Araştırma Makalesi
BibTex RIS Kaynak Göster

Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı

Yıl 2021, , 733 - 743, 01.06.2021
https://doi.org/10.2339/politeknik.851661

Öz

Uzay donanım geliştirme projelerinde, zorlu çevre koşulları, radyasyon etkileri ve bakım yapılabilme zorlukları güvenilirliği ilk sıraya taşımaktadır. Lakin düşük güvenilirlikli ekipmanlar görev ömrünü tamamlayamadan arızalanıp uydunun kaybına sebep olmaktadırlar. Bu sorunu ortadan kaldırmak için geliştirme fazında güvenilirlik tahmini, parça stres azaltma, en kötü durum, Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) gibi analizler Avrupa Uzay Standardizasyon İşbirliği kapsamında çıkartılan rehber dokümanlara göre yapılmaktadır. Rehber dokümanı ECSS-Q-ST-30-02C olan HTEKA, olası hataların belirlenip değerlendirildiği en kapsamlı güvenilirlik analizidir. Bu çalışmanın amacı yeni bir yaklaşım olan hibrit HTEKA sürecini ortaya koymak, görev kritik ekipman olan Uydu Güç Kontrol Birimi (GKB) örneği üzerinde sonuçlarını göstermektir. GKB güneş panellerinden aldığı enerjiyi koşullandırıp pil şarj/deşarj işlemlerini gerçekleştirerek uydu ekipmanlarına güç sağlamaktadır. HTEKA’da hata türleri detaylıca belirlenmez, gerçekleşme olasılığı hassas hesaplanmazsa uydu görevi kaybedilir. Bunu sağlamak için ekipmanın elektronik kartları donanımsal bloklara ayrılmış ve hata türleri bu donanımsal blokların fonksiyonları üzerinden türetilmiştir. Güvenilirlik analizinden gelen hata oranları, önce elektronik kartlara ardından küçük donanımsal bloklara dağıtılarak hata türlerinin gerçekleşme olasılıkları daha hassas hesaplanmıştır. Sonuç olarak GKB’nin bir elektronik kartı üzerinden hibrit HTEKA yapılarak hata türleri incelenmiş ve kritikliği değerlendirilmiştir. Böylelikle olası tüm hata türleri incelenip, kritiklikleri doğru tespit edilerek ekipman hatasından dolayı uydunun kaybedilme ihtimali en aza indirilmiştir.

Kaynakça

  • [1] Carslon C.S., “Understanding and Applying the Fundamentals of FMEAs”, 2014 Annual Reliability and Maintainability Symposium, Colorado, 12-110, (2015).
  • [2] Fidan M. A., Gürgül U., Akın Z. E., "FMEA - FMECA the Application of Analysis on Electronic Circuit", 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 17-22, (2020).
  • [3] ECSS-Q-ST-30-02C, ”Space Product Assurance-Failure mode effects (and criticality) analysis (FMEA/FMECA)”, (2009).
  • [4] FMD-2016, “Reliability Analysis Center (RAC)-Failure Mode Mechanism Distrubition”, (2016).
  • [5] MIL-HDBK-338B (Notice-2), “ Military Handbook-Electronic Reliability Design Handbook”, (2012).
  • [6] Santos A., Infante V., Bamsey M., Schubert D., “A case study in the application of failure analysis techniques to Antarctic Systems: EDEN ISS”, 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, 1-7, (2016).
  • [7] SAE-ARP4761, “Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment”, (1996).
  • [8] Chen Y., Ye C., Liu B., Kang R. “Status of FMECA Research and Engineering Application”, 2012 Prognostics & System Health Management Conference, Beijing, 1–9, (2012).
  • [9] MIL-STD-1629 “Military Standard-Procedures for Performing a Failure Mode, Effects and Criticality Analysis”, (1980).
  • [10] Li L., Wan C., Lin Y., “Compare of the Reliability Standards Used for Space Electronic Products in ECSS and CAST”, 8th International Conference on Reliability, Maintainability and Safety, Chengdu, 1340-1344, (2009).
  • [11] Choudhary K., Kumar N., Monisha S., Sidharthan P., "Integration of DfR in Design of Control Circuit of Space Transmitter," 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 1-6, (2020).
  • [12] Xuan Z., Qing K., Wentao Y., Jie X., Feng L., Xiangan Y., "Power Assessment Indices of Solar Arrays under MPPT and DET methods for Spacecraft," 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 1-4 (2019).
  • [13] Gabriele A., Centonze V., Lobifaro D., Attanasio C., Maiullari G., Costa A., "A Power Control and Distribution Unit for Small Satellite Platforms," 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 1-7, (2019).
  • [14] ECSS-Q-HB-30-08A, “Space Product Assurance-Component reliability data sources and their use”, (2011).
  • [15] MIL-HDBK-217F Notice 2, “Military Handbook-Reliability Prediction of Electronic Equipment”, (1991).
  • [16] de Francesco E., de Francesco R., Petritoli E., “Obsolescence of the MIL-HDBK-217: A critical review.”, 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, 282-286, (2017).
  • [17] ANSI/VITA 51.1, Reliability Predictions MIL-HDBK-217 Subsidary Specification, (2013).
  • [18] ECSS-Q-ST-40-02C, “Space Product Assurance-Hazard analysis”, (2008).
  • [19] Neagoe B.S., Deaky B., Martinescu I., "Failure Mode and Effects Analysis of a new telemonitoring system," 9th International Conference on Remote Engineering and Virtual Instrumentation (REV), Bilbao, 1-4, (2012).
  • [20] Choudhary K., Sidharthan P., "Failure mode effects and criticality analysis (FMECA) of Electronic Power Conditioner (EPC)", 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, 343-346, (2016).
  • [21] Birolini A., “Reliability Engineering: Theory and Practice”, Eight Edition, Springer-Verlag, Berlin Heidelberg, (2017).
  • [22] ECSS-Q-ST-10-04C, “Space Product Assurance-Critical item control”, (2008).

