries” Journal of Power Sources, 461, 228116 (2020).
  • [84] Chuenchom, L., Kraehnert, R., and Smarsly, B. M. “Recent progress in soft-templating of porous carbon materials” Soft Matter, 8(42) 10801-10812 (2012).
  • [85] Lee, J., Kim, J., and Hyeon, T. “Recent progress in the synthesis of porous carbon materials”. Advanced Materials, 18(16):2073-2094. (2006).
  • [86] Roberts, A. D., Li, X., and Zhang, H. “Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials” Chemical Society Reviews, 43(13):4341-4356 (2014).
  • [87] Guo, H., Ding, B., Wang, J., Zhang, Y., Hao, X., Wu, L., An, Y., Dou, H. and Zhang, X. “Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors” Carbon, 136, 204-210 (2018).
  • [88] Liu, S., Zhao, Y., Zhang, B., Xia, H., Zhou, J., Xie, W., and Li, H. “Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes”. Journal of Power Sources, 381, 116-126 (2018).
  • [89] Jahel, A., Ghimbeu, C. M., Darwiche, A., Vidal, L., Hajjar-Garreau, S., Vix-Guterl, C., and Monconduit, L. “Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon”. Journal of Materials Chemistry A, 3(22):11960-11969 (2015).
  • [90] Liang, X., Chang, C., Guo, W., Jiang, X., Xiong, C., and Pu, X. “Red phosphorus/onion‐like mesoporous carbon composite as high‐performance anode for sodium‐ion battery” ChemElectroChem, 6(22):5721-5727 (2019).
  • [91] Liu, J., Kopold, P., Wu, C., van Aken, P. A., Maier, J., and Yu, Y. “Uniform yolk–shell Sn4P3@ C nanospheres as high-capacity and cycle-stable anode materials for sodium- ion batteries”. Energy & Environmental Science, 8(12):3531-3538 (2015).
  • [92] Xu, J., Wang, M., Wickramaratne, N. P., Jaroniec, M., Dou, S., and Dai, L. “High‐performance sodium ion batteries based on a 3D anode from nitrogen‐doped graphene foams” Advanced Materials, 27(12): 2042-2048 (2015).
  • [93] Elizabeth, I., Singh, B. P., Trikha, S., and Gopukumar, S. “Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries” Journal of Power Sources, 329: 412-421. (2016).
  • [94] Li, Z., Chen, Y., Jian, Z., Jiang, H., Razink, J. J., Stickle, W. F., Joerk, C. N., and Ji, X. “Defective hard carbon anode for Na-ion batteries” Chemistry of Materials, 30(14):4536-4542 (2018).
  • [95] Li, Q., Zhu, Y., Zhao, P., Yuan, C., Chen, M., and Wang, C. “Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode”. Carbon, 129: 85-94 (2018). [96] Yang, L., Hu, M., Lv, Q., Zhang, H., Yang, W., and Lv, R. “Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity”. Carbon, 163: 288-296 (2020).
  • [97] Lu, Y., Zhang, N., Zhao, Q., Liang, J., and Chen, J. “Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries”. Nanoscale, 7(6):2770-2776 (2015).
  • [98] Yang, Y., Fu, W., Lee, D. C., Bell, C., Drexler, M., Ma, Z. F., Magasinski, A., Yush N, G., and Alamgir, F. M. “Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries” Materials Today Energy, 16: 100410 (2020).
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Gamzenur Özsin 0000-0001-5091-5485

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 13 Kasım 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özsin, G. (2021). Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Dergisi, 24(3), 1151-1170. https://doi.org/10.2339/politeknik.825365
AMA Özsin G. Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Dergisi. Eylül 2021;24(3):1151-1170. doi:10.2339/politeknik.825365
Chicago Özsin, Gamzenur. “Na-Iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme”. Politeknik Dergisi 24, sy. 3 (Eylül 2021): 1151-70. https://doi.org/10.2339/politeknik.825365.
EndNote Özsin G (01 Eylül 2021) Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Dergisi 24 3 1151–1170.
IEEE G. Özsin, “Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme”, Politeknik Dergisi, c. 24, sy. 3, ss. 1151–1170, 2021, doi: 10.2339/politeknik.825365.
ISNAD Özsin, Gamzenur. “Na-Iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme”. Politeknik Dergisi 24/3 (Eylül 2021), 1151-1170. https://doi.org/10.2339/politeknik.825365.
JAMA Özsin G. Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Dergisi. 2021;24:1151–1170.
MLA Özsin, Gamzenur. “Na-Iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme”. Politeknik Dergisi, c. 24, sy. 3, 2021, ss. 1151-70, doi:10.2339/politeknik.825365.
Vancouver Özsin G. Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Dergisi. 2021;24(3):1151-70.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.