A New Hybrid Failure Modes, Effects And Criticality Analysis (FMECA) Approach To Be Used In Satellite Equipment Design

Yıl 2021, , 733 - 743, 01.06.2021
https://doi.org/10.2339/politeknik.851661

Öz

In space hardware development projects, reliability is at the forefront because of environmental conditions, radiation effects and maintenance difficulty. However, low reliability equipment fails and causes satellite loss before completing service life. To eliminate this problem, analyses such as reliability prediction, derating, worst case, Failure Modes, Effects and Criticality Analysis (FMECA), at development phase are conducted according to European Space Standardization Cooperation guidance documents. FMECA guided in ECSS-Q-ST-30-02C is the most comprehensive reliability analyses in which potential failures are identified and evaluated. The aim of this study is to introduce a new hybrid FMECA approach by presenting a case study on Power Control Unit (PCU) which is mission critical satellite equipment. PCU performs battery charge/discharge processes and provides power to satellite equipment by conditioning energy from solar panels. If failure modes in FMECA aren’t determined in detail and probability of occurrence isn’t calculated precisely, satellite mission can be lost. Hence, equipment’s electronic boards are divided into hardware blocks and their functions determine failure modes. Failure rates taken from reliability prediction analysis are distributed to electronic boards and small hardware blocks respectively, thus failure modes’ probabilities could be calculated more precisely. Consequently failure modes are analyzed; criticalities are evaluated by performing hybrid FMECA for PCU electronic boards. Hereby, all possible failure modes are examined and their criticality is correctly determined, and possibility of satellite loss result from equipment failure is minimized.

Kaynakça

  • [1] Carslon C.S., “Understanding and Applying the Fundamentals of FMEAs”, 2014 Annual Reliability and Maintainability Symposium, Colorado, 12-110, (2015).
  • [2] Fidan M. A., Gürgül U., Akın Z. E., "FMEA - FMECA the Application of Analysis on Electronic Circuit", 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 17-22, (2020).
  • [3] ECSS-Q-ST-30-02C, ”Space Product Assurance-Failure mode effects (and criticality) analysis (FMEA/FMECA)”, (2009).
  • [4] FMD-2016, “Reliability Analysis Center (RAC)-Failure Mode Mechanism Distrubition”, (2016).
  • [5] MIL-HDBK-338B (Notice-2), “ Military Handbook-Electronic Reliability Design Handbook”, (2012).
  • [6] Santos A., Infante V., Bamsey M., Schubert D., “A case study in the application of failure analysis techniques to Antarctic Systems: EDEN ISS”, 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, 1-7, (2016).
  • [7] SAE-ARP4761, “Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment”, (1996).
  • [8] Chen Y., Ye C., Liu B., Kang R. “Status of FMECA Research and Engineering Application”, 2012 Prognostics & System Health Management Conference, Beijing, 1–9, (2012).
  • [9] MIL-STD-1629 “Military Standard-Procedures for Performing a Failure Mode, Effects and Criticality Analysis”, (1980).
  • [10] Li L., Wan C., Lin Y., “Compare of the Reliability Standards Used for Space Electronic Products in ECSS and CAST”, 8th International Conference on Reliability, Maintainability and Safety, Chengdu, 1340-1344, (2009).
  • [11] Choudhary K., Kumar N., Monisha S., Sidharthan P., "Integration of DfR in Design of Control Circuit of Space Transmitter," 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 1-6, (2020).
  • [12] Xuan Z., Qing K., Wentao Y., Jie X., Feng L., Xiangan Y., "Power Assessment Indices of Solar Arrays under MPPT and DET methods for Spacecraft," 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 1-4 (2019).
  • [13] Gabriele A., Centonze V., Lobifaro D., Attanasio C., Maiullari G., Costa A., "A Power Control and Distribution Unit for Small Satellite Platforms," 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 1-7, (2019).
  • [14] ECSS-Q-HB-30-08A, “Space Product Assurance-Component reliability data sources and their use”, (2011).
  • [15] MIL-HDBK-217F Notice 2, “Military Handbook-Reliability Prediction of Electronic Equipment”, (1991).
  • [16] de Francesco E., de Francesco R., Petritoli E., “Obsolescence of the MIL-HDBK-217: A critical review.”, 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, 282-286, (2017).
  • [17] ANSI/VITA 51.1, Reliability Predictions MIL-HDBK-217 Subsidary Specification, (2013).
  • [18] ECSS-Q-ST-40-02C, “Space Product Assurance-Hazard analysis”, (2008).
  • [19] Neagoe B.S., Deaky B., Martinescu I., "Failure Mode and Effects Analysis of a new telemonitoring system," 9th International Conference on Remote Engineering and Virtual Instrumentation (REV), Bilbao, 1-4, (2012).
  • [20] Choudhary K., Sidharthan P., "Failure mode effects and criticality analysis (FMECA) of Electronic Power Conditioner (EPC)", 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, 343-346, (2016).
  • [21] Birolini A., “Reliability Engineering: Theory and Practice”, Eight Edition, Springer-Verlag, Berlin Heidelberg, (2017).
  • [22] ECSS-Q-ST-10-04C, “Space Product Assurance-Critical item control”, (2008).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nazım Yaman Bu kişi benim 0000-0003-2488-5395

Mustafa Burunkaya 0000-0002-3971-0590

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 1 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yaman, N., & Burunkaya, M. (2021). Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı. Politeknik Dergisi, 24(2), 733-743. https://doi.org/10.2339/politeknik.851661
AMA Yaman N, Burunkaya M. Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı. Politeknik Dergisi. Haziran 2021;24(2):733-743. doi:10.2339/politeknik.851661
Chicago Yaman, Nazım, ve Mustafa Burunkaya. “Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri Ve Kritiklik Analizi (HTEKA) Yaklaşımı”. Politeknik Dergisi 24, sy. 2 (Haziran 2021): 733-43. https://doi.org/10.2339/politeknik.851661.
EndNote Yaman N, Burunkaya M (01 Haziran 2021) Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı. Politeknik Dergisi 24 2 733–743.
IEEE N. Yaman ve M. Burunkaya, “Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı”, Politeknik Dergisi, c. 24, sy. 2, ss. 733–743, 2021, doi: 10.2339/politeknik.851661.
ISNAD Yaman, Nazım - Burunkaya, Mustafa. “Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri Ve Kritiklik Analizi (HTEKA) Yaklaşımı”. Politeknik Dergisi 24/2 (Haziran 2021), 733-743. https://doi.org/10.2339/politeknik.851661.
JAMA Yaman N, Burunkaya M. Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı. Politeknik Dergisi. 2021;24:733–743.
MLA Yaman, Nazım ve Mustafa Burunkaya. “Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri Ve Kritiklik Analizi (HTEKA) Yaklaşımı”. Politeknik Dergisi, c. 24, sy. 2, 2021, ss. 733-4, doi:10.2339/politeknik.851661.
Vancouver Yaman N, Burunkaya M. Uydu Ekipman Tasarımında Yeni Bir Hibrit Hata Türü Etkileri ve Kritiklik Analizi (HTEKA) Yaklaşımı. Politeknik Dergisi. 2021;24(2):733-4.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